1
|
Synthesis of homoagmatine and GC–MS analysis of tissue homoagmatine and agmatine: evidence that homoagmatine but not agmatine is a metabolite of pharmacological L-homoarginine in the anesthetized rat. Amino Acids 2019; 52:235-245. [DOI: 10.1007/s00726-019-02808-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
|
2
|
Cobos-Puc L, Aguayo-Morales H, Ventura-Sobrevilla J, Luque-Contreras D, Chin-Chan M. Further analysis of the inhibition by agmatine on the cardiac sympathetic outflow: Role of the α 2-adrenoceptor subtypes. Eur J Pharmacol 2017; 805:75-83. [PMID: 28315344 DOI: 10.1016/j.ejphar.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/16/2017] [Accepted: 03/10/2017] [Indexed: 11/28/2022]
Abstract
This study has investigated the role of the α2-adrenoceptor subtypes involved in the inhibition of the cardiac sympathetic outflow induced by intravenous (i.v) infusions of agmatine. Therefore, we analysed the effect of an i.v. bolus injections of the selective antagonists BRL 44408 (300μg/kg; α2A), imiloxan (3000μg/kg; α2B), and JP-1302 (300μg/kg; α2C) given separately, and their combinations: BRL 44408 plus Imiloxan, JP 1302 plus imiloxan, BRL 44408 plus JP-1302, BRL 44408 plus imiloxan plus JP-1302 on the cardiac sympatho-inhibition of agmatine. Also, the effect of the combination BRL 44408 plus JP-1302 plus AGN 192403 (3000μg/kg; I1 antagonist) was evaluated. In this way, i.v. infusions of 1000μg/kg min of agmatine, but not 300, inhibited the tachycardic response induced by electrical stimulation. Furthermore, the antagonists used or their combinations had no effect on the electrically-induced tachycardic response. On the other hand, the inhibitory response of agmatine was: (1) partially antagonized by BRL 44408 or JP-1302 given separately, a similar response was observed when we administered their combination with imiloxan, but not by imiloxan alone, (2) antagonized in greater magnitude by the combination BRL 44408 plus JP-1302 or the combination BRL 44408 plus imiloxan plus JP-1302, and (3) abolished by the combination BRL 44408 plus JP-1302 plus AGN 192403. Taken together, these results demonstrate that the α2A- and α2C-adrenoceptor subtypes and I1-imidazoline receptors are involved in the inhibition of the cardiac sympathetic outflow induced by agmatine.
Collapse
Affiliation(s)
- Luis Cobos-Puc
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza esquina con Ing. José Cárdenas Valdés, Colonia República, C.P. 25280 Saltillo, Coahuila, Mexico.
| | - Hilda Aguayo-Morales
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza esquina con Ing. José Cárdenas Valdés, Colonia República, C.P. 25280 Saltillo, Coahuila, Mexico
| | - Janeth Ventura-Sobrevilla
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza esquina con Ing. José Cárdenas Valdés, Colonia República, C.P. 25280 Saltillo, Coahuila, Mexico
| | - Diana Luque-Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza esquina con Ing. José Cárdenas Valdés, Colonia República, C.P. 25280 Saltillo, Coahuila, Mexico
| | - Miguel Chin-Chan
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Campeche, Av. Universidad s/n, Col. Buenavista, C.P. 24039 Campeche, Campeche, Mexico
| |
Collapse
|
3
|
Allman BR, Kreipke VC, Ormsbee MJ. What Else Is in Your Supplement? A Review of the Effectiveness of the Supportive Ingredients in Multi-ingredient Performance Supplements to Improve Strength, Power, and Recovery. Strength Cond J 2015. [DOI: 10.1519/ssc.0000000000000142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Lowery RP, Joy JM, Dudeck JE, Oliveira de Souza E, McCleary SA, Wells S, Wildman R, Wilson JM. Effects of 8 weeks of Xpand® 2X pre workout supplementation on skeletal muscle hypertrophy, lean body mass, and strength in resistance trained males. J Int Soc Sports Nutr 2013; 10:44. [PMID: 24107586 PMCID: PMC3851572 DOI: 10.1186/1550-2783-10-44] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xpand® 2X is a proprietary blend comprised of branched chain amino acids, creatine monohydrate, beta-alanine (CarnoSyn®), quercetin, coenzymated B-vitamins, alanyl-glutamine (Sustamine®), and natural nitrate sources from pomegranate and beet root extracts purported to enhance the neuromuscular adaptations of resistance training. However to date, no long-term studies have been conducted with this supplement. The purpose of this study was to investigate the effects of a multi-ingredient performance supplement (MIPS) on skeletal muscle hypertrophy, lean body mass and lower body strength in resistance-trained males. METHODS Twenty resistance-trained males (21.3 ± 1.9 years) were randomly assigned to consume a MIPS or a placebo of equal weight and volume (food-grade orange flavors and sweeteners) in a double-blind manner, 30 minutes prior to exercise. All subjects participated in an 8-week, 3-day per week, periodized, resistance-training program that was split-focused on multi-joint movements such as leg press, bench press, and bent-over rows. Ultrasonography measured muscle thickness of the quadriceps, dual-energy X-ray absorptiometry (DEXA) determined lean body mass, and strength of the bench press and leg press were determined at weeks 0, 4, and 8 of the study. Data were analyzed with a 2 × 3 repeated measures ANOVA with LSD post hoc tests utilized to locate differences. RESULTS There was a significant group-by-time interaction in which the MIPS supplementation resulted in a significant (p < 0.01) increase in strength of the bench press (18.4% vs. 9.6%) compared with placebo after 4 and 8 weeks of training. There were no significant group by time interactions between MIPS supplementation nor the placebo in leg press strength (p = .08). MIPS supplementation also resulted in a significant increase in lean body mass (7.8% vs. 3.6%) and quadriceps muscle thickness (11.8% vs. 4.5%) compared with placebo (group*time, p <0.01). CONCLUSIONS These results suggest that this MIPS can positively augment adaptations in strength, and skeletal muscle hypertrophy in resistance-trained men.
Collapse
Affiliation(s)
- Ryan P Lowery
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Payandemehr B, Rahimian R, Bahremand A, Ebrahimi A, Saadat S, Moghaddas P, Fadakar K, Derakhshanian H, Dehpour AR. Role of nitric oxide in additive anticonvulsant effects of agmatine and morphine. Physiol Behav 2013; 118:52-7. [DOI: 10.1016/j.physbeh.2013.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/17/2013] [Accepted: 05/07/2013] [Indexed: 11/28/2022]
|
6
|
Mar GY, Chou MT, Chung HH, Chiu NH, Chen MF, Cheng JT. Changes of imidazoline receptors in spontaneously hypertensive rats. Int J Exp Pathol 2012; 94:17-24. [PMID: 23176371 DOI: 10.1111/iep.12000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/13/2012] [Indexed: 12/27/2022] Open
Abstract
The role of imidazoline receptors in the regulation of vascular function remains unclear. In this study, we evaluated the effect of agmatine, an imidazoline receptor agonist, on systolic blood pressure (SBP) in spontaneously hypertensive rats (SHRs) and investigated the expressions of imidazoline receptors by Western blot. The isometric tension of aortic rings isolated from male SHRs was also estimated. Agmatine decreased SBP in a dose-dependent manner in SHRs but not in the normal group [Wistar-Kyoto (WKY) rats]. This reduction in SBP in SHRs was abolished by BU224, a selective antagonist of imidazoline I(2) -receptors. Higher expression of imidazoline receptors in SHR was observed. Moreover, agmatine-induced relaxation in isolated aortic rings precontracted with phenylephrine or KCl. This relaxation was also abolished by BU224 but was not modified by efaroxan, an imidazoline I(1) -receptor antagonist. Agmatine-induced relaxation was also attenuated by PNU 37883, a selective blocker of vascular ATP-sensitive potassium (K(ATP) ) channels. Additionally, vasodilatation by agmatine was reduced by an inhibitor of protein kinase A (PKA). We suggest that agmatine can lower blood pressure in SHRs through activation of the peripheral imidazoline I(2) -receptor, which is expressed more highly in SHRs.
Collapse
Affiliation(s)
- Guang-Yuan Mar
- Department of Cardiology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | | | | | | | | | | |
Collapse
|
7
|
Molderings GJ, Haenisch B. Agmatine (decarboxylated l-arginine): Physiological role and therapeutic potential. Pharmacol Ther 2012; 133:351-65. [DOI: 10.1016/j.pharmthera.2011.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/14/2023]
|
8
|
Hong KW, Jin HS, Lim JE, Cho YS, Go MJ, Jung J, Lee JE, Choi J, Shin C, Hwang SY, Lee SH, Park HK, Oh B. Non-synonymous single-nucleotide polymorphisms associated with blood pressure and hypertension. J Hum Hypertens 2010; 24:763-74. [PMID: 20147969 DOI: 10.1038/jhh.2010.9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this study, we determined the association of 1180 non-synonymous single-nucleotide polymorphisms (SNPs) with systolic blood pressure (SBP) and hypertensive status. A total of 8842 subjects were taken from two community-based cohorts--Ansung (n=4183) and Ansan (n=4659), South Korea--which had been established for genome-wide association studies (GWAS). Five SNPs (rs16835244, rs2286672, rs6265, rs17237198 and rs7312017) were significantly associated (P-values: 0.003-0.0001, not corrected for genome-wide significance) with SBP in both cohorts. Of these SNPs, rs16835244 and rs2286672 correlated with risk for hypertension. The rs16835244 SNP replaces Ala288 in arginine decarboxylase (ADC) with serine, and rs2286672 replaces Arg172 in phospholipase D2 (PLD2) with cysteine. A comparison of peptide sequences between vertebrate homologues revealed that the SNPs identified occur at conserved amino-acid residues. In silico analysis of the protein structure showed that the substitution of a polar residue, serine, for a non-polar alanine at amino-acid residue 288 affects a conformational change in ADC, and that Arg172 in PLD2 resides in the PX domain, which is important for membrane trafficking. These results provide insights into the function of these non-synonymous SNPs in the development of hypertension. The study investigating non-synonymous SNPs from GWAS not only by statistical association analysis but also by biological relevance through the protein structure might be a good approach for identifying genetic risk factors for hypertension, in addition to discovering causative variations.
Collapse
Affiliation(s)
- K-W Hong
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Santhanam AVR, Viswanathan S, Dikshit M. Activation of protein kinase B/Akt and endothelial nitric oxide synthase mediates agmatine-induced endothelium-dependent relaxation. Eur J Pharmacol 2007; 572:189-96. [PMID: 17640632 DOI: 10.1016/j.ejphar.2007.06.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 12/16/2022]
Abstract
The ability of agmatine, formed from L-arginine by the enzyme arginine decarboxylase (ADC), to modulate vasomotor function in rat aorta was investigated in the present study. Agmatine-mediated modulation of vasomotor tone was studied in organ chambers, protein expression quantified by Western blot analysis and cyclic guanosine 5'-monophosphate (cGMP) levels measured by radioimmunoassay. Agmatine (10(-10) to 10(-3) M) produced concentration-dependent relaxations (82+/-5%) in phenylephrine-contracted endothelium intact rat aorta. Relaxations to agmatine were diminished on denudation of endothelium and nitric oxide synthase (NOS) inhibition by L-Nomega-nitro arginine or soluble guanylate cyclase inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (P<0.001) abolished agmatine-mediated relaxations, while relaxations were insensitive to inducible NOS inhibition by 1400W. Agmatine-treated aorta demonstrated increased protein expression of phosphorylated S473-Akt and phosphorylated S1177-endothelial nitric oxide synthase (eNOS), and elevated the levels of cyclic GMP (P<0.01). Agmatine-mediated potentiation of relaxations and elevation of cGMP levels was sensitive to phosphatidylinositol 3'-kinase inhibitor, wortmannin. Relaxations to agmatine were also affected by pre-treatment with tetraethylammonium (P<0.01) or apamin (P<0.05), and were not affected by charybdotoxin. Relaxations to agmatine were partially affected by pre-treatment of aortic rings with barium chloride (P<0.05), and glybenclamide (P<0.05). Results obtained suggest that agmatine activates protein kinase B/Akt to phosphorylate eNOS and elevate cyclic GMP levels to produce vasodilatation of aorta. Agmatine-mediated relaxations in rat aorta seems to be mediated mainly by endothelial NO-mediated activation of small conductance Ca2+-activated K+ channels, and partly by ATP-sensitive and inward rectifying K+ channels.
Collapse
Affiliation(s)
- Anantha Vijay R Santhanam
- Department of Anesthesiology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
10
|
Garcez-do-Carmo L, Santos WC. L-NAME pre-treatment partially inhibits the agmatine-evoked depression of the electrically induced twitch contraction of isolated rat vas deferens. Life Sci 2006; 79:854-60. [PMID: 16564552 DOI: 10.1016/j.lfs.2006.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 02/28/2006] [Indexed: 11/21/2022]
Abstract
The effect of the putative endogenous ligand for alpha(2)-adrenoceptors and imidazoline receptors agmatine was studied in sympathetic neurotransmission in the rat epididymal vas deferens. Tissues were obtained from N(varpi)-nitro-l-arginine methyl ester (l-NAME)-treated or normal animals and were contracted by electrical stimulation or by exogenous adenosine 5'-triphosphate (ATP). In the electrically stimulated epididymal end, agmatine produced an inhibitory effect on twitch contraction that was partially reversed in l-NAME-treated animals, whereas the inhibition produced by clonidine was not affected by l-NAME treatment. The nitric oxide (NO)-donor S-nitroso-N-acetyl-penicillamine (SNAP) also inhibited twitch contraction. Neither agmatine nor SNAP interfered with the responses induced by exogenous ATP in the epididymal end. Removal of the epithelium of the preparation did not modify the agmatine response. We conclude that a nitrergic pathway activated by agmatine plays a role in its inhibitory effect in rat vas deferens, but it remains to be investigated whether it results from a direct action on the enzyme NO-synthase or a receptor-mediated mechanism.
Collapse
Affiliation(s)
- Lúcia Garcez-do-Carmo
- Departamento de Farmacologia, UNIFESP, Escola Paulista de Medicina, Rua Botucatu, 862-Vila Clementino, CEP 04021-023, São Paulo, SP, Brasil.
| | | |
Collapse
|
11
|
Riazi K, Honar H, Homayoun H, Rashidi N, Kiani S, Ebrahimkhani MR, Noorian AR, Ghaffari K, Jannati A, Dehpour AR. The synergistic anticonvulsant effect of agmatine and morphine: Possible role of alpha 2-adrenoceptors. Epilepsy Res 2005; 65:33-40. [PMID: 15975766 DOI: 10.1016/j.eplepsyres.2005.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 03/20/2005] [Accepted: 04/08/2005] [Indexed: 11/27/2022]
Abstract
Recent demonstrations of the anticonvulsant properties of agmatine suggest it may be considered as a potential adjunct for protection against seizure. We investigated the possibility of an additive anticonvulsant effect between low doses of agmatine and morphine. The thresholds for the clonic seizures induced by the intravenous administration of gamma-aminobutyric acid (GABA)-antagonist, pentylenetetrazole (PTZ) were assessed in mice. Morphine at lower doses (1-3mg/kg) increased and at higher doses (30, 60 mg/kg) decreased the seizure threshold. Pretreatment with a per se non-effective dose of agmatine (1mg/kg) potentiated the anticonvulsant effect of morphine. The combination of subeffective doses of agmatine and morphine led to potent anticonvulsant effects. The pro-convulsant effect of morphine was attenuated by agmatine. Yohimbine with a dose (1mg/kg) incapable of affecting seizure threshold reversed the effect of agmatine on both anticonvulsant and pro-convulsant effects of morphine. These results suggest that agmatine potentiates the anticonvulsant effect of morphine and alpha 2-adrenoceptors may be involved in this effect.
Collapse
Affiliation(s)
- Kiarash Riazi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim JH, Yenari MA, Giffard RG, Cho SW, Park KA, Lee JE. Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol 2004; 189:122-30. [PMID: 15296842 DOI: 10.1016/j.expneurol.2004.05.029] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 04/30/2004] [Accepted: 05/14/2004] [Indexed: 11/22/2022]
Abstract
Agmatine is a primary amine formed by the decarboxylation of L-arginine synthesized in mammalian brain. In this study, we investigated the neuroprotective effect of agmatine on ischemic and ischemia-like insults. Primary cortical neuronal cultures were subjected to oxygen-glucose deprivation (OGD), a model of ischemia-like injury, and treated with agmatine before or at the start of OGD, or upon reperfusion. Neuronal death was reduced when agmatine was present during OGD, and this protection was associated with a reduction of nitric oxide (NO) and neuronal nitric oxide synthase (nNOS), but not inducible NOS (iNOS). Protection by agmatine was also studied at the in vivo level using a model of middle cerebral artery occlusion (MCAO) in mice. Mice were subjected to 2 h MCAO. Agmatine was administered either 30 min before ischemia, at the start of MCAO, at the start of reperfusion, or 2 or 5 h into reperfusion. Agmatine markedly reduced infarct area in all treatment groups except when treatment was delayed 5 h. The number of nNOS immunopositive cells was correlated with neuroprotection. Interestingly, immunoreactivity for iNOS was reduced only when agmatine was administered before and at the onset of MCAO. Our study suggests that agmatine may be a novel therapeutic strategy to reduce cerebral ischemic injury, and may act by inhibiting the detrimental effects of nNOS.
Collapse
Affiliation(s)
- J H Kim
- BK21 Project for Medical Sciences, College of Medicine, Yonsei University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
13
|
Cooper EJ, Hudson AL, Parker CA, Morgan NG. Effects of the beta-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans. Eur J Pharmacol 2004; 482:189-96. [PMID: 14660022 DOI: 10.1016/j.ejphar.2003.09.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well known that certain imidazoline compounds can stimulate insulin secretion and this has been attributed to the activation of imidazoline I(3) binding sites in the pancreatic beta-cell. Recently, it has been proposed that beta-carbolines may be endogenous ligands having activity at imidazoline sites and we have, therefore, studied the effects of beta-carbolines on insulin secretion. The beta-carbolines harmane, norharmane and pinoline increased insulin secretion two- to threefold from isolated human islets of Langerhans. The effects of harmane and pinoline were dose-dependent (EC(50): 5 and 25 microM, respectively) and these agents also blocked the inhibitory effects of the potassium channel agonist, diazoxide, on glucose-induced insulin release. Stimulation of insulin secretion by harmane was glucose-dependent but, unlike the imidazoline I(3) receptor agonist efaroxan, it increased the rate of insulin release beyond that elicited by 20 mM glucose (20 mM glucose alone: 253+/-34% vs. basal; 20 mM glucose plus 100 microM harmane: 327+/-15%; P<0.01). Stimulation of insulin secretion by harmane was attenuated by the imidazoline I(3) receptor antagonist KU14R (2 (2-ethyl 2,3-dihydro-2-benzofuranyl)-2-imidazole) and was reduced when islets were treated with efaroxan for 18 h, prior to the addition of harmane. The results reveal that beta-carbolines can potentiate the rate of insulin secretion from human islets and suggest that these agents may be useful prototypes for the development of novel insulin secretagogues.
Collapse
Affiliation(s)
- E Jane Cooper
- Cellular Pharmacology Group, School of Life Sciences, Keele University, Staffs ST5 5BG, UK
| | | | | | | |
Collapse
|
14
|
Sitniewska EM, Wiśniewska RJ, Wiśniewski K. Diabetes-induced changes of nitric oxide influence on the cardiovascular action of secretin. REGULATORY PEPTIDES 2002; 105:163-72. [PMID: 11959370 DOI: 10.1016/s0167-0115(02)00018-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The modulation by condition of the lack or the excess of nitric oxide (NO) on cardiovascular action of secretin in diabetic rats was investigated. In vitro the isolated heart function and in vivo, the systolic (SBP), diastolic (DSP) blood pressure and heart rate (HR) were measured. Secretin evoked inotropic positive effect and increased coronary outflow (CO), in vivo did not increase systemic pressure and the highest dose of the peptide increased the heart rate. NO synthase inhibitor, N(G) nitro-L-arginine methyl ester (L-NAME) deeply increased the systemic pressure and in vitro decreased coronary outflow. L-arginine and sodium nitroprusside (SNP) did not influence the isolated heart function and in vivo decreased the systemic pressure. L-NAME preserved the inotropic positive effect of secretin and the increase of the coronary outflow. In vivo co-administration of L-NAME+secretin evoked hypotensive effect and abolished the increase of the heart rate after the highest dose of the peptide. L-arginine abolished inotropic positive effect of the peptide and the increase of coronary outflow. In vivo co-administration of these substances caused hypotension and attenuated the increase of the heart rate after the highest dose of secretin. Co-injection of SNP and secretin preserved the inotropic effect of secretin and abolished the increase of the coronary outflow. In vivo infusion of SNP+secretin evoked hypotension and similarly to L-arginine, SNP abolished tachycardia induced by the highest dose of secretin. Both the lack and the excess of nitric oxide changed the cardiovascular action of secretin in diabetic rats.
Collapse
Affiliation(s)
- Ewa Maria Sitniewska
- Department of Pharmacology, Medical Academy of Bialystok, 2c Mickiewicza: 15-222, Bialystok, Poland
| | | | | |
Collapse
|
15
|
Raasch W, Schäfer U, Qadri F, Dominiak P. Agmatine, an endogenous ligand at imidazoline binding sites, does not antagonize the clonidine-mediated blood pressure reaction. Br J Pharmacol 2002; 135:663-72. [PMID: 11834614 PMCID: PMC1573177 DOI: 10.1038/sj.bjp.0704513] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Since agmatine has been identified as a clonidine displacing substance (CDS), the aim of this study was to investigate whether agmatine can mimic CDS-induced cardiovascular reactions in organ bath experiments, pithed spontaneously hypertensive rats (SHR) and anaesthetized SHR. Intravenously-administered agmatine significantly reduced the blood pressure and heart rate of anaesthetized SHR at doses higher than 1 and 3 mg kg(-1), respectively. These effects are probably mediated via central mechanisms, since there was an approximate 8 fold rightward shift of the dose-response curve in the pithed SHR (indicating a weakened cardiovascular effect). Moreover, in organ bath experiments, agmatine failed to alter the contractility of intact or endothelium-denuded aortal rings. When agmatine was administered i.c.v. to anaesthetized SHR, blood pressure was increased without any alteration of heart rate, whereas blood pressure was unchanged and heart rate was increased after injection into the 4th brain ventricle. This suggests that haemodynamic reaction patterns after central application are related to distinct influences on central cardiovascular mechanisms. Agmatine reduces noradrenaline release in pithed SHR while alpha(2)-adrenoceptors are irreversibly blocked with phenoxybenzamine, but not while I(1)-binding sites are selectively blocked with AGN192403. This suggests that agmatine may modulate noradrenaline release in the same way that clonidine does, i.e. via imidazoline binding sites; this involves a reduction in sympathetic tone which in turn reduces blood pressure and heart rate. Finally, CDS-like cardiovascular activity appears not to be due to agmatine, since (i) blood pressure in anaesthetized SHR is decreased by agmatine and clonidine, and (ii) agmatine did not antagonize the blood pressure reaction to clonidine in pithed or anaesthetized SHR.
Collapse
Affiliation(s)
- Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology Medical University of Lübeck, Germany.
| | | | | | | |
Collapse
|
16
|
Raasch W, Schäfer U, Chun J, Dominiak P. Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br J Pharmacol 2001; 133:755-80. [PMID: 11454649 PMCID: PMC1572857 DOI: 10.1038/sj.bjp.0704153] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- W Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | | | | | | |
Collapse
|
17
|
Dumont Y, D'Amours M, Lebel M, Larivière R. Supplementation with a low dose of L-arginine reduces blood pressure and endothelin-1 production in hypertensive uraemic rats. Nephrol Dial Transplant 2001; 16:746-54. [PMID: 11274268 DOI: 10.1093/ndt/16.4.746] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We documented recently that increased endothelin-1 (ET-1) production in blood vessels and glomeruli of uraemic rats plays a crucial role in the development of hypertension and the progression of chronic renal failure. Normally, biological effects and local production of ET-1 are attenuated by the immediate release of nitric oxide (NO). Increasing evidence suggest, however, that NO release is impaired in chronic renal failure. We investigated whether supplementation with L-arginine, the natural precursor of NO, improves NO synthesis in uraemic rats with reduced renal mass and modulates vascular and renal ET-1 production as well as blood pressure and renal failure progression. METHODS One week after surgical renal mass reduction, the uraemic and sham-operated animals received either no treatment or 0.1% L-arginine in drinking water for 5 weeks. In another series of experiments, uraemic rats received 1% L-arginine for 5 weeks. Immunoreactive-ET-1 (ir-ET-1) levels in plasma, urine, and vascular and renal tissue preparations was measured by radioimmunoassay after sample extraction and purification. RESULTS Before treatment, systolic blood pressure was significantly elevated in uraemic animals compared to sham-operated controls (156+/-7 vs 111+/-3 mmHg, respectively; P<0.01). Thereafter, systolic blood pressure increased further in uraemic-untreated rats (systolic blood pressure at week 5; 199+/-9 mmHg, P<0.01), whereas it remained similar in uraemic rats supplemented with 0.1% L-arginine (171+/-9 mmHg, NS). At the end of the study, serum creatinine and urea, proteinuria and ir-ET-1 excretion were significantly augmented, while creatinine clearance was reduced in uraemic animals compared to the controls. Ir-ET-1 level was also increased in glomeruli as well as in thoracic aorta, mesenteric arterial bed, and pre-glomerular arteries, and was associated with vascular hypertrophy as assessed by tissue weight. In contrast, ir-ET-1 level was diminished in the renal papilla of uraemic rats. Treatment with 0.1% L-arginine significantly reduced proteinuria and urinary ir-ET-1 excretion (P<0.05) as well as ir-ET-1 level in glomeruli (P<0.01) and in thoracic aorta (P<0.05). These changes were associated with increased plasma NO metabolites NO2/NO3 levels in L-arginine-treated animals (P<0.01) and reduced aortic hypertrophy (P<0.05). In contrast, supplementation with 1% L-arginine had no effect on systolic blood pressure in uraemic rats, but exacerbated proteinuria and urinary ir-ET-1 excretion and increased serum urea (P<0.05) were observed. CONCLUSIONS These results indicate that improvement of NO release with a low dose but not with a high dose of L-arginine significantly attenuates the development of hypertension and the progression of renal insufficiency in rats with reduced renal mass. These protective effects may be mediated in part by the reduction of vascular and renal ET-1 production.
Collapse
Affiliation(s)
- Y Dumont
- Research Center and Division of Nephrology, CHUQ, L'Hôtel-Dieu de Québec, and Department of Medicine, Laval University, Quebec, Canada
| | | | | | | |
Collapse
|
18
|
Li XT, He RR, Liu S, Liu LL, Zhang WL, Zhao H, Duan HR. Electrophysiological effects of agmatine on human atrial fibers. Life Sci 2000; 66:2351-6. [PMID: 10864097 DOI: 10.1016/s0024-3205(00)00565-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of the present study was to study the electrophysiological effects of agmatine on human atrial fibers obtained at cardiac surgery using standard microelectrode techniques. Agmatine (1 to approximately 10 mM) decreased the action potential amplitude (APA), maximum upstroke velocity of phase 0 depolarization (Vmax), velocity of diastolic (phase 4) depolarization (VDD), rate of pacemaker firing (RPF), and action potential duration at 50 and 90% of repolarization (APD(50-90)) in a concentration-dependent manner. Pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME, 0.5 mM), a NOS inhibitor, did not affect the electrophysiological effects of agmatine (5 mM) on human atrial fibers. The effects of agmatine (5 mM) could be blocked completely by pretreatment with idazoxan (0.1 mM), an alpha-2 adrenergic receptor (alpha2-AR) and imidazoline receptor (IR) antagonist. All these results indicate that the effects of agmatine on human atrial fibers are likely due to a decrease of intracellular calcium mediated by IR and/or alpha2-AR.
Collapse
Affiliation(s)
- X T Li
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Reis DJ, Regunathan S. Agmatine: an endogenous ligand at imidazoline receptors is a novel neurotransmitter. Ann N Y Acad Sci 1999; 881:65-80. [PMID: 10415899 DOI: 10.1111/j.1749-6632.1999.tb09343.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Agmatine, an amine and organic cation, is an endogenous ligand at alpha 2-adrenergic and imidazoline (I-) receptors, to which it binds with high affinity. In addition, agmatine has properties of an endogenous neurotransmitter. Thus, agmatine (a) is locally synthesized in brain by a specific enzyme, arginine decarboxylase; (b) is stored in a large number of neurons with selective distribution in the CNS; (c) is associated with small vesicles in axon terminals that, at least in hippocampus, make synaptic asymmetric (excitatory) synapses on pyramidal cells; (d) is released from synaptosomes in a Ca(2+)-dependent manner; (e) can be enzymatically degraded by agmatinase in synaptosomes; (f) can be inactivated by selective reuptake; (g) blocks the ligand-gated NMDA receptor channel at sites distinct from ligand-binding and polyamine sites; and (h) has systemic actions when administered intraventricularly. Additionally, (i) agmatine is a precursor of brain putrescine and, hence, of higher polyamines, and (j) it competitively inhibits the activity of all isozymes of nitric oxide synthase. Agmatine meets most criteria to establish it as a novel neurotransmitter/neuromodulator in the CNS. However, agmatine differs from forms of clonidine displacing system with respect to distribution, bioactivity, and capacity to interact with antibodies raised to imidazoline-like drugs. Thus, there are multiple endogenous ligands of the imidazoline receptors, one of which is agmatine.
Collapse
Affiliation(s)
- D J Reis
- Division of Neurobiology, Cornell University Medical College, New York, New York 10021, USA.
| | | |
Collapse
|
20
|
Horváth G, Kékesi G, Dobos I, Szikszay M, Klimscha W, Benedek G. Effect of intrathecal agmatine on inflammation-induced thermal hyperalgesia in rats. Eur J Pharmacol 1999; 368:197-204. [PMID: 10193655 DOI: 10.1016/s0014-2999(99)00060-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Agmatine, an endogenous ligand, interacts both with the alpha2-adrenoceptors and with the imidazoline binding sites. The effect of intrathecally administered agmatine on carrageenan-induced thermal hyperalgesia was investigated by means of a paw-withdrawal test in rats. The effect of agmatine on morphine-induced anti-hyperalgesia was also studied. Intrathecal agmatine in doses larger than 250 microg caused a decrease in the pain threshold, with vocalization and agitation lasting for several hours in all animals. Agmatine alone at 1-100 microg did not give rise to any change in the thermal withdrawal threshold in the contralateral non-inflamed paw. Agmatine pretreatment was found to dose-dependently attenuate the thermal hyperalgesia induced by intraplantar carrageenan. The effect of 100 microg agmatine was completely lost by 60 min, whereas the effect of 50 microg was of similar magnitude but exhibited a longer duration. Agmatine posttreatment had a slighter effect. Agmatine pretreatment (100 microg) together with 1 microg morphine (subeffective dose) has significantly higher anti-hyperalgesic effect then the individual compounds by themselves. These are the first data demonstrating the behavioral and anti-hyperalgesic effects of intrathecal agmatine. The results reveal important interactions between intrathecal agmatine and opioids in thermal hyperalgesia.
Collapse
Affiliation(s)
- G Horváth
- Department of Physiology, Albert Szent-Gyrgyi Medical University, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
21
|
Molderings GJ, Göthert M. Imidazoline binding sites and receptors in cardiovascular tissue. GENERAL PHARMACOLOGY 1999; 32:17-22. [PMID: 9888248 DOI: 10.1016/s0306-3623(98)00070-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Imidazoline binding sites and receptors and their endogenous ligands have been identified in cardiovascular tissue of various species including human beings. 2. I2- (but only exceptionally I1-)imidazoline binding sites have been shown to exist on cardiac myocytes and vascular smooth muscle cells; at present, their functional role is unknown. 3. The sympathetic nerves supplying the cardiovascular system are endowed with presynaptic inhibitory imidazoline receptors that may become of therapeutic relevance as targets of drugs. 4. ATP-sensitive K+ channels present in heart and blood vessels can be blocked by several imidazolines and guanidines; hence, those drugs can interfere with the cardioprotective effects resulting from K(ATP) channel activation by a decrease in the endogenous ligand ATP or by drugs. 5. Imidazoline derivatives exhibit antiarrhythmic properties that are due to a reduction of sympathetic tone by central and peripheral mechanisms and to blockade of postsynaptic alpha2-adrenoceptors in the heart and coronary arteries. 6. Agmatine and clonidine-displacing substance, which are endogenous ligands at imidazoline and alpha2-receptors, are present in the blood serum and appear to participate in vascular smooth muscle proliferation and blood pressure regulation.
Collapse
Affiliation(s)
- G J Molderings
- Institute of Pharmacology and Toxicology, University of Bonn, Germany.
| | | |
Collapse
|