1
|
Lagzian A, Ghorbani A, Tabein S, Riseh RS. Genetic variations and gene expression profiles of Rice Black-streaked dwarf virus (RBSDV) in different host plants and insect vectors: insights from RNA-Seq analysis. BMC Genomics 2024; 25:736. [PMID: 39080552 PMCID: PMC11289972 DOI: 10.1186/s12864-024-10649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) is an etiological agent of a destructive disease infecting some economically important crops from the Gramineae family in Asia. While RBSDV causes high yield losses, genetic characteristics of replicative viral populations have not been investigated within different host plants and insect vectors. Herein, eleven publicly available RNA-Seq datasets from Chinese RBSDV-infected rice, maize, and viruliferous planthopper (Laodelphax striatellus) were obtained from the NCBI database. The patterns of SNP and RNA expression profiles of expected RBSDV populations were analyzed by CLC Workbench 20 and Geneious Prime software. These analyses discovered 2,646 mutations with codon changes in RBSDV whole transcriptome and forty-seven co-mutated hotspots with high variant frequency within the crucial regions of S5-1, S5-2, S6, S7-1, S7-2, S9, and S10 open reading frames (ORFs) which are responsible for some virulence and host range functions. Moreover, three joint mutations are located on the three-dimensional protein of P9-1. The infected RBSDV-susceptible rice cultivar KTWYJ3 and indigenous planthopper datasets showed more co-mutated hotspot numbers than others. Our analyses showed the expression patterns of viral genomic fragments varied depending on the host type. Unlike planthopper, S5-1, S2, S6, and S9-1 ORFs, respectively had the greatest read numbers in host plants; and S5-2, S9-2, and S7-2 were expressed in the lowest level. These findings underscore virus/host complexes are effective in the genetic variations and gene expression profiles of plant viruses. Our analysis revealed no evidence of recombination events. Interestingly, the negative selection was observed at 12 RBSDV ORFs, except for position 1015 in the P1 protein, where a positive selection was detected. The research highlights the potential of SRA datasets for analysis of the virus cycle and enhances our understanding of RBSDV's genetic diversity and host specificity.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
2
|
Comparative Proteomic Analyses of Susceptible and Resistant Maize Inbred Lines at the Stage of Enations Forming following Infection by Rice Black-Streaked Dwarf Virus. Viruses 2022; 14:v14122604. [PMID: 36560608 PMCID: PMC9785138 DOI: 10.3390/v14122604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) is the main pathogen causing maize rough dwarf disease (MRDD) in China. Typical enation symptoms along the abaxial leaf veins prevail in RBSDV-infected maize inbred line B73 (susceptible to RBSDV), but not in X178 (resistant to RBSDV). Observation of the microstructures of epidermal cells and cross section of enations from RBSDV-infected maize leaves found that the increase of epidermal cell and phloem cell numbers is associated with enation formation. To identify proteins associated with enation formation and candidate proteins against RBSDV infection, comparative proteomics between B73 and X178 plants were conducted using isobaric tags for relative and absolute quantitation (iTRAQ) with leaf samples at the enation forming stage. The proteomics data showed that 260 and 316 differentially expressed proteins (DEPs) were identified in B73 and X178, respectively. We found that the majority of DEPs are located in the chloroplast and cytoplasm. Moreover, RBSDV infection resulted in dramatic changes of DEPs enriched by the metabolic process, response to stress and the biosynthetic process. Strikingly, a cell number regulator 10 was significantly down-regulated in RBSDV-infected B73 plants. Altogether, these data will provide value information for future studies to analyze molecular events during both enation formation and resistance mechanism to RBSDV infection.
Collapse
|
3
|
Identification of putative binding interface of PI(3,5)P2 lipid on rice black-streaked dwarf virus (RBSDV) P10 protein. Virology 2022; 570:81-95. [DOI: 10.1016/j.virol.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 11/18/2022]
|
4
|
Genome Editing of Rice eIF4G Loci Confers Partial Resistance to Rice Black-Streaked Dwarf Virus. Viruses 2021; 13:v13102100. [PMID: 34696530 PMCID: PMC8539751 DOI: 10.3390/v13102100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023] Open
Abstract
Rice black-streaked dwarf disease, caused by rice black-streaked dwarf virus (RBSDV), is a serious constraint in Chinese rice production. Breeding disease-resistant varieties through multigene aggregation is considered an effective way to control diseases, but few disease-resistant resources have been characterized thus far. To develop novel resources for resistance to RBSDV through CRISPR/Cas9-mediated genome editing, a guide RNA sequence targeting exon 1 of eIF4G was designed and cloned into a binary vector, pHUE401. This recombinant vector was used to generate mutations in the rice cultivar Nipponbare via Agrobacterium-mediated transformation. This approach produced heritable homozygous mutations in the transgene-free T1 generation. Sequence analysis of the eIF4G target region from T1 transgenic plants identified 3 bp deletion mutants, and analysis of the predicted amino acid sequence identified one amino acid deletion in mutants that possess near full-length eIF4G. Furthermore, our data suggest that eIF4G may plays an important role in rice normal development, as there were no eIF4G knock-out homozygous mutants in T1 generation plants. When homozygous mutant lines were inoculated with RBSDV, they exhibited enhanced tolerance to virus infection, without visibly affecting plant growth and development. However, the eif4g mutant plants showed the same sensitivity to rice stripe virus (RSV) infection as wild-type plants. Notably, the wild-type and mutant N-termini of eIF4G interacted directly with RBSDV P8 in yeast and in planta. Additionally, compared to wild-type plants, the eIF4G transcript level was reduced twofold in the mutant plants. These results indicate that site-specific mutation of rice eIF4G successfully conferred partial resistance specific to RBSDV associated with less transcription of eIF4G in mutants. Therefore, this study demonstrates that the novel eIF4G alleles generated by CRISPR/Cas9 represent valuable disease-resistant resources that can be used to develop RBSDV-resistant varieties.
Collapse
|
5
|
Zhang L, Wu N, Ren Y, Wang X. Insights Into Insect Vector Transmission and Epidemiology of Plant-Infecting Fijiviruses. Front Microbiol 2021; 12:628262. [PMID: 33717017 PMCID: PMC7943461 DOI: 10.3389/fmicb.2021.628262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Viruses in genus Fijivirus (family Reoviridae) have caused serious damage to rice, maize and sugarcane in American, Asian, European and Oceanian countries, where seven plant-infecting and two insect-specific viruses have been reported. Because the planthopper vectors are the only means of virus spread in nature, their migration and efficient transmission of these viruses among different crops or gramineous weeds in a persistent propagative manner are obligatory for virus epidemics. Understanding the mechanisms of virus transmission by these insect vectors is thus key for managing the spread of virus. This review describes current understandings of main fijiviruses and their insect vectors, transmission characteristics, effects of viruses on the behavior and physiology of vector insects, molecular transmission mechanisms. The relationships among transmission, virus epidemics and management are also discussed. To better understand fijivirus-plant disease system, research needs to focus on the complex interactions among the virus, insect vector, insect microbes, and plants.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
He Z, Dong Z, Gan H. Comprehensive codon usage analysis of rice black-streaked dwarf virus based on P8 and P10 protein coding sequences. INFECTION GENETICS AND EVOLUTION 2020; 86:104601. [PMID: 33122052 DOI: 10.1016/j.meegid.2020.104601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Rice black-streaked dwarf virus (RBSDV) belongs to the genus Fijivirus of the family Reoviridae and is an important pathogen that damages rice, maize and wheat worldwide. Previously, several reports have described the genetic variation and population structure of RBSDV. However, the details of the evolutionary changes, synonymous codon usage patterns and host adaptation of the virus are largely unclear. Here, we performed a detailed analysis of the codon usage and host adaptability of RBSDV based on 130 full-length P8 and 234 full-length P10 sequences. Infrequent recombination and frequent segment reassortment influence the genomic evolution of RBSDV. Our phylogenetic analysis found three and four lineages based on the P8 and P10 non-recombinant sequences respectively. We found relatively stable and conserved genomic composition with lower codon usage choice in the RBSDV P8 and P10 protein coding sequences. Both ENC-plot and neutrality-plot analyses showed that natural selection is the key factor that shapes the codon usage pattern of RBSDV. Codon adaptation index (CAI), relative codon deoptimization index (RCDI) and similarity index (SiD) analyses indicated strong correlation between RBSDV and rice rather than maize, wheat or Laodelphax striatellus. Our study provides deep insight into the evaluation of the codon usage pattern and adaptive evolution of RBSDV based on P8 and P10 sequences and should be taken into consideration for the prevention and control of this virus.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Zhuozhuo Dong
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, PR China
| | - Haifeng Gan
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, PR China
| |
Collapse
|
7
|
Zhang J, Wang H, Wu W, Dong Y, Wang M, Yi D, Zhou Y, Xu Q. Systematic Identification and Functional Analysis of Circular RNAs During Rice Black-Streaked Dwarf Virus Infection in the Laodelphax striatellus (Fallén) Midgut. Front Microbiol 2020; 11:588009. [PMID: 33117326 PMCID: PMC7550742 DOI: 10.3389/fmicb.2020.588009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 02/01/2023] Open
Abstract
Circular RNAs (circRNAs) are endogenous RNAs that have critical regulatory roles in numerous biological processes. However, it remains largely unknown whether circRNAs are induced in response to plant virus infection in the insect vector of the virus as well as whether the circRNAs regulate virus infection. Rice black-streaked dwarf virus (RBSDV) is transmitted by Laodelphax striatellus (Fallén) in a persistent propagative manner and causes severe losses in East Asian countries. To explore the expression and function of circRNAs in the regulation of virus infection, we determined the circRNA expression profile in RBSDV-free or RBSDV-infected L. striatellus midgut tissues by RNA-Seq. A total of 2,523 circRNAs were identified, of which thirteen circRNAs were differentially expressed after RBSDV infection. The functions of these differentially circRNAs were predicted by GO and KEGG pathway analyses. The expression changes of five differentially expressed circRNAs and eight parental genes were validated by RT-qPCR. The circRNAs-microRNAs (miRNAs) interaction networks were analyzed and two miRNAs, which were predicted to bind circRNAs, were differentially expressed after virus infection. CircRNA2030 was up-regulated after RBSDV infection in L. striatellus midgut. Knockdown of circRNA2030 by RNA interference inhibited the expression of its predicted parental gene phospholipid-transporting ATPase (PTA) and enhanced RBSDV infection in L. striatellus. However, none of the six miRNAs predicting to bind circRNA2030 was up-regulated after circRNA2030 knockdown. The results suggested that circRNA2030 might affect RBSDV infection via regulating PTA. Our results reveal the expression profile of circRNAs in L. striatellus midgut and provide new insight into the roles of circRNAs in virus-insect vector interaction.
Collapse
Affiliation(s)
- Jianhua Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Haitao Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| | - Wei Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Dong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| | - Man Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| | - Dianshan Yi
- Nanjing Plant Protection and Quarantine Station, Nanjing, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| | - Qiufang Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing, China
| |
Collapse
|
8
|
Wu N, Zhang L, Ren Y, Wang X. Rice black-streaked dwarf virus: From multiparty interactions among plant-virus-vector to intermittent epidemics. MOLECULAR PLANT PATHOLOGY 2020; 21:1007-1019. [PMID: 32510844 PMCID: PMC7368121 DOI: 10.1111/mpp.12946] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 05/18/2023]
Abstract
UNLABELLED Rice black-streaked dwarf virus (RBSDV) (species Rice black-streaked dwarf virus, genus Fijivirus, family Reoviridae) is the causal agent of rice black-streaked dwarf and maize rough dwarf diseases, which occur in intermittent epidemics in East Asian countries and are responsible for considerable yield losses. Intermittency of epidemics make accurate forecasting and designing of effective management strategies difficult. However, recent insights into host-virus-vector insect interactions are now informing forecasting and disease control measures. Resistance genes are also being identified and mapped. SYMPTOMATOLOGY AND HOST RANGE RBSDV induces extreme stunting, darkened, and stiff leaves of crops and weeds only in the family Poaceae, including Oryza sativa, Zea mays, and Triticum aestivum. Infected plants produce totally or partially deformed panicles and remain alive through harvest. GENOME AND GENE FUNCTION The nonenveloped virus particles comprise a double-layered capsid, 50-nm core with genomic double-stranded RNA (dsRNA), and six proteins. The genome of RBSDV contains 10 segments of dsRNA, named S1 to S10 in decreasing order of molecular weight. Segments 1, 2, 3, 4, 6, 8, and 10 encode the RNA-dependent RNA polymerase (RdRp), the major core structural protein, a protein with guanylyltransferase activity, an outer-shell B-spike protein, viral RNA-silencing suppressor, the major capsid protein, and the outer capsid protein, respectively. Each of the segments 5, 7, and 9 encodes two proteins: P5-1, a component of viroplasms; P5-2 of unknown function; nonstructural protein P7-1, involved in forming the structural matrix of tubular structures in infected tissues; P7-2 of unknown function; P9-1, the main component of viroplasms in infected cells and involved in viral replication; and P9-2 of unknown function. TRANSMISSION AND EPIDEMIOLOGY RBSDV is transmitted by Laodelphax striatellus in a persistent propagative manner. The vector insect is the only means of virus spread in nature, so its migration and transmission efficiency are obligatory for disease epidemics to develop. Susceptible varieties are widely planted, but efficient transmission by vectors is the primary reason for the epidemics. Cultivation system, pesticide overuse, and climatic conditions also contribute to epidemics by affecting the development of the vector insects and their population dynamics. DISEASE MANAGEMENT In the absence of resistant varieties, integrated disease management aims at disrupting the cycle of virus transmission by the insect vector. Inheritance studies have indicated that resistance is mostly governed by quantitative trait loci or multiple genes. Genetic engineering through RNA-interference and gene-editing strategies are potential approaches for disease control.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yingdang Ren
- Institute of Plant ProtectionHenan Academy of Agricultural SciencesZhengzhouChina
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
9
|
Zhou Y, Zhang L, Zhang X, Zu H, Di H, Dong L, Liu X, Zeng X, Weng J, Wang Z, Li X. Rice black-streaked dwarf virus Genome in China: Diversification, Phylogeny, and Selection. PLANT DISEASE 2017; 101:1588-1596. [PMID: 30677338 DOI: 10.1094/pdis-12-16-1814-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rice black-streaked dwarf virus (RBSDV), a Fijivirus, causes maize rough dwarf disease and rice black-streaked dwarf disease in the summer maize-growing regions of the Yellow and Huai rivers, respectively, in China. Nevertheless, the diversification and selection of the entire genome from S1 to S10 have not been illuminated. Molecular variation, evolution, conserved regions, and other genomic properties were analyzed in 21 RBSDV isolates from maize (Zea mays L.) and rice (Oryza sativa) hosts sampled from nine geographic locations in China. Low codon adaptation index values ranging from 0.1878 to 0.2918 indicated a low degree of codon-usage bias and low potential expression for all 13 RBSDV open reading frames (ORFs). ORF9-2 showed a stronger effect of codon usage bias than did other ORFs, as the majority of points for this ORF lay close to the standard curve in the Nc plot (the effective number of codons [Nc] versus the frequency of G+C at synonymous third-base positions [GC3]). A 9-bp deletion mutation was detected in the RBSDV genome in the 3' UTR of S8. Nucleotide diversity analysis indicated that the structural proteins of RBSDV, such as S2 and S4, were all more conserved than nonstructural proteins such as S9. Nucleotide diversity (π) was highest among S9 sequences (0.0656), and was significantly higher than among S4 sequences (0.0225, P < 0.01). The number of conserved regions among the 10 segments varied substantially. The highest number of conserved regions (5) was found in S5, whereas no conserved regions were identified in S9. Nucleotide diversity and the number of conserved regions were independent of the lengths of segments. Nucleotide diversity was also not correlated with the number of conserved regions in segments. Ten recombination events in 21 isolates were found in seven segments with breakpoint positions in UTRs, intergenic spacer regions, and gene coding regions. The number of recombination events was also independent of the lengths of segments. RBSDV isolates from China could be phylogenetically classified into two groups using either 10 segment sequences or the concatenated sequence of S1 through S10, regardless of host or geographical location. The phylogenetic tree generated from pairwise nucleotide identities of individual RBSDV segments such as S9 and S3, with nucleotide identity values of 93.74% and 95.86%, respectively, is similar to the tree constructed from the concatenated sequences of the entire RBSDV genome. The 13 RBSDV ORFs were under negative and purifying selection (Ka/Ks < 1). ORF5-2 was under the greatest selection pressure; however, ORF2, which encodes the core protein of RBSDV, was under the lowest selection pressure.
Collapse
Affiliation(s)
- Yu Zhou
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang Province, China; and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Zhang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xiaoming Zhang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Hongyue Zu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Hong Di
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Ling Dong
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xianjun Liu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xing Zeng
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Molecular variation and expansion of a rice black-streaked dwarf virus population based on analysis of segment 1 in Jining, China. Arch Virol 2016; 161:3435-3443. [DOI: 10.1007/s00705-016-3052-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/04/2016] [Indexed: 11/25/2022]
|
11
|
Molecular Genetic Analysis and Evolution of Segment 7 in Rice Black-Streaked Dwarf Virus in China. PLoS One 2015; 10:e0131410. [PMID: 26121638 PMCID: PMC4488072 DOI: 10.1371/journal.pone.0131410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/01/2015] [Indexed: 12/03/2022] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) causes maize rough dwarf disease or rice black-streaked dwarf disease and can lead to severe yield losses in maize and rice. To analyse RBSDV evolution, codon usage bias and genetic structure were investigated in 111 maize and rice RBSDV isolates from eight geographic locations in 2013 and 2014. The linear dsRNA S7 is A+U rich, with overall codon usage biased toward codons ending with A (A3s, S7-1: 32.64%, S7-2: 29.95%) or U (U3s, S7-1: 44.18%, S7-2: 46.06%). Effective number of codons (Nc) values of 45.63 in S7-1 (the first open reading frame of S7) and 39.96 in S7-2 (the second open reading frame of S7) indicate low degrees of RBSDV-S7 codon usage bias, likely driven by mutational bias regardless of year, host, or geographical origin. Twelve optimal codons were detected in S7. The nucleotide diversity (π) of S7 sequences in 2013 isolates (0.0307) was significantly higher than in 2014 isolates (0.0244, P = 0.0226). The nucleotide diversity (π) of S7 sequences in isolates from Jinan (0.0391) was higher than that from the other seven locations (P < 0.01). Only one S7 recombinant was detected in Baoding. RBSDV isolates could be phylogenetically classified into two groups according to S7 sequences, and further classified into two subgroups. S7-1 and S7-2 were under negative and purifying selection, with respective Ka/Ks ratios of 0.0179 and 0.0537. These RBSDV populations were expanding (P < 0.01) as indicated by negative values for Tajima's D, Fu and Li's D, and Fu and Li's F. Genetic differentiation was detected in six RBSDV subpopulations (P < 0.05). Absolute Fst (0.0790) and Nm (65.12) between 2013 and 2014, absolute Fst (0.1720) and Nm (38.49) between maize and rice, and absolute Fst values of 0.0085-0.3069 and Nm values of 0.56-29.61 among these eight geographic locations revealed frequent gene flow between subpopulations. Gene flow between 2013 and 2014 was the most frequent.
Collapse
|
12
|
Zhou Y, Weng JF, Chen YP, Liu CL, Han XH, Hao ZF, Li MS, Yong HJ, Zhang DG, Zhang SH, Li XH. Phylogenetic and recombination analysis of rice black-streaked dwarf virus segment 9 in China. Arch Virol 2015; 160:1119-23. [PMID: 25633210 DOI: 10.1007/s00705-014-2291-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/16/2014] [Indexed: 11/28/2022]
Abstract
Rice black-streaked dwarf virus (RBSDV) is an economically important virus that causes maize rough dwarf disease and rice black-streaked dwarf disease in East Asia. To study RBSDV variation and recombination, we examined the segment 9 (S9) sequences of 49 RBSDV isolates from maize and rice in China. Three S9 recombinants were detected in Baoding, Jinan, and Jining, China. Phylogenetic analysis showed that Chinese RBSDV isolates could be classified into two groups based on their S9 sequences, regardless of host or geographical origin. Further analysis suggested that S9 has undergone negative and purifying selection.
Collapse
Affiliation(s)
- Yu Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
In vivo subcellular localization of Mal de Río Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions. Virology 2012; 430:81-9. [PMID: 22608534 DOI: 10.1016/j.virol.2012.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/30/2012] [Accepted: 04/19/2012] [Indexed: 12/31/2022]
Abstract
The in vivo subcellular localization of Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae) non-structural proteins fused to GFP was analyzed by confocal microscopy. P5-1 showed a cytoplasmic vesicular-like distribution that was lost upon deleting its PDZ binding TKF motif, suggesting that P5-1 interacts with cellular PDZ proteins. P5-2 located at the nucleus and its nuclear import was affected by the deletion of its basic C-termini. P7-1 and P7-2 also entered the nucleus and therefore, along with P5-2, could function as regulators of host gene expression. P6 located in the cytoplasm and in perinuclear cloud-like inclusions, was driven to P9-1 viroplasm-like structures and co-localized with P7-2, P10 and α-tubulin, suggesting its involvement in viroplasm formation and viral intracellular movement. Finally, P9-2 was N-glycosylated and located at the plasma membrane in association with filopodia-like protrusions containing actin, suggesting a possible role in virus cell-to-cell movement and spread.
Collapse
|
14
|
Li Y, Jia M, Jiang Z, Zhou T, Fan Z. Molecular variation and recombination in RNA segment 10 of rice black-streaked dwarf virus isolated from China during 2007-2010. Arch Virol 2012; 157:1351-6. [PMID: 22447103 DOI: 10.1007/s00705-012-1282-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
Rice black-streaked dwarf virus (RBSDV) is the causal agent of rice black-streaked dwarf and maize rough dwarf diseases in China. The only open reading frame encoding the viral outer capsid protein on S10 RNA of 21 RBSDV isolates was sequenced for phylogenetic and recombination analysis. Four natural recombinants were detected, and the recombinant breakpoints were identified. In addition, the distribution of synonymous and non-synonymous nucleotide changes revealed that the virus had been evolving under purifying selection.
Collapse
Affiliation(s)
- Yongqiang Li
- State Key Laboratory of Agrobiotechnology and Key Laboratory for Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
15
|
Wang Q, Tao T, Zhang Y, Wu W, Li D, Yu J, Han C. Rice black-streaked dwarf virus P6 self-interacts to form punctate, viroplasm-like structures in the cytoplasm and recruits viroplasm-associated protein P9-1. Virol J 2011; 8:24. [PMID: 21241517 PMCID: PMC3032713 DOI: 10.1186/1743-422x-8-24] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/18/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus within the family Reoviridae, can infect several graminaceous plant species including rice, maize and wheat, and is transmitted by planthoppers. Although several RBSDV proteins have been studied in detail, functions of the nonstructural protein P6 are still largely unknown. RESULTS In the current study, we employed yeast two-hybrid assays, bimolecular fluorescence complementation and subcellular localization experiments to show that P6 can self-interact to form punctate, cytoplasmic viroplasm-like structures (VLS) when expressed alone in plant cells. The region from residues 395 to 659 is necessary for P6 self-interaction, whereas two polypeptides (residues 580-620 and 615-655) are involved in the subcellular localization of P6. Furthermore, P6 strongly interacts with the viroplasm-associated protein P9-1 and recruits P9-1 to localize in VLS. The P6 395-659 region is also important for the P6-P9-1 interaction, and deleting any region of P9-1 abolishes this heterologous interaction. CONCLUSIONS RBSDV P6 protein has an intrinsic ability to self-interact and forms VLS without other RBSDV proteins or RNAs. P6 recruits P9-1 to VLS by direct protein-protein interaction. This is the first report on the functionality of RBSDV P6 protein. P6 may be involved in the process of viroplasm nucleation and virus morphogenesis.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Tao Tao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Yanjing Zhang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Wenqi Wu
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Dawei Li
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Jialin Yu
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Chenggui Han
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
16
|
Mal de Río Cuarto virus (MRCV) genomic segment S3 codes for the major core capsid protein. Virus Genes 2009; 38:455-60. [DOI: 10.1007/s11262-009-0345-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
|
17
|
Wang ZH, Fang SG, Xu JL, Sun LY, Li DW, Yu JL. Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease. Virus Genes 2003; 27:163-8. [PMID: 14501194 DOI: 10.1023/a:1025776527286] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The complete nucleotide sequences of 10 genomic segments (S1-S10) from an isolate of rice black-streaked dwarf virus causing rough dwarf disease on maize (RBSDV-Hbm) in China were determined, a total of 29,142 base pairs (bp). Each segment possessed the genus-specific termini with conserved nucleotide sequences of (+) 5'-AAGUUUUU......CAGCUNNNGUC-3' and a perfect or imperfect inverted repeat of seven to eleven nucleotides immediately adjacent to the terminal conserved sequence. While the coding strand of most RBSDV-Hbm segments contained one open reading frame (ORF), there were two non-overlapping ORFs in S7 and S9, and one small overlapping ORF downstream of the major ORF in S5. Homology comparisons suggest that S1 encodes a RNA-dependent RNA polymerase (RdRp), with 63.5% and 32.6% identity to the putative RdRp encoded by Fiji disease virus (FDV) and Nilaparvata lugens reovirus (NLRV), respectively. The proteins encoded by S2, S3, and S4 showed various degrees of similarity to those encoded by the corresponding segments of FDV or NLRV. In S5 and S6, low identities were found to those of FDV only, but not to NLRV. Sequence analyses showed that RBSDV-Hbm had the most similarities in the genome organizations and the coding assignments with a RBSDV isolated from rice in China, in which each pair of the corresponding segments shared sequence identities of 93.8-98.9% and 93.5-100% at nucleotide or amino acid levels, respectively. In addition, phylogenetic analyses suggested that RBSDV-Hbm had the closest evolutionary relationship to RBSDV in Fijivirus.
Collapse
Affiliation(s)
- Zhao-Hui Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | |
Collapse
|
18
|
Bai FW, Yan J, Qu ZC, Zhang HW, Xu J, Ye MM, Shen DL. Phylogenetic analysis reveals that a dwarfing disease on different cereal crops in China is due to rice black streaked dwarf virus (RBSDV). Virus Genes 2002; 25:201-6. [PMID: 12416683 DOI: 10.1023/a:1020170020581] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A viral disease with dwarfing symptoms is associated with severe damage of different cereal crops including rice, maize, wheat and sorghum grown in China. It is believed that the pathogenic agent of the disease on rice and sorghum is rice black streaked dwarf virus (RBSDV), however, the cause of maize dwarf disease in China is still inconclusive. In this report, dsRNA was isolated from virus particles obtained from the diseased plants of rice, maize, wheat and sorghum from two Chinese provinces. Full-length cDNAs of genome segments 9 (S9) and 10 (S 10) were obtained through a RT-PCR approach. Sequence analysis showed that the S9 sequences of Chinese isolates and Japanese RBSDV isolate were very similar to each other (89.1-89.6% identity at the nucleotide level, 92.3-92.9% and 95.8-98.6% identity at the amino acid level for ORF1 and ORF2, respectively). In addition, the S10 sequences of Chinese isolates and Japanese RBSDV were very similar to each other (93.0-95.4% identical nucleotides and 96.2-97.0% identical amino acids, respectively). However, there were lower similarities for S9 and S10 sequences between Chinese isolates and an Italian Maize Rough Dwarf Virus (MRDV) isolate. Phylogenetic analysis indicates that Chinese viral isolates found to infect rice, maize, wheat and sorghum and leading to similar cereal dwarfing manifestations could be grouped to the same virus species, RBSDV.
Collapse
Affiliation(s)
- Feng-Wei Bai
- Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Uyeda I, Kimura I, Shikata E. Characterization of genome structure and establishment of vector cell lines for plant reoviruses. Adv Virus Res 1995; 45:249-79. [PMID: 7793327 DOI: 10.1016/s0065-3527(08)60063-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- I Uyeda
- Department of Agrobiology and Bioresources, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
20
|
Affiliation(s)
- D L Nuss
- Department of Molecular Oncology and Virology, Roche Research Center, Nutley, New Jersey 07110
| | | |
Collapse
|
21
|
Kitajima E, Kim K, Scott H, Gergerich R. Reovirus-like particles and their vertical transmission in the Mexican bean beetle, Epilachna varivestis (Coleoptera: Coccinellidae). J Invertebr Pathol 1985. [DOI: 10.1016/0022-2011(85)90132-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Ushiyama R, Nakai Y. Ultrastructural features of fungal virus-like particles from Lentinus edodes. Virology 1982; 123:93-101. [PMID: 7147717 DOI: 10.1016/0042-6822(82)90297-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Boccardo G, Milne RG. Enhancement of the immunogenicity of the maize rough dwarf virus outer shell with the cross-linking reagent dithiobis(succinimidyl)propionate. J Virol Methods 1981; 3:109-13. [PMID: 6792213 DOI: 10.1016/0166-0934(81)90007-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Injection into rabbits of native or glutaraldehyde (GA)-treated intact particles of the fijivirus maize rough dwarf virus (MRDV) failed to yield antibodies to the outer shell of the virus. After fixation of the particles with the cross-linking reagent dithiobis(succinimidyl)propionate (DSP), antisera were obtained reacting with the outer shell of MRDV (both DSP-fixed and unfixed) to a titre of 1/1024 in immunoelectron microscopic decoration tests, but giving no reaction with another fijivirus, oat sterile dwarf virus, whose subviral particles are known to be unrelated to those of MRDV. Further fixation of the DSP-fixed particles with GA did not appear to enhance immunogenicity. Stabilization with DSP could have further application with viruses the instability of which renders them poor immunogens.
Collapse
|
24
|
Boccardo G, Hatta T, Francki R, Grivell C. Purification and some properties of reovirus-like particles from leafhoppers and their possible involvement in wallaby ear disease of maize. Virology 1980; 100:300-13. [DOI: 10.1016/0042-6822(80)90521-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/1979] [Indexed: 11/24/2022]
|
25
|
|
26
|
|
27
|
Shikata E, Kitagawa Y. Rice black-streaked dwarf virus: its properties, morphology and intracellular localization. Virology 1977; 77:826-42. [PMID: 855190 DOI: 10.1016/0042-6822(77)90502-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
|
29
|
|
30
|
|
31
|
Boccardo G, Milne RG. The maize rough dwarf virion. I. Protein composition and distribution of RNA in different viral fractions. Virology 1975; 68:79-85. [PMID: 1189300 DOI: 10.1016/0042-6822(75)90149-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
|
33
|
Ikegami M, Francki RI. Purification and serology of viruslike particles from Fiji disease virus-infected sugar cane. Virology 1974; 61:327-33. [PMID: 4213900 DOI: 10.1016/0042-6822(74)90270-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Redolfi P, Boccardo G. Fractionation of the double-stranded RNA of maize rough dwarf virus subviral particles. Virology 1974; 59:319-22. [PMID: 4363586 DOI: 10.1016/0042-6822(74)90229-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|