1
|
Ex vivo toxicity of nitrogen dioxide in human nasal epithelium at the WHO defined 1-h limit value. Toxicol Lett 2011; 207:89-95. [PMID: 21864657 DOI: 10.1016/j.toxlet.2011.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/20/2022]
Abstract
Current pollution limits indicating potential harm to human health caused by nitrogen dioxide have prompted a variety of studies on the cytotoxicity and genotoxicity of nitrogen dioxide (NO₂) in vitro. The present study focuses on toxic effects of NO₂ at the WHO defined 1-h limit value of 200 μg NO₂/m(3) air, equivalent to 0.1 ppm NO₂. Nasal epithelial mucosa cells of 10 patients were cultured as an air-liquid interface and exposed to 0.1 ppm NO₂ for 0.5 h, 1 h, 2 h and 3 h and synthetic air as negative control. After exposure, analysis of genotoxicity was performed by the alkaline single cell microgel electrophoresis (comet) assay and by the micronucleus test. Depression of proliferation and cytotoxic effects were checked by the micronucleus assay and the trypan blue exclusion assay. The experiments demonstrated significant DNA fragmentation even at the shortest exposure duration of half an hour in the comet assay. The amount of DNA fragmentation significantly increased with extended NO₂ exposure durations. The amount of DNA fragmentation increased with extended exposure durations to synthetic air at a significantly lower level as compared to NO₂ exposure. Micronucleus inductions were seen only at the longest exposure duration of 3h. There were no changes in proliferation seen in the micronucleus assay under any experimental setup. Moreover, no signs of necrosis, apoptosis or changes in viability were detected. Data demonstrate genotoxicity of NO₂ at concentrations found in the urban atmosphere during short exposure durations. DNA alterations in the micronucleus assay at an exposure time of 3h indicate a significant DNA alteration possibly being hazardous to humans.
Collapse
|
2
|
Albertini RJ, Carson ML, Kirman CR, Gargas ML. 1,3-Butadiene: II. Genotoxicity profile. Crit Rev Toxicol 2010; 40 Suppl 1:12-73. [PMID: 20868267 DOI: 10.3109/10408444.2010.507182] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1,3-Butadiene’s (BD’s) major electrophilic metabolites 1,2-epoxy-3-butene (EB), 1,2-dihydroxy-3,4-epoxybutane (EBD), and 1,2,3,4-diepoxybutane (DEB) are responsible for both its mutagenicity and carcinogenicity. EB, EBD, and DEB are DNA reactive, forming a variety of adducts. All three metabolites are genotoxic in vitro and in vivo, with relative mutagenic potencies of DEB >> EB > EBD. DEB also effectively produces gene deletions and chromosome aberrations. BD’s greater mutagenicity and carcinogenicity in mice over rats as well as its failure to induce chromosome-level mutations in vivo in rats appear to be due to greater production of DEB in mice. Concentrations of EB and DEB in vivo in humans are even lower than in rats. Although most studies of BD-exposed humans have failed to find increases in gene mutations, one group has reported positive findings. Reasons for these discordant results are examined. BD-related chromosome aberrations have never been demonstrated in humans except for the possible production of micronuclei in lymphocytes of workers exposed to extremely high levels of BD in the workplace. The relative potencies of the BD metabolites, their relative abundance in the different species, and the kinds of mutations they can induce are major considerations in BD’s overall genotoxicity profile.
Collapse
Affiliation(s)
- Richard J Albertini
- Pathology Department, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | | | | | | |
Collapse
|
3
|
Koehler C, Ginzkey C, Friehs G, Hackenberg S, Froelich K, Scherzed A, Burghartz M, Kessler M, Kleinsasser N. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium. Toxicol Appl Pharmacol 2010; 245:219-25. [PMID: 20214917 DOI: 10.1016/j.taap.2010.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/28/2010] [Accepted: 03/01/2010] [Indexed: 11/19/2022]
Abstract
Cytotoxicity and genotoxicity of nitrogen dioxide (NO(2)) as part of urban exhaust pollution are widely discussed as potential hazards to human health. This study focuses on toxic effects of NO(2) in realistic environmental concentrations with respect to the current limit values in a human target tissue of volatile xenobiotics, the epithelium of the upper aerodigestive tract. Nasal epithelial cells of 10 patients were cultured as an air-liquid interface and exposed to 0.01 ppm NO(2), 0.1 ppm NO(2), 1 ppm NO(2), 10 ppm NO(2) and synthetic air for half an hour. After exposure, genotoxicity was evaluated by the alkaline single-cell microgel electrophoresis (Comet) assay and by induction of micronuclei in the micronucleus test. Depression of proliferation and cytotoxic effects were determined using the micronucleus assay and trypan blue exclusion assay, respectively. The experiments revealed genotoxic effects by DNA fragmentation starting at 0.01 ppm NO(2) in the Comet assay, but no micronucleus inductions, no changes in proliferation, no signs of necrosis or apoptosis in the micronucleus assay, nor did the trypan blue exclusion assay show any changes in viability. The present data reveal a possible genotoxicity of NO(2) in urban concentrations in a screening test. However, permanent DNA damage as indicated by the induction of micronuclei was not observed. Further research should elucidate the effects of prolonged exposure.
Collapse
Affiliation(s)
- C Koehler
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kraft M, Eikmann T, Kappos A, Künzli N, Rapp R, Schneider K, Seitz H, Voss JU, Wichmann HE. The German view: effects of nitrogen dioxide on human health--derivation of health-related short-term and long-term values. Int J Hyg Environ Health 2005; 208:305-18. [PMID: 16078645 DOI: 10.1016/j.ijheh.2005.04.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The presented overview concerning health relevant effects caused by nitrogen dioxide (NO2) resumes the current state of results from animal experiments and human studies (epidemiology and short-term chambers studies). NO2 concentrations applied in animal experiments were mostly considerably higher than in ambient air. Therefore, short- and long-term limit values were derived from human data. Experimental studies conducted with humans demonstrate effects after short-term exposure to concentrations at or above 400 microg NO2/m3. Effects on patients with light asthma could not be observed after short-term exposure to concentrations below 200 microg/m3. On basis of epidemiological long-term studies a threshold below which no effect on human health is expected could not be specified. Two short-term limit values have been proposed to protect public health: a 1-h value of 100 microg/m3 and a 24-h mean value of 50 microg/m3. Due to the limitations of epidemiological studies to disentangle effects of single pollutants, a long-term limit value cannot be easily derived. However, applying the precautionary principle, it is desirable to adopt an annual mean of 20 microg NO2/m3 as a long-term mean standard to protect public health.
Collapse
Affiliation(s)
- Martin Kraft
- Ministry of the Environment and Conservation, Agriculture and Consumer Protection of the state of North Rhine-Westphalia, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Goumenou M, Machera K. Measurement of DNA single-strand breaks by alkaline elution and fluorometric DNA quantification. Anal Biochem 2004; 326:146-52. [PMID: 15003555 DOI: 10.1016/j.ab.2003.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Indexed: 10/26/2022]
Abstract
The method presented is based on the alkaline elution procedure for the determination of DNA single-stand (ss) breaks developed by Kohn and on the principles of DNA quantification after binding with the dye Hoechst 33258. In the present study, modification of the alkaline elution procedure with regard to the elution solution volume was performed. The influences of the DNA strandedness, the ethylenediaminetetraacetate/tetraethylammonium hydroxide denaturation and elution solution presence, the DNA solution pH, the dye amount, and the incubation time for the formation of the dye-ssDNA complex on the DNA fluorometric quantification were also studied. The modified DNA alkaline elution procedure followed by the optimized fluorometric determination of the ssDNA was applied on liver tissue from both untreated and treated (N-nitroso-N-methylurea- administered) Wistar rats. The criteria for the selection of the appropriate estimator and statistical analysis of the obtained results are also presented. The method of the DNA alkaline elution followed by fluorometric determination of ssDNA as modified and evaluated is an accurate and reliable approach for the determination of in vivo induced ssDNA strand breaks.
Collapse
Affiliation(s)
- Marina Goumenou
- Laboratory of Pesticides Toxicology, Benaki Phytopathological Institute, Kifissia, GR-145 61 Athens, Greece
| | | |
Collapse
|
6
|
Persinger RL, Poynter ME, Ckless K, Janssen-Heininger YMW. Molecular mechanisms of nitrogen dioxide induced epithelial injury in the lung. Mol Cell Biochem 2003. [PMID: 12162462 DOI: 10.1023/a:1015973530559] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The lung can be exposed to a variety of reactive nitrogen intermediates through the inhalation of environmental oxidants and those produced during inflammation. Reactive nitrogen species (RNS) include, nitrogen dioxide (.NO2) and peroxynitrite (ONOO-). Classically known as a major component of both indoor and outdoor air pollution, .NO2 is a toxic free radical gas. .NO2 can also be formed during inflammation by the decomposition of ONOO- or through peroxidase-catalyzed reactions. Due to their reactive nature, RNS may play an important role in disease pathology. Depending on the dose and the duration of administration, .NO, has been documented to cause pulmonary injury in both animal and human studies. Injury to the lung epithelial cells following exposure to .NO2 is characterized by airway denudation followed by compensatory proliferation. The persistent injury and repair process may contribute to airway remodeling, including the development of fibrosis. To better understand the signaling pathways involved in epithelial cell death by .NO2 or otherRNS, we routinely expose cells in culture to continuous gas-phase .NO2. Studies using the .NO2 exposure system revealed that lung epithelial cell death occurs in a density dependent manner. In wound healing experiments, .NO2 induced cell death is limited to cells localized in the leading edge of the wound. Importantly, .NO2-induced death does not appear to be dependent on oxidative stress per se. Potential cell signaling mechanisms will be discussed, which include the mitogen activated protein kinase, c-Jun N-terminal Kinase and the Fas/Fas ligand pathways. During periods of epithelial loss and regeneration that occur in diseases such as asthma or during lung development, epithelial cells in the lung may be uniquely susceptible to death. Understanding the molecular mechanisms of epithelial cell death associated with the exposure to .NO2 will be important in designing therapeutics aimed at protecting the lung from persistent injury and repair.
Collapse
Affiliation(s)
- Rebecca L Persinger
- Department of Environmental Health, School of Public Health and Community Medicine, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
7
|
Hughes K, Meek ME, Walker M, Beauchamp R. 1,3-Butadiene: exposure estimation, hazard characterization, and exposure-response analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2003; 6:55-83. [PMID: 12587254 DOI: 10.1080/10937400306478] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
1,3-Butadiene has been assessed as a Priority Substance under the Canadian Environmental Protection Act. The general population in Canada is exposed to 1,3-butadiene primarily through ambient air. Inhaled 1,3-butadiene is carcinogenic in both mice and rats, inducing tumors at multiple sites at all concentrations tested in all identified studies. In addition, 1,3-butadiene is genotoxic in both somatic and germ cells of rodents. It also induces adverse effects in the reproductive organs of female mice at relatively low concentrations. The greater sensitivity in mice than in rats to induction of these effects by 1,3-butadiene is likely related to species differences in metabolism to active epoxide metabolites. Exposure to 1,3-butadiene in the occupational environment has been associated with the induction of leukemia; there is also some limited evidence that 1,3-butadiene is genotoxic in exposed workers. Therefore, in view of the weight of evidence of available epidemiological and toxicological data, 1,3-butadiene is considered highly likely to be carcinogenic, and likely to be genotoxic, in humans. Estimates of the potency of butadiene to induce cancer have been derived on the basis of both epidemiological investigation and bioassays in mice and rats. Potencies to induce ovarian effects have been estimated on the basis of studies in mice. Uncertainties have been delineated, and, while there are clear species differences in metabolism, estimates of potency to induce effects are considered justifiably conservative in view of the likely variability in metabolism across the population related to genetic polymorphism for enzymes for the critical metabolic pathway.
Collapse
Affiliation(s)
- K Hughes
- Existing Substances Division, Environmental Health Directorate, Health Canada, Environmental Health Centre, Tunney's Pasture PL0802B1, Ottawa, Ontario, Canada K1A 0L2
| | | | | | | |
Collapse
|
8
|
Hughes K, Meek ME, Walker M. Health risk assessment of 1,3-butadiene as a Priority Substance in Canada. Chem Biol Interact 2001; 135-136:109-35. [PMID: 11397385 DOI: 10.1016/s0009-2797(01)00173-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1,3-Butadiene was included in the second list of Priority Substances to be assessed under the Canadian Environmental Protection Act. Potential hazards to human health were characterized on the basis of critical examination of available data on health effects in experimental animals and occupationally exposed human populations, as well as information on mode of action. Based on consideration of all relevant data identified as of April 1998, butadiene was considered highly likely to be carcinogenic to humans, and likely to be a somatic and germ cell genotoxicant in humans. In addition, butadiene may also be a reproductive toxicant in humans. Estimates of the potency of butadiene to induce these effects have been derived on the basis of quantitation of observed exposure-response relationships for the purposes of characterization of risk to the general population in Canada exposed to butadiene in the ambient environment.
Collapse
Affiliation(s)
- K Hughes
- Environmental Health Directorate, Health Canada, Tunney's Pasture PL0802B1, Ottawa, Ontario, Canada K1A 0L2.
| | | | | |
Collapse
|
9
|
Jackson MA, Stack HF, Rice JM, Waters MD. A review of the genetic and related effects of 1,3-butadiene in rodents and humans. Mutat Res 2000; 463:181-213. [PMID: 11018742 DOI: 10.1016/s1383-5742(00)00056-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper, the metabolism and genetic toxicity of 1,3-butadiene (BD) and its oxidative metabolites in humans and rodents is reviewed with attention to newer data that have been published since the latest evaluation of BD by the International Agency for Research on Cancer (IARC). The oxidative metabolism of BD in mice, rats and humans is compared with emphasis on the major pathways leading to the reactive intermediates 1,2-epoxy-3-butene (EB), 1,2:3, 4-diepoxybutane (DEB), and 3,4-epoxy-1,2-butanediol (EBdiol). Results from recent studies of DNA and hemoglobin adducts indicate that EBdiol may play a more significant role in the toxicity of BD than previously thought. All three metabolites are capable of reacting with macromolecules, such as DNA and hemoglobin, and have been shown to induce a variety of genotoxic effects in mice and rats as well as in human cells in vitro. DEB is clearly the most potent of these genotoxins followed by EB, which in turn is more potent than EBdiol. Studies of mutations in lacI and lacZ mice and of the Hprt mutational spectrum in rodents and humans show that mutations at G:C base pairs are critical events in the mutagenicity of BD. In-depth analyses of the mutational spectra induced by BD and/or its oxidative metabolites should help to clarify which metabolite(s) are associated with specific mutations in each animal species and which mutational events contribute to BD-induced carcinogenicity. While the quantitative relationship between exposure to BD, its genotoxicity, and the induction of cancer in occupationally exposed humans remains to be fully established, there is sufficient data currently available to demonstrate that 1,3-butadiene is a probable human carcinogen.
Collapse
Affiliation(s)
- M A Jackson
- Alpha-Gamma Technologies Inc., Raleigh, NC 27609, USA
| | | | | | | |
Collapse
|