1
|
Mohan K, Omar BJ, Chacham S, Bharti A. Perinatal Exposure to Trace Elements: The Dubious Culprit of Autistic Spectrum Disorder in Children. Curr Pediatr Rev 2024; 21:18-28. [PMID: 37937576 DOI: 10.2174/0115733963251295231031102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023]
Abstract
There is evidence that few trace elements in the environment work as hazardous materials in terms of their exposure in the perinatal period, causing autistic spectrum disorder (ASD) in children, and avoiding these exposures in the environment can reduce the number of new cases. This perspective study provides preliminary evidence to consider a few trace elements as culprits for ASD. More studies with larger cohorts are needed, but meanwhile, as per available evidence, exposure to these hazardous materials must be warranted during pregnancy and early stages of life.
Collapse
Affiliation(s)
- Kriti Mohan
- Department of Pediatrics, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Swathi Chacham
- Department of Pediatrics, All India Institute of Medical Sciences, Bibinagar, India
| | - Ajay Bharti
- Department of Orthopedics, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
2
|
Martínez-Martínez MI, Muñoz-Fambuena I, Cauli O. Neurotransmitters and Behavioral Alterations Induced by Nickel Exposure. Endocr Metab Immune Disord Drug Targets 2019; 20:985-991. [PMID: 31789138 DOI: 10.2174/1871530319666191202141209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nickel ions (Ni2+) are a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for brain dysfunction and behavioral and neurological symptoms in humans. METHODS We reviewed the current evidence about neurochemical and behavioral alterations associated with Ni exposure in laboratory animals and humans. RESULTS Ni2+ exposure can alter (both inhibition and stimulation) dopamine release and inhibit glutamate NMDA receptors. Few reports claim an effect of Ni2+ at the level of GBA and serotonin neurotransmission. At behavioral levels, exposure to Ni2+ in rodents alters motor activity, learning and memory as well as anxiety and depressive-like symptoms. However, no analysis of the dose-dependent relationship has been carried out regarding these effects and the levels of the Ni2+ in the brain, in blood or urine. CONCLUSION Further research is needed to correlate the concentration of Ni2+ in biological fluids with specific symptoms/deficits. Future studies addressing the impact of Ni2+ under environmental or occupational exposure should consider the administration protocols to find Ni2+ levels similar in the general population or occupationally exposed workers.
Collapse
Affiliation(s)
| | | | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
3
|
Lamtai M, Chaibat J, Ouakki S, Zghari O, Mesfioui A, El Hessni A, Rifi EH, Marmouzi I, Essamri A, Ouichou A. Effect of Chronic Administration of Nickel on Affective and Cognitive Behavior in Male and Female Rats: Possible Implication of Oxidative Stress Pathway. Brain Sci 2018; 8:brainsci8080141. [PMID: 30065183 PMCID: PMC6119950 DOI: 10.3390/brainsci8080141] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 01/24/2023] Open
Abstract
Nickel (Ni) toxicity has been reported to produce biochemical and behavioral dysfunction. The present study was undertaken to examine whether Ni chronic administration can induce alterations of affective and cognitive behavior and oxidative stress in male and female rats. Twenty-four rats, for each gender, divided into control and three test groups (n = 6), were injected intraperitoneally with saline (0.9% NaCl) or NiCl2 (0.25 mg/kg, 0.5 mg/kg and 1 mg/kg) for 8 weeks. After treatment period, animals were tested in the open-field, elevated plus maze tests for anxiety-like behavior, and forced swimming test for depression-like behavior. The Morris Water Maze was used to evaluate the spatial learning and memory. The hippocampus of each animal was taken for biochemical examination. The results showed that Ni administration dose dependently increased anxiety-like behavior in both tests. A significant increase in depression-like symptoms was also exhibited by Ni treated rats. In the Morris Water Maze test, the spatial learning and memory were significantly impaired just in males treated with 1 mg/kg of Ni. With regard to biochemical analysis, activity of catalase (CAT) and superoxide dismutase (SOD) were significantly decreased, while the levels of nitric oxide (NO) and lipid peroxidation (LPO) in the hippocampus were significantly increased in the Ni-treated groups. Consequently, chronic Ni administration induced behavioral and biochemical dysfunctions.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Jihane Chaibat
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Sihame Ouakki
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Oussama Zghari
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Abdelhalem Mesfioui
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Aboubaker El Hessni
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - El-Housseine Rifi
- Laboratory of Synthesis Organic and Extraction Processes, Department of Chemistry, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médecine et de Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - Azzouz Essamri
- Laboratory of Agro-Resources and Process Engineering, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Ali Ouichou
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| |
Collapse
|
4
|
Song X, Fiati Kenston SS, Kong L, Zhao J. Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology 2017; 392:47-54. [PMID: 29032222 DOI: 10.1016/j.tox.2017.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023]
Abstract
Nickel (Ni) is widely used in many industrial sectors such as alloy, welding, printing inks, electrical and electronics industries. Excessive environmental or occupational exposure to Ni may result in tumor, contact dermatitis, as well as damages to the nervous system. In recent years, more and more research has demonstrated that Ni induced nerve damages are related to mitochondrial dysfunction. In this paper, we try to characterize Ni induced neurotoxicity as well as the underlying mechanisms, and how to find new drugs for chemoprevention, by reviewing chemicals with neuroprotective effects on Ni induced neurotoxicity.
Collapse
Affiliation(s)
- Xin Song
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
5
|
Effet de l’exposition chronique au nickel sur les fonctions neurocomportementales chez les rats Wistar pendant la période de développement. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2014. [DOI: 10.1016/j.toxac.2014.09.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Disturbance of aerobic metabolism accompanies neurobehavioral changes induced by nickel in mice. Neurotoxicology 2013; 38:9-16. [PMID: 23727075 DOI: 10.1016/j.neuro.2013.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 01/21/2023]
Abstract
The oral ingestion of soluble nickel compounds leads to neurological symptoms in humans. Deficiencies in aerobic metabolism induced by neurotoxic stimulus can cause an energy crisis in the brain that results in a variety of neurotoxic effects. In the present study, we focused on the aerobic metabolic states to investigate whether disturbance of aerobic metabolism was involved in nickel-induced neurological effects in mice. Mice were orally administered nickel chloride, and neurobehavioral performance was evaluated using the Morris water maze and open field tests at different time points. Aerobic metabolic states in the cerebral cortex were analyzed at the same time points at which neurobehavioral changes were evident. We found that nickel exposure caused deficits in both spatial memory and exploring activity in mice and that nickel was deposited in their cerebral cortex. Deficient aerobic metabolism manifested as decreased O2 consumption and ATP concentrations, lactate and NADH accumulation, and oxidative stress. Meanwhile, the activity of prototypical iron-sulfur clusters (ISCs) containing enzymes that are known to control aerobic metabolism, including complex I and aconitase, and the expression of ISC assembly scaffold protein (ISCU) were inhibited following nickel deposition. Overall, these data suggest that aerobic metabolic disturbances, which accompanied the neurobehavioral changes, may participate in nickel-induced neurologic effects. The inactivation of ISC containing metabolic enzymes may result in the disturbance of aerobic metabolism. A better understanding of how nickel impacts the energy metabolic processes may provide insight into the prevention of nickel neurotoxicity.
Collapse
|
7
|
Eneji IS, Sha'Ato R, Annune PA. An assessment of heavy metals loading in River Benue in the Makurdi metropolitan area in Central Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:201-207. [PMID: 21400242 DOI: 10.1007/s10661-011-1959-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 02/09/2011] [Indexed: 05/30/2023]
Abstract
River Benue, the second largest river in Nigeria, serves as the major source of municipal water supplies for towns and villages along its course. Water samples from the river were collected at ten stations in the Makurdi metropolitan area (7°44(') N, 8°32(') E) in Benue State, Central Nigeria, for 12 months and analyzed for their heavy metals concentration, along with other water-quality parameters such as turbidity, pH, total dissolved solids and total solids. The results revealed that the mean concentrations of heavy metals in the river was in the following ascending order, Cd < Cu < Zn < Mn < Pb < Cr < Fe. The levels of most of the parameters determined, with the exception of Cd, Cr and Pb were, generally, within acceptable limits for drinking water. From the present study, it is concluded that the River Benue is only moderately contaminated with regard to heavy metals, in the Makurdi metropolitan area.
Collapse
Affiliation(s)
- Ishaq S Eneji
- Department of Chemistry and Centre for Agrochemical Technology, University of Agriculture, P.M.B. 2373 Makurdi, Benue State, Nigeria.
| | | | | |
Collapse
|
8
|
He MD, Xu SC, Lu YH, Li L, Zhong M, Zhang YW, Wang Y, Li M, Yang J, Zhang GB, Yu ZP, Zhou Z. L-carnitine protects against nickel-induced neurotoxicity by maintaining mitochondrial function in Neuro-2a cells. Toxicol Appl Pharmacol 2011; 253:38-44. [PMID: 21419151 DOI: 10.1016/j.taap.2011.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 01/08/2023]
Abstract
Mitochondrial dysfunction is thought to be a part of the mechanism underlying nickel-induced neurotoxicity. L-carnitine (LC), a quaternary ammonium compound biosynthesized from the amino acids lysine and methionine in all mammalian species, manifests its neuroprotective effects by improving mitochondrial energetics and function. The purpose of this study was to investigate whether LC could efficiently protect against nickel-induced neurotoxicity. Here, we exposed a mouse neuroblastoma cell line (Neuro-2a) to different concentrations of nickel chloride (NiCl₂) (0.25, 0.5, 1, and 2 mM) for 24 h, or to 0.5 mM and 1 mM NiCl₂ for various periods (0, 3, 6, 12, or 24 h). We found that nickel significantly increased the cell viability loss and lactate dehydrogenase (LDH) release in Neuro-2a cells. In addition, nickel exposure significantly elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, disrupted the mitochondrial membrane potential (ΔΨ(m)), reduced adenosine-5'-triphosphate (ATP) concentrations and decreased mitochondrial DNA (mtDNA) copy numbers and mtRNA transcript levels. However, all of the cytotoxicities and mitochondrial dysfunctions that were triggered by nickel were efficiently attenuated by pretreatment with LC. These protective effects of LC may be attributable to its role in maintaining mitochondrial function in nickel-treated cells. Our results suggest that LC may have great pharmacological potential in protecting against the adverse effects of nickel in the nervous system.
Collapse
Affiliation(s)
- Min-Di He
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Ptashynski MD, Pedlar RM, Evans RE, Baron CL, Klaverkamp JF. Toxicology of dietary nickel in lake whitefish (Coregonus clupeaformis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2002; 58:229-247. [PMID: 12007877 DOI: 10.1016/s0166-445x(01)00239-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The sublethal toxicity associated with exposure of adult lake whitefish (Coregonus clupeaformis) to diets containing 0, 10, 100, and 1000 microg Ni per g for 10, 31, and 104 days was assessed through the measurement of responses, through a range of levels of biological organization. The accumulation and distribution of Ni in these fish are described in the previous manuscript (Ptashynski and Klaverkamp, 2001. Aquat. Toxicol. in press). Hematological parameters, including concentrations of glucose and hemoglobin and hematocrit, were not different between control and treated fish. Organ and whole organism parameters, including LSI, growth, and condition factor, were also unaffected. Histopathological lesions in kidney and liver proved to be the most sensitive and reliable indicators of Ni exposure. In livers of treated fish, areas of focal necrosis and altered bile ducts were observed. Histological alterations were observed throughout the posterior kidneys, in glomeruli, tubules, collecting ducts, and hematopoietic tissue, in fish fed medium and high dose diets. In whitefish kidneys, the frequency (%) of altered distal tubules and fields of views with alterations increased with the dose and duration of exposure. Significant increases in metallothionein concentrations were observed in intestine of whitefish fed the high dose diet on day 10, but these increases were not sustained. Significant increases in lipid peroxide concentrations were also observed in plasma of whitefish fed the high dose diet on day 31, but were not observed on day 104. These biochemical responses to dietary Ni require further evaluation. To evaluate exposure of natural populations of fish to Ni, analysis of Ni in kidney and liver and assessment of renal and hepatic histopathology are recommended for use in field bio-monitoring programs.
Collapse
Affiliation(s)
- M D Ptashynski
- Department of Zoology, University of Manitoba, Winnipeg, Man., Canada
| | | | | | | | | |
Collapse
|
11
|
Ray D, Banerjee SK, Chatterjee M. Bioaccumulation of nickel and vanadium in tissues of the catfish Clarias batrachus. J Inorg Biochem 1990; 38:169-73. [PMID: 2329343 DOI: 10.1016/0162-0134(90)84010-m] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bioaccumulation of nickel and vanadium in the tissues of the liver, kidney, gill, and intestine has been studied following 4 days and 30 days of exposure at sublethal concentrations of nickel and vanadium compounds in the catfish Clarias batrachus. Nickel and vanadium have been found to accumulate in all four tissues observed. High concentrations of nickel and vanadium have been found in the order kidney greater than gill greater than liver greater than intestine during the 4 days and 30 days treatment. A dose-response effect was seen, as the concentration of metals in the tissues increased with concentration and exposure time. The effect on bioaccumulation in the specific tissue provides a better basis for monitoring exposures than whole-body analysis.
Collapse
Affiliation(s)
- D Ray
- Department of Biochemistry, Calcutta University, India
| | | | | |
Collapse
|