1
|
Hyponatremia and V2 vasopressin receptor upregulation: a result of HSP90 inhibition. Cancer Chemother Pharmacol 2017; 80:673-684. [PMID: 28779264 PMCID: PMC5608778 DOI: 10.1007/s00280-017-3390-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/11/2017] [Indexed: 01/16/2023]
Abstract
Purpose
Small-molecule inhibitors of heat-shock protein 90 (HSP90) have been under development as chemotherapeutic agents. The adverse events reported from early clinical trials included hyponatremia. Given the limited number of patients enrolled, the number of hyponatremia incidents was remarkable and repeatedly, the event was judged as severe. Inappropriate V2 vasopressin receptor stimulation is an established cause of hyponatremia. We explored the hypothesis that HSP90 inhibition produces hypersensitivity to vasopressin by upregulating V2-receptors. Methods Experiments were carried out in cell culture using HEK293 cells with heterologous expression of the human V2-receptor and HELA cells with an endogenous V2-receptor complement. We tested the effect of HSP90 inhibition by three structurally unrelated compounds (alvespimycin, luminespib, radicicol) and asserted its specificity in cells depleted of cytosolic HSP90 (by RNA interference). Assays encompassed surface V2-receptor density and vasopressin-stimulated formation of cyclic AMP (cAMP). Results The results demonstrate a twofold increase in cell-surface receptor density following pre-incubation with each of the HSP90 inhibitors. The effect had a concentration-dependence consistent with the individual potencies to inhibit HSP90. Similarly, depletion of cytosolic HSP90 increased surface-receptor density and at the same time, reduced the inhibitor effect. Upregulated V2-receptors were fully functional; hence, in culture treated with an HSP90 inhibitor, addition of vasopressin resulted in higher levels of cAMP than in controls. Conclusion Since formation of cAMP is the first signalling step in raising water permeability of the collecting duct epithelia, we suggest that V2-receptor upregulation generates hypersensitivity to vasopressin linking HSP90 inhibition to the development of hyponatremia.
Collapse
|
2
|
Gewirth DT. Paralog Specific Hsp90 Inhibitors - A Brief History and a Bright Future. Curr Top Med Chem 2017; 16:2779-91. [PMID: 27072700 DOI: 10.2174/1568026616666160413141154] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/30/2015] [Accepted: 01/17/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND The high sequence and structural homology among the hsp90 paralogs - Hsp90α, Hsp90β, Grp94, and Trap-1 - has made the development of paralog-specific inhibitors a challenging proposition. OBJECTIVE This review surveys the state of developments in structural analysis, compound screening, and structure-based design that have been brought to bear on this problem. RESULTS First generation compounds that selectively bind to Hsp90, Grp94, or Trap-1 have been identified. CONCLUSION With the proof of principle firmly established, the prospects for further progress are bright.
Collapse
Affiliation(s)
- Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
3
|
Heat-Shock Protein 90–Targeted Nano Anticancer Therapy. J Pharm Sci 2016; 105:1454-66. [DOI: 10.1016/j.xphs.2015.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/16/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022]
|
4
|
Yamaori S, Kinugasa Y, Jiang R, Takeda S, Yamamoto I, Watanabe K. Cannabidiol induces expression of human cytochrome P450 1A1 that is possibly mediated through aryl hydrocarbon receptor signaling in HepG2 cells. Life Sci 2015; 136:87-93. [PMID: 26187180 DOI: 10.1016/j.lfs.2015.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 06/04/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
AIMS We herein investigated the inducibility of cytochrome P450 1A1 (CYP1A1) by Δ(9)-tetrahydrocannabinol, cannabidiol (CBD), and cannabinol, three major phytocannabinoids, using human hepatoma HepG2 cells. MAIN METHODS The expression of CYP1A1 and the aryl hydrocarbon receptor (AhR) was measured by a quantitative real-time polymerase chain reaction and/or Western blotting. KEY FINDINGS Δ(9)-Tetrahydrocannabinol and CBD concentration-dependently induced the expression of CYP1A1 mRNA, whereas cannabinol showed little or no induction. Among the phytocannabinoids tested, CBD was the most potent inducer of CYP1A1 expression. The induction of CYP1A1 expression by CBD was significantly attenuated by the knockdown of AhR expression with AhR small interfering RNAs. The role of protein tyrosine kinases (PTKs) in the CBD-mediated induction of CYP1A1 was then examined using herbimycin A, a PTK inhibitor. The upregulation of CYP1A1 by CBD was significantly suppressed by herbimycin A as was the induction by omeprazole but not 3-methylcholanthrene. The inducibility of CYP1A1 by CBD-related compounds was examined to clarify the structural requirements for CBD-mediated CYP1A1 induction. Olivetol, which corresponds to the pentylresorcinol moiety of CBD, significantly induced the expression of CYP1A1, whereas d-limonene, CBD-2'-monomethyl ether, and CBD-2',6'-dimethyl ether did not. SIGNIFICANCE These results showed that CBD may have induced human CYP1A1 expression through the activation of PTK-dependent AhR signaling, in which two phenolic hydroxyl groups in the pentylresorcinol moiety of CBD may play structurally important roles.
Collapse
Affiliation(s)
- Satoshi Yamaori
- Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yuka Kinugasa
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Rongrong Jiang
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Shuso Takeda
- Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Ikuo Yamamoto
- Department of Hygienic Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka 882-8508, Japan
| | - Kazuhito Watanabe
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan; Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan.
| |
Collapse
|
5
|
A membrane-type-1 matrix metalloproteinase (MT1-MMP)-discoidin domain receptor 1 axis regulates collagen-induced apoptosis in breast cancer cells. PLoS One 2015; 10:e0116006. [PMID: 25774665 PMCID: PMC4638154 DOI: 10.1371/journal.pone.0116006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 12/03/2014] [Indexed: 11/19/2022] Open
Abstract
During tumour dissemination, invading breast carcinoma cells become confronted with a reactive stroma, a type I collagen-rich environment endowed with anti-proliferative and pro-apoptotic properties. To develop metastatic capabilities, tumour cells must acquire the capacity to cope with this novel microenvironment. How cells interact with and respond to their microenvironment during cancer dissemination remains poorly understood. To address the impact of type I collagen on the fate of tumour cells, human breast carcinoma MCF-7 cells were cultured within three-dimensional type I collagen gels (3D COL1). Using this experimental model, we have previously demonstrated that membrane type-1 matrix metalloproteinase (MT1-MMP), a proteinase overexpressed in many aggressive tumours, promotes tumour progression by circumventing the collagen-induced up-regulation of BIK, a pro-apoptotic tumour suppressor, and hence apoptosis. Here we performed a transcriptomic analysis to decipher the molecular mechanisms regulating 3D COL1-induced apoptosis in human breast cancer cells. Control and MT1-MMP expressing MCF-7 cells were cultured on two-dimensional plastic plates or within 3D COL1 and a global transcriptional time-course analysis was performed. Shifting the cells from plastic plates to 3D COL1 activated a complex reprogramming of genes implicated in various biological processes. Bioinformatic analysis revealed a 3D COL1-mediated alteration of key cellular functions including apoptosis, cell proliferation, RNA processing and cytoskeleton remodelling. By using a panel of pharmacological inhibitors, we identified discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase specifically activated by collagen, as the initiator of 3D COL1-induced apoptosis. Our data support the concept that MT1-MMP contributes to the inactivation of the DDR1-BIK signalling axis through the cleavage of collagen fibres and/or the alteration of DDR1 receptor signalling unit, without triggering a drastic remodelling of the transcriptome of MCF-7 cells.
Collapse
|
6
|
Li K, Xue Y, Chen A, Jiang Y, Xie H, Shi Q, Zhang S, Ni Y. Heat shock protein 90 has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-responsive sperm function in human sperm. PLoS One 2014; 9:e115841. [PMID: 25541943 PMCID: PMC4277372 DOI: 10.1371/journal.pone.0115841] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/29/2014] [Indexed: 11/18/2022] Open
Abstract
Heat shock protein 90 plays critical roles in client protein maturation, signal transduction, protein folding and degradation, and morphological evolution; however, its function in human sperm is not fully understood. Therefore, our objective in this study was to elucidate the mechanism by which heat shock protein 90 exerts its effects on human sperm function. By performing indirect immunofluorescence staining, we found that heat shock protein 90 was localized primarily in the neck, midpiece, and tail regions of human sperm, and that its expression increased with increasing incubation time under capacitation conditions. Geldanamycin, a specific inhibitor of heat shock protein 90, was shown to inhibit this increase in heat shock protein 90 expression in western blotting analyses. Using a multifunctional microplate reader to examine Fluo-3 AM-loaded sperm, we observed for the first time that inhibition of heat shock protein 90 by using geldanamycin significantly decreased intracellular calcium concentrations during capacitation. Moreover, western blot analysis showed that geldanamycin enhanced tyrosine phosphorylation of several proteins, including heat shock protein 90, in a dose-dependent manner. The effects of geldanamycin on human sperm function in the absence or presence of progesterone was evaluated by performing chlortetracycline staining and by using a computer-assisted sperm analyzer. We found that geldanamycin alone did not affect sperm capacitation, hyperactivation, and motility, but did so in the presence of progesterone. Taken together, these data suggest that heat shock protein 90, which increases in expression in human sperm during capacitation, has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-stimulated sperm function. In this study, we provide new insights into the roles of heat shock protein 90 in sperm function.
Collapse
Affiliation(s)
- Kun Li
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Yamei Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Aijun Chen
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Youfang Jiang
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Haifeng Xie
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Qixian Shi
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Songying Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- * E-mail: (SZ); (YN)
| | - Ya Ni
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
- * E-mail: (SZ); (YN)
| |
Collapse
|
7
|
Microbial natural products: molecular blueprints for antitumor drugs. J Ind Microbiol Biotechnol 2013; 40:1181-210. [PMID: 23999966 DOI: 10.1007/s10295-013-1331-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/07/2013] [Indexed: 12/18/2022]
Abstract
Microbes from two of the three domains of life, the Prokarya, and Eukarya, continue to serve as rich sources of structurally complex chemical scaffolds that have proven to be essential for the development of anticancer therapeutics. This review describes only a handful of exemplary natural products and their derivatives as well as those that have served as elegant blueprints for the development of novel synthetic structures that are either currently in use or in clinical or preclinical trials together with some of their earlier analogs in some cases whose failure to proceed aided in the derivation of later compounds. In every case, a microbe has been either identified as the producer of secondary metabolites or speculated to be involved in the production via symbiotic associations. Finally, rapidly evolving next-generation sequencing technologies have led to the increasing availability of microbial genomes. Relevant examples of genome mining and genetic manipulation are discussed, demonstrating that we have only barely scratched the surface with regards to harnessing the potential of microbes as sources of new pharmaceutical leads/agents or biological probes.
Collapse
|
8
|
|
9
|
Johnson VA, Singh EK, Nazarova LA, Alexander LD, McAlpine SR. Macrocyclic inhibitors of hsp90. Curr Top Med Chem 2010; 10:1380-402. [PMID: 20536417 PMCID: PMC3105290 DOI: 10.2174/156802610792232088] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 04/10/2010] [Indexed: 01/24/2023]
Abstract
Heat shock proteins (HSP) are a family of highly conserved proteins, whose expression increases in response to stresses that may threaten cell survival. Over the past decade, heat shock protein 90 (Hsp90) has emerged as a potential therapeutic target for cancer as it plays a vital role in normal cell maturation and acts as a molecular chaperone for proper folding, assembly, and stabilization of many oncogenic proteins. To date, a majority of Hsp90 inhibitors that have been discovered are macrocycles. The relatively rigid conformation provided by the macrocyclic scaffold allows for a selective interaction with a biological target such as Hsp90. This review highlights the discovery and development of nine macrocycles that inhibit the function of Hsp90, detailing their potency and the client proteins affected by Hsp90 inhibition.
Collapse
Affiliation(s)
- Victoria A. Johnson
- Department of Chemistry and Biochemistry, 5500 Campanile Drive, San Diego State University, San Diego, CA 92182-1030
| | - Erinprit K. Singh
- Department of Chemistry and Biochemistry, 5500 Campanile Drive, San Diego State University, San Diego, CA 92182-1030
| | - Lidia A. Nazarova
- Department of Chemistry and Biochemistry, 5500 Campanile Drive, San Diego State University, San Diego, CA 92182-1030
| | - Leslie D. Alexander
- Department of Chemistry and Biochemistry, 5500 Campanile Drive, San Diego State University, San Diego, CA 92182-1030
| | - Shelli R. McAlpine
- Department of Chemistry and Biochemistry, 5500 Campanile Drive, San Diego State University, San Diego, CA 92182-1030
| |
Collapse
|
10
|
Wenyong T, Lu L, Daozhen C, Weidong Y, Ying H. An experimental study on the antitumor effect of 131I-17-AAG in vitro and in vivo. Ann Nucl Med 2009; 23:113-22. [PMID: 19225933 DOI: 10.1007/s12149-008-0215-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To observe the antitumor effect of (131)I-17-allylamino-17-demethoxygeldanamycin ((131)I-17-AAG) in vitro/in vivo and explore its antitumor mechanism with a view to its potential therapeutic application. METHODS (131)I-17-AAG was prepared by the reaction of 17-AAG with Na [(131)I] in the presence of hydrogen peroxide. The effects of (131)17-AAG on cell growth inhibition and cell cycle distribution in vitro were studied in BEL-7402 cells lines. Following BEL-7402 tumor implantation by subcutaneous xenografts into nude mice, the reagents were injected through the tail vein, and the tumor volume was measured and analyzed. At the end of the experiment, tumor specimens were processed for histopathological analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to investigate apoptosis. The expression change of Akt2 was tested by Western-blot analysis. RESULTS Methyl-thiazolyl-tetrazolium assay showed inhibition rates of 27.7 +/- 5.3%, 57.3 +/- 4.3%, and 63.7 +/- 3.1%, in Na(131)I group, 17-AAG group, and (131)I-17-AAG group, respectively. The inhibition rate in the (131)I-17-AAG group differed significantly between N(a131)I group and 17-AAG group (F = 229.49, P < 0.001). Following 48 h of treatment with the drug in each group, flow cytometry analysis indicated that detected sub-G peaks (black) were 1.54 +/- 0.13%, 5.72 +/- 1.05%, 12.97 +/- 1.44%, and 20.65 +/- 1.36%, in dimethyl sulfoxide (DMSO) group, Na(131)I group, 17-AAG group, and (131)I-17-AAG group, respectively. Following infusion for 32 days, the tumor volumes in the (131)I-17-AAG group were significantly smaller than those in the DMSO group (F = 24.18, P < 0.001) or the (131)I group (F = 20.68, P < 0.001). Histopathological and TUNEL analyses showed that (131)I-17-AAG inhibited the proliferation of tumor cells and induced apoptosis. The expression of Akt2 in (131)I-17-AAG was significantly lower than that in the DMSO group or (131)I group. CONCLUSIONS (131)I-17-AAG can effectively inhibit the growth of BEL-7402 tumor cells in vitro and in vivo. (131)I-17-AAG is a promising agent for the treatment of BEL-7402 cell tumor.
Collapse
Affiliation(s)
- Tu Wenyong
- Nuclear Medicine Technology Institution, School of Clinical Medicine, Southeast University, No. 87 Dingjia Qiao Road 210009 Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
11
|
Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 2008; 33:341-65. [PMID: 11101008 PMCID: PMC6496586 DOI: 10.1046/j.1365-2184.2000.00189.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chaperones/heat shock proteins (HSPs) of the HSP90 and HSP70 families show elevated levels in proliferating mammalian cells and a cell cycle-dependent expression. They transiently associate with key molecules of the cell cycle control system such as Cdk4, Wee-1, pRb, p53, p27/Kip1 and are involved in the nuclear localization of regulatory proteins. They also associate with viral oncoproteins such as SV40 super T, large T and small t antigen, polyoma large and middle S antigen and EpsteinBarr virus nuclear antigen. This association is based on a J-domain in the viral proteins and may assist their targeting to the pRb/E2F complex. Small HSPs and their state of phosphorylation and oligomerization also seem to be involved in proliferation and differentiation. Chaperones/HSPs thus play important roles within cell cycle processes. Their exact functioning, however, is still a matter of discussion. HSP90 in particular, but also HSP70 and other chaperones associate with proteins of the mitogen-activated signal cascade, particularly with the Src kinase, with tyrosine receptor kinases, with Raf and the MAP-kinase activating kinase (MEK). This apparently serves the folding and translocation of these proteins, but possibly also the formation of large immobilized complexes of signal transducing molecules (scaffolding function).
Collapse
Affiliation(s)
- K Helmbrecht
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany
| | | | | |
Collapse
|
12
|
Knobloch J, Beckmann S, Burmeister C, Quack T, Grevelding CG. Tyrosine kinase and cooperative TGFβ signaling in the reproductive organs of Schistosoma mansoni. Exp Parasitol 2007; 117:318-36. [PMID: 17553494 DOI: 10.1016/j.exppara.2007.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/06/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Drug-induced suppression of female schistosome sexual maturation is an auspicious strategy to combat schistosomiasis since the eggs are the causative agent. The establishment of drug targets requires knowledge about the molecular mechanisms that regulate the development of the female reproductive organs, which include vitellarium and ovary. This review summarizes recent studies suggesting tyrosine kinases as important factors for the regulation of female gonad development. In this context, especially cytoplasmatic tyrosine kinases of the Src class seem to play dominant roles. Moreover, experimental data and theoretical concepts are provided supporting a crosstalk between tyrosine kinase and TGFbeta signaling in the production of vitellocytes. Finally, we take advantage from the schistosome genome project to propose a model for the regulation of vitelline-cell production and differentiation.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
13
|
Wijetunge S, Hughes AD. Src family tyrosine kinases mediate contraction of rat isolated tail arteries in response to a hyposmotic stimulus. J Hypertens 2007; 25:1871-8. [PMID: 17762651 PMCID: PMC2763211 DOI: 10.1097/hjh.0b013e328255e8f0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Hypotonic solutions cause vasoconstriction in rat tail arteries, due largely to activation of L-type calcium channels (CaV1.2). We studied possible roles of tyrosine kinases, particularly src family kinases (SFK) and extracellular signal-related kinases (ERK1/2), in this response. METHODS Rat tail arteries were mounted on a myograph for measurement of isometric force. Arteries were bathed in isosmotic physiological saline solution (300 mOsm/l) containing 50 mmol/l mannitol and were stimulated by a hyposmotic solution containing 0 mmol/l mannitol (PSS-M). Activation of tyrosine kinases and ERK1/2 by hyposmotic solution was examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting on rat tail artery lysates with specific phospho-antibodies. RESULTS Western blotting showed SFK src and yes present in rat tail artery. PSS-M increased tyrosine phosphorylation of several proteins, including SFK and ERK1/2. Genistein blocked phosphorylation of SFK and ERK1/2 by PSS-M. In isolated arteries PSS-M caused a contraction inhibited by the tyrosine kinase inhibitor, genistein, and three structurally different selective SFK inhibitors, herbimycin-A, PP1 and SU6656. Mitogen-activated protein kinase kinase inhibitor PD98059 or selective inhibitors of platelet-derived growth factor receptor (AG1296) and epidermal growth factor receptor (AG1478) had no effect on contraction induced by a hypotonic solution. CONCLUSIONS Hyposmotic conditions activate SFK, src and yes, and contract rat tail artery by a SFK-dependent mechanism. ERK1/2 are activated by the hypotonic solution, but do not play a role in the contractile response. SFK modulation of CaV1.2 may be an important mechanism mediating vasoconstriction to mechanical stimuli in vascular smooth muscle.
Collapse
Affiliation(s)
- Sumangali Wijetunge
- Clinical Pharmacology, NHLI Division, Faculty of Medicine, Imperial College London, London, UK.
| | | |
Collapse
|
14
|
Daozhen C, Lu L, Min Y, Xinyu J, Ying H. Synthesis of 131I-Labeled-[131I]Iodo-17-Allylamino-17-Demethoxy Geldanamycin ([131I]Iodo-17-AAG) and Its Biodistribution in Mice. Cancer Biother Radiopharm 2007; 22:607-12. [DOI: 10.1089/cbr.2006.363] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chen Daozhen
- Nuclear Medicine Technology Institution, School of Clinical Medicine, Southeast University, Nanjing, People's Republic of China
- Central Laboratory, The Affiliated Wuxi Hospital for Matemaland Child Health Care of Medical University of Nanjin, Wuxi, People's Republic of China
| | - Liu Lu
- Nuclear Medicine Technology Institution, School of Clinical Medicine, Southeast University, Nanjing, People's Republic of China
| | - Yang Min
- Jiangsu Institute of Nuclear Medicine, Wuxi, People's Republic of China
| | - Jiang Xinyu
- Nuclear Medicine Technology Institution, School of Clinical Medicine, Southeast University, Nanjing, People's Republic of China
| | - Huang Ying
- Nuclear Medicine Technology Institution, School of Clinical Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
15
|
Blagg BSJ, Kerr TD. Hsp90 inhibitors: small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation. Med Res Rev 2006; 26:310-38. [PMID: 16385472 DOI: 10.1002/med.20052] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 90 kDa heat shock proteins (Hsp90) are responsible for the conformational maturation of nascent polypeptides and the renaturation of denatured proteins. In transformed cells, numerous mutated and overexpressed proteins rely on the Hsp90 protein folding machinery for tumor progression. The Hsp90-mediated protein folding process is dependent upon ATP, and when inhibitors of ATP are present, the Hsp90 machinery is unable to fold client proteins into their biologically active form, which results in the degradation of protein substrates via the ubiquitin-proteasome pathway. Consequently, Hsp90 has evolved into a promising anti-cancer target because multiple oncogenic proteins can be simultaneously degraded as a consequence of Hsp90 inhibition. This review serves to explain the Hsp90 protein folding process, the impact of Hsp90 inhibition, the identification of natural product inhibitors, and the development of rationally designed inhibitors of the Hsp90 protein folding machinery.
Collapse
Affiliation(s)
- Brian S J Blagg
- The Department of Medicinal Chemistry, The University of Kansas, Lawrence, 66045, USA.
| | | |
Collapse
|
16
|
Chase A, Cross NCP. Signal transduction therapy in haematological malignancies: identification and targeting of tyrosine kinases. Clin Sci (Lond) 2006; 111:233-49. [PMID: 16961463 DOI: 10.1042/cs20060035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tyrosine kinases play key roles in cell proliferation, survival and differentiation. Their aberrant activation, caused either by the formation of fusion genes by chromosome translocation or by intragenic changes, such as point mutations or internal duplications, is of major importance in the development of many haematological malignancies. An understanding of the mechanisms by which BCR-ABL contributes to the pathogenesis of chronic myeloid leukaemia led to the development of imatinib, the first of several tyrosine kinase inhibitors to enter clinical trials. Although the development of resistance has been problematic, particularly in aggressive disease, the development of novel inhibitors and combination with other forms of therapy shows promise.
Collapse
Affiliation(s)
- Andrew Chase
- Wessex Regional Genetics Laboratory, Salisbury and Human Genetics Division, University of Southampton, Salisbury District Hospital, Salisbury SP2 8BJ, U.K
| | | |
Collapse
|
17
|
Knobloch J, Kunz W, Grevelding CG. Herbimycin A suppresses mitotic activity and egg production of female Schistosoma mansoni. Int J Parasitol 2006; 36:1261-72. [PMID: 16844129 DOI: 10.1016/j.ijpara.2006.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/22/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
The eggs of the endoparasite Schistosoma are the causative agent of schistosomiasis, an important disease of humans, which is endemic in (sub-) tropical regions. The absence of a vaccine with sufficient protective qualities and increasing resistance to approved and established drugs like praziquantel, justify the exploration of novel ways to fight schistosomes. Our strategy is based on interference with the sexual maturation of the female. Prerequisites for gonad development in adult females are a continuous pairing contact with the male and significantly increased mitotic activity. In this study we show that the male governs sexual maturation of the female, as the separation of couples causes a clear reduction of female mitotic activity and, consequently, egg production. We demonstrate that treatment of schistosomes with Herbimycin A, an inhibitor of protein tyrosine kinases (PTKs), mimics the separation of couples as the drug blocks mitotic activity and egg production of paired females. However, the synthesis of the eggshell precursor protein p14 is elevated. Furthermore, we show for the first time in invertebrates that Herbimycin A decreases tyrosine phosphorylation and PTK stability in schistosomes. Summarised, our data provide evidence that PTKs have key functions in regulating gonad development, eggshell gene expression and, consequently, egg production. Therefore, we suggest envisaging schistosome PTKs as novel targets for strategies to combat schistosomiasis.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
18
|
|
19
|
Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T. Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol 2005; 53:35-69. [PMID: 15607934 DOI: 10.1016/j.critrevonc.2004.09.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2004] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor plays multiple roles in cancer, by acting as a motility and invasion stimulating factor, promoting metastasis and tumour growth. Furthermore, it acts as a powerful angiogenic factor. The pivotal role of this factor in cancer has indicated HGF as being a potential target in cancer therapies. The past few years have seen rapid progress in developing tools in targeting HGF, in the context of cancer therapies, including development of antagonists, small compounds, antibodies and genetic approaches. The current article discusses the potential value of HGF and its receptor as targets in cancer therapies, the current development in anti-HGF research, and the clinical value of HGF in prognosis and treatment.
Collapse
Affiliation(s)
- Wen G Jiang
- Metastasis and Angiogenesis Research Group, University Department of Surgery, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Inhibition of the 90 kDa heat shock proteins (Hsp90) represents a promising new chemotherapeutic approach for the treatment of several cancers. Hsp90 is essential to the survival of cancer cells and is inhibited by members of the ansamycin family of antibiotics. In particular, the quinone-containing antibiotics geldanamycin (GDA) and herbimycin A inhibit Hsp90 function in vitro at low micromolar concentrations via interaction with an ATP binding domain. Many proteins bind ATP, and the discovery of selective Hsp90 inhibitors requires the identification of other proteins that bind GDA and may cause undesired effects. Biotinylated analogues of GDA with varying tether lengths have been synthesized to elucidate other proteins that competitively bind GDA. Analogues containing a photolabile tether have also been prepared as a complementary method for the removal of GDA-bound proteins from neutravidin-containing resin. Preliminary studies indicate several proteins other than Hsp90 are isolated with biotinylated GDA.
Collapse
Affiliation(s)
- Randell C Clevenger
- Department of Medicinal Chemistry and The Center for Protein Structure and Function, The University of Kansas, 1251 Wescoe Hall Dr, Malott Hall 4070, Lawrence, Kansas 66045-7564, USA
| | | | | | | |
Collapse
|
21
|
Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105:2640-53. [PMID: 15618470 DOI: 10.1182/blood-2004-08-3097] [Citation(s) in RCA: 902] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractImatinib has revolutionized drug therapy of chronic myeloid leukemia (CML). Preclinical studies were promising but the results of clinical trials by far exceeded expectations. Responses in chronic phase are unprecedented, with rates of complete cytogenetic response (CCR) of more than 40% in patients after failure of interferon-α (IFN) and more than 80% in newly diagnosed patients, a level of efficacy that led to regulatory approval in record time. While most of these responses are stable, resistance to treatment after an initial response is common in more advanced phases of the disease. Mutations in the kinase domain (KD) of BCR-ABL that impair imatinib binding have been identified as the leading cause of resistance. Patients with CCR who achieve a profound reduction of BCR-ABL mRNA have a very low risk of disease progression. However, residual disease usually remains detectable with reverse transcription–polymerase chain reaction (RT-PCR), indicating that disease eradication may pose a significant challenge. The mechanisms underlying the persistence of minimal residual disease are unknown. In this manuscript, we review the preclinical and clinical development of imatinib for the therapy of CML, resistance and strategies that may help to eliminate resistant or residual leukemia.
Collapse
Affiliation(s)
- Michael Deininger
- Oregon Health & Science University Cancer Institute, 3181 SW Sam Jackson Park Rd, Mailcode L592, Portland, OR 97239, USA.
| | | | | |
Collapse
|
22
|
Oliveira MJ, Lauwaet T, De Bruyne G, Mareel M, Leroy A. Listeria monocytogenes produces a pro-invasive factor that signals via ErbB2/ErbB3 heterodimers. J Cancer Res Clin Oncol 2004; 131:49-59. [PMID: 15480783 DOI: 10.1007/s00432-004-0601-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Accepted: 06/25/2004] [Indexed: 01/22/2023]
Abstract
PURPOSE We have previously demonstrated that conditioned medium from bacteria, some of which were isolated from the colon of cancer patients, stimulate cancer cell invasion in vitro through a 13-mer beta-casein-derived peptide. Since invasion signalling pathways are coordinated by the balance between protein kinases and phosphatases, we investigated the effect of conditioned medium from bacteria on the overall cellular tyrosine phosphorylation. METHODS The tyrosine phosphorylation level of HCT-8/E11 human colon cancer cells treated with the pro-invasive conditioned medium of Listeria, prepared on top of collagen type I gels (CM(Coll) Listeria/TSB), were analysed by means of immunoprecipitation and Western blot, with specific anti-phosphotyrosine antibodies. RESULTS We demonstrated that CM(Coll) Listeria/TSB increases the tyrosine phosphorylation level of ErbB2 and ErbB3, members of the epidermal growth factor receptor (EGFR) family, and the association between ErbB3 and the phosphatidylinositol 3-kinase (PI3K) regulatory subunit (p85alpha). CM(Coll) Listeria/TSB-stimulated ErbB3 tyrosine phosphorylation and cancer cell invasion were independent from EGFR expression and activity but dependent on ErbB2 activity. CONCLUSIONS The interaction between Listeria and collagen type I produces, next to the 13-mer peptide, at least another pro-invasive factor that signals via ErbB2/ErbB3 heterodimers.
Collapse
|
23
|
Marsee DK, Venkateswaran A, Tao H, Vadysirisack D, Zhang Z, Vandre DD, Jhiang SM. Inhibition of heat shock protein 90, a novel RET/PTC1-associated protein, increases radioiodide accumulation in thyroid cells. J Biol Chem 2004; 279:43990-7. [PMID: 15302866 DOI: 10.1074/jbc.m407503200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RET/PTC1 is a rearranged form of the RET tyrosine kinase commonly seen in papillary thyroid carcinomas. It has been shown that RET/PTC1 decreases expression of the sodium/iodide symporter (NIS), the molecule that mediates radioiodide therapy for thyroid cancer. Using proteomic analysis, we identify hsp90 and its co-chaperone p50cdc37 as novel proteins associated with RET/PTC1. Inhibition of hsp90 function with 17-allylamino-17-demothoxygeldanamycin (17-AAG) reduces RET/PTC1 protein levels. Furthermore, 17-AAG increases radioiodide accumulation in thyroid cells, mediated in part through a protein kinase A-independent mechanism. We show that 17-AAG does not increase the total amount of NIS protein or cell surface NIS localization. Instead, 17-AAG increases radioiodide accumulation by decreasing iodide efflux. Finally, the ability of 17-AAG to increase radioiodide accumulation is not restricted to thyroid cells expressing RET/PTC1. These findings suggest that 17-AAG may be useful as a chemotherapeutic agent, not only to inhibit proliferation but also to increase the efficacy of radioiodide therapy in patients with thyroid cancer.
Collapse
Affiliation(s)
- Derek K Marsee
- Medical Scientist Program, The Ohio State University College of Medicine, Columbus 43210, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The twenty-first century is beginning with a sharp turn in the field of cancer therapy. Molecular targeted therapies against specific oncogenic events are now possible. The BCR-ABL story represents a notable example of how research from the fields of cytogenetics, retroviral oncology, protein phosphorylation, and small molecule chemical inhibitors can lead to the development of a successful molecular targeted therapy. Imatinib mesylate (Gleevec, STI571, or CP57148B) is a direct inhibitor of ABL (ABL1), ARG (ABL2), KIT, and PDGFR tyrosine kinases. This drug has had a major impact on the treatment of chronic myelogenous leukemia (CML) as well as other blood neoplasias and solid tumors with etiologies based on activation of these tyrosine kinases. Analysis of CML patients resistant to BCR-ABL suppression by Imatinib mesylate coupled with the crystallographic structure of ABL complexed to this inhibitor have shown how structural mutations in ABL can circumvent an otherwise potent anticancer drug. The successes and limitations of Imatinib mesylate hold general lessons for the development of alternative molecular targeted therapies in oncology.
Collapse
Affiliation(s)
- Stephane Wong
- Molecular Biology Interdepartmental PhD Program/UCLA, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
25
|
McCollum GW, Rajaratnam VS, Bullard LE, Yang R, Penn JS. Herbimycin A inhibits angiogenic activity in endothelial cells and reduces neovascularization in a rat model of retinopathy of prematurity. Exp Eye Res 2004; 78:987-95. [PMID: 15051479 DOI: 10.1016/j.exer.2003.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 12/11/2003] [Indexed: 11/25/2022]
Abstract
The pathogenesis of retinopathy of prematurity involves dysregulated angiogenesis resulting in pre-retinal growth of new vessels. Inhibition of tyrosine kinase-dependent pro-angiogenic signals may provide a rational therapeutic approach to the reduction of pre-retinal neovascularization. Vascular endothelial growth factor stimulates endothelial cell mitogenesis, differentiation and migration, by binding and activating the receptor tyrosine kinases vascular endothelial growth factor receptor-1 and vascular endothelial growth factor receptor-2. One of the vascular endothelial growth factor receptor substrates implicated in vascular endothelial growth factor signal transduction is c-Src. The ability of herbimycin A, a c-Src-selective tyrosine kinase inhibitor, to inhibit vascular endothelial growth factor-induced bovine retinal microvascular endothelial cell proliferation and tube formation was investigated. The ability of the compound to inhibit pathologic angiogenesis was tested in a rat model of retinopathy of prematurity. Exposure of neonatal rats to oxygen concentrations cycling between 10 and 50% induced severe pre-retinal neovascularization in all rats. Some of the eyes of these variable oxygen-exposed rats were herbimycin A-injected or vehicle-injected 1 or 3 days post-oxygen exposure while some eyes were non-injected. All rats were sacrificed for assessment 6 days post-exposure. Herbimycin A inhibited both vascular endothelial growth factor-induced bovine retinal microvascular endothelial cell proliferation and capillary tube formation in a dose-dependent manner. Injection of herbimycin A into oxygen-treated rats 1 day post-oxygen exposure produced a 63% decrease in pre-retinal neovascularization relative to vehicle (P = 0.0029). There was a 41% decrease in pre-retinal neovascularization in herbimycin-injected eyes relative to vehicle-injected eyes 3 days post-oxygen (P = 0.031). Pre-retinal neovascularization was reduced in vehicle-injected eyes relative to non-injected eyes at both injection times. There were no significant differences in retinal vascular area between any of the experimental groups. Based on the results of this study, herbimycin A inhibits endothelial cell proliferation and tube formation at non-toxic concentrations and reduces pre-retinal neovascularization in a rat model of retinopathy of prematurity. Reduction of angiogenesis by the inhibition of tyrosine kinase activity may be a viable route to the development of effective chemotherapies applicable to eye disease.
Collapse
Affiliation(s)
- Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, 8016 Medical Center East, Nashville, TN 37232-8808, USA
| | | | | | | | | |
Collapse
|
26
|
Deininger MWN, Druker BJ. Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol Rev 2003; 55:401-23. [PMID: 12869662 DOI: 10.1124/pr.55.3.4] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the Philadelphia translocation that fuses BCR sequences from chromosome 22 upstream of the ABL gene on chromosome 9. The chimerical Bcr-Abl protein expressed by CML cells has constitutive tyrosine kinase activity, which is essential for the pathogenesis of the disease. Imatinib, an ATP-competitive selective inhibitor of Bcr-Abl, has unprecedented efficacy for the treatment of CML. Most patients with early stage disease achieve durable complete hematological and complete cytogenetic remissions, with minimal toxicity. In contrast, responses are less stable in patients with advanced CML. This review highlights the pathogenesis of CML, its clinical features, and the development of imatinib as a specific molecularly targeted therapy. Aspects of disease monitoring and side effects are covered as well as resistance to imatinib and strategies to overcome resistance, such as alternative signal transduction inhibitors and drug combinations. Perspectives for further development are also discussed.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides
- Clinical Trials as Topic
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Piperazines/administration & dosage
- Piperazines/adverse effects
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyrimidines/administration & dosage
- Pyrimidines/adverse effects
- Stem Cells
- Transplantation, Homologous
Collapse
Affiliation(s)
- Michael W N Deininger
- BMT/Leukemia Center, Oregon Health and Science University, Mailcode L592, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|
27
|
Bandhakavi S, McCann RO, Hanna DE, Glover CVC. A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J Biol Chem 2003; 278:2829-36. [PMID: 12435747 DOI: 10.1074/jbc.m206662200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the identification of CDC37, which encodes a putative Hsp90 co-chaperone, as a multicopy suppressor of a temperature-sensitive allele (cka2-13(ts)) of the CKA2 gene encoding the alpha' catalytic subunit of protein kinase CKII. Unlike wild-type cells, cka2-13 cells were sensitive to the Hsp90-specific inhibitor geldanamycin, and this sensitivity was suppressed by overexpression of either Hsp90 or Cdc37. However, only CDC37 was capable of suppressing the temperature sensitivity of a cka2-13 strain, implying that Cdc37 is the limiting component. Immunoprecipitation of metabolically labeled Cdc37 from wild-type versus cka2-13 strains revealed that Cdc37 is a physiological substrate of CKII, and Ser-14 and/or Ser-17 were identified as the most likely sites of CKII phosphorylation in vivo. A cdc37-S14,17A strain lacking these phosphorylation sites exhibited severe growth and morphological defects that were partially reversed in a cdc37-S14,17E strain. Reduced CKII activity was observed in both cdc37-S14A and cdc37-S17A mutants at 37 degrees C, and cdc37-S14A or cdc37-S14,17A overexpression was incapable of protecting cka2-13 mutants on media containing geldanamycin. Additionally, CKII activity was elevated in cells arrested at the G(1) and G(2)/M phases of the cell cycle, the same phases during which Cdc37 function is essential. Collectively, these data define a positive feedback loop between CKII and Cdc37. Additional genetic assays demonstrate that this CKII/Cdc37 interaction positively regulates the activity of multiple protein kinases in addition to CKII.
Collapse
Affiliation(s)
- Sricharan Bandhakavi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | | | |
Collapse
|
28
|
Minami Y, Kiyoi H, Yamamoto Y, Yamamoto K, Ueda R, Saito H, Naoe T. Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. Leukemia 2002; 16:1535-40. [PMID: 12145695 DOI: 10.1038/sj.leu.2402558] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2001] [Accepted: 03/01/2002] [Indexed: 11/09/2022]
Abstract
An internal tandem duplication of the juxtamembrane (JM) domain of FLT3, a family of ligand-activated receptor tyrosine kinases, has been found in 20% of cases of acute myeloid leukemia (AML), and this mutation is correlated with leukocytosis and a poor prognosis. As a therapeutic approach, we previously reported that herbimycin A (HA) inhibited the growth of tandemly duplicated FLT3 (TDFLT3)-transformed cells (Leukemia 2000; 14: 374). Here, we have investigated the mechanism behind the cytotoxicity of HA, an ansamycin derivative which is now known to target Hsp90. The treatment with HA or another Hsp90 inhibitor, radicicol, induced selective apoptosis in TDFLT3-transformed 32D cells (TDFLT3/32D). The tyrosine-phosphorylation of TDFLT3 was inhibited by HA, whereas FLT3 ligand-induced phosphorylation of wild-type FLT3 (WtFLT3) was not. The downstream signal molecules MAPK, Akt and STAT5a were also dephosphorylated by HA in TDFLT3/32D. Immunoprecipitation analysis showed that TDFLT3 but not WtFLT3 formed a complex with Hsp90, and that the HA treatment dissociated TDFLT3 from the Hsp90 chaperone complex. These findings imply that targeting of Hsp90 will facilitate the development of anti-TDFLT3 therapy, and that Hsp90 is closely involved in the oncogenic activation of FLT3.
Collapse
Affiliation(s)
- Y Minami
- Department of Infectious Diseases, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Björnström K, Sjölander A, Schippert A, Eintrei C. A tyrosine kinase regulates propofol-induced modulation of the beta-subunit of the GABA(A) receptor and release of intracellular calcium in cortical rat neurones. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 175:227-35. [PMID: 12100362 DOI: 10.1046/j.1365-201x.2002.00991.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Propofol, an intravenous anaesthetic, has been shown to interact with the beta-subunit of the gamma-amino butyric acid(A) (GABA(A)) receptor and also to cause changes in [Ca2+]i. The GABA(A) receptor, a suggested target for anaesthetics, is known to be regulated by kinases. We have investigated if tyrosine kinase is involved in the intracellular signal system used by propofol to cause anaesthesia. We used primary cell cultured neurones from newborn rats, pre-incubated with or without a tyrosine kinase inhibitor before propofol stimulation. The effect of propofol on tyrosine phosphorylation and changes in [Ca2+]i were investigated. Propofol (3 microg mL(-1), 16.8 microM) increased intracellular calcium levels by 122 +/- 34% (mean +/- SEM) when applied to neurones in calcium free medium. This rise in [Ca2+]i was lowered by 68% when the cells were pre-incubated with the tyrosine kinase inhibitor herbimycin A before exposure to propofol (P < 0.05). Propofol caused an increase (33 +/- 10%) in tyrosine phosphorylation, with maximum at 120 s, of the beta-subunit of the GABA(A)-receptor. This tyrosine phosphorylation was decreased after pre-treatment with herbimycin A (44 +/- 7%, P < 0.05), and was not affected by the absence of exogenous calcium in the medium. Tyrosine kinase participates in the propofol signalling system by inducing the release of calcium from intracellular stores and by modulating the beta-subunit of the GABA(A)-receptor.
Collapse
Affiliation(s)
- K Björnström
- Department of Anaesthesiology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
30
|
|
31
|
Abstract
Proteins are linear polymers synthesized by ribosomes from activated amino acids. The product of this biosynthetic process is a polypeptide chain, which has to adopt the unique three-dimensional structure required for its function in the cell. In 1972, Christian Anfinsen was awarded the Nobel Prize for Chemistry for showing that this folding process is autonomous in that it does not require any additional factors or input of energy. Based on in vitro experiments with purified proteins, it was suggested that the correct three-dimensional structure can form spontaneously in vivo once the newly synthesized protein leaves the ribosome. Furthermore, proteins were assumed to maintain their native conformation until they were degraded by specific enzymes. In the last decade this view of cellular protein folding has changed considerably. It has become clear that a complicated and sophisticated machinery of proteins exists which assists protein folding and allows the functional state of proteins to be maintained under conditions in which they would normally unfold and aggregate. These proteins are collectively called molecular chaperones, because, like their human counterparts, they prevent unwanted interactions between their immature clients. In this review, we discuss the principal features of this peculiar class of proteins, their structure-function relationships, and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Stefan Walter
- Institut für Organische Chemie & Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Deutschland
| | | |
Collapse
|
32
|
Shan X, Balakir R, Criado G, Wood JS, Seminario MC, Madrenas J, Wange RL. Zap-70-independent Ca(2+) mobilization and Erk activation in Jurkat T cells in response to T-cell antigen receptor ligation. Mol Cell Biol 2001; 21:7137-49. [PMID: 11585897 PMCID: PMC99889 DOI: 10.1128/mcb.21.21.7137-7149.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Accepted: 07/16/2001] [Indexed: 11/20/2022] Open
Abstract
The tyrosine kinase ZAP-70 has been implicated as a critical intermediary between T-cell antigen receptor (TCR) stimulation and Erk activation on the basis of the ability of dominant negative ZAP-70 to inhibit TCR-stimulated Erk activation, and the reported inability of anti-CD3 antibodies to activate Erk in ZAP-70-negative Jurkat cells. However, Erk is activated in T cells receiving a partial agonist signal, despite failing to activate ZAP-70. This discrepancy led us to reanalyze the ZAP-70-negative Jurkat T-cell line P116 for its ability to support Erk activation in response to TCR/CD3 stimulation. Erk was activated by CD3 cross-linking in P116 cells. However, this response required a higher concentration of anti-CD3 antibody and was delayed and transient compared to that in Jurkat T cells. Activation of Raf-1 and MEK-1 was coincident with Erk activation. Remarkably, the time course of Ras activation was comparable in the two cell lines, despite proceeding in the absence of LAT tyrosine phosphorylation in the P116 cells. CD3 stimulation of P116 cells also induced tyrosine phosphorylation of phospholipase C-gamma1 (PLCgamma1) and increased the intracellular Ca(2+) concentration. Protein kinase C (PKC) inhibitors blocked CD3-stimulated Erk activation in P116 cells, while parental Jurkat cells were refractory to PKC inhibition. The physiologic relevance of these signaling events is further supported by the finding of PLCgamma1 tyrosine phosphorylation, Erk activation, and CD69 upregulation in P116 cells on stimulation with superantigen and antigen-presenting cells. These results demonstrate the existence of two pathways leading to TCR-stimulated Erk activation in Jurkat T cells: a ZAP-70-independent pathway requiring PKC and a ZAP-70-dependent pathway that is PKC independent.
Collapse
Affiliation(s)
- X Shan
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224-6825, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Hsp90 is an ATP dependent molecular chaperone involved in the folding and activation of an unknown number of substrate proteins. These substrate proteins include protein kinases and transcription factors. Consistent with this task, Hsp90 is an essential protein in all eucaryotes. The interaction of Hsp90 with its substrate proteins involves the transient formation of multiprotein complexes with a set of highly conserved partner proteins. The specific function of each component in the processing of substrates is still unknown. Large ATP-dependent conformational changes of Hsp90 occur during the hydrolysis reaction and these changes are thought to drive the chaperone cycle. Natural inhibitors of the ATPase activity, like geldanamycin and radicicol, block the processing of Hsp90 substrate proteins. As many of these substrates are critical elements in signal transduction, Hsp90 seems to introduce an additional level of regulation.
Collapse
Affiliation(s)
- K Richter
- Institut für Organische Chemie und Biochemie, Technische Universität München, Garching, Germany
| | | |
Collapse
|
34
|
Affiliation(s)
- A J Bridges
- Pfizer Global Research and Development, Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA.
| |
Collapse
|
35
|
Rice VM, Chaudhery AR, Oluola O, Limback SD, Roby KF, Terranova PF. Herbimycin, a tyrosine kinase inhibitor with Src selectivity, reduces progesterone and estradiol secretion by human granulosa cells. Endocrine 2001; 15:271-6. [PMID: 11762698 DOI: 10.1385/endo:15:3:271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of the present study was to investigate whether the tyrosine kinase inhibitor herbimycin with some selectivity to block Src would alter the stimulatory effects of follicle-stimulating hormone (FSH) and cyclic adenosine monophosphate (cAMP) on estradiol secretion by human granulosa cells. Granulosa cells were taken from ovaries of premenopausal women undergoing oophorectomy for reasons unrelated to ovarian pathology. Granulosa cells from follicles ranging from 5-20 mm in diameter were subjected to culture. Granulosa cells were cultured with human FSH (2 ng/mL) or cAMP (0-1 mM) and testosterone (1 microM) in the presence and absence of herbimycin (0-2 pM). Media were collected at 24, 48, and 72 h. Accumulation of cAMP, progesterone, and estradiol in the media was determined by radioimmunoassay. Herbimycin dose dependently inhibited the ability of FSH to induce increases in progesterone and estradiol secretion. Although herbimycin increased (p < 0.0001) the accumulation of cAMP in response to FSH, this was evident only at the high concentrations of herbimycin (2 microM). To determine whether herbimycin would inhibit the ability of exogenous cAMP to induce estradiol and progesterone secretion, granulosa cells were incubated with 0-1 mM cAMP in the presence and absence of various doses of herbimycin. Herbimycin inhibited cAMP-induced estradiol and progesterone secretion in granulosa cells. The results from seven experiments indicate that herbimycin inhibits FSH stimulation of estradiol and progesterone secretion and that this inhibition may be, in part, at post-cAMP site(s).
Collapse
Affiliation(s)
- V M Rice
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, USA
| | | | | | | | | | | |
Collapse
|
36
|
Drummond MW, Holyoake TL. Tyrosine kinase inhibitors in the treatment of chronic myeloid leukaemia: so far so good? Blood Rev 2001; 15:85-95. [PMID: 11409908 DOI: 10.1054/blre.2001.0152] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chronic myeloid leukaemia (CML) is characterized by marked expansion of the myeloid series, and is thought to arise as a direct result of the bcr-abl fusion-gene. The BCR-ABL oncoprotein is a constitutively active protein tyrosine kinase (PTK), which results in altered cell signalling and is responsible for the changes that characterize the malignant cells of CML. It has been shown that the increased tyrosine kinase activity of BCR-ABL is a requirement for transformation and is, therefore, a legitimate target for pharmacological inhibition. Several compounds have now been identified as relatively selective inhibitors of BCR-ABL, including members of the tyrphostin family, herbimycin A and most importantly the 2-phenylaminopyrimidine ST1571. Having established the efficacy of this agent in vitro, phase I trials using an oral formulation were commenced in the USA in mid 1998. Early data from an interferon-alpha (IFN) resistant/refractory or intolerant cohort demonstrated good patient tolerance and effective haematological control at doses above 300 mg. More promising was its ability to induce cytogenetic responses in this pretreated group of patients. Phase II data, albeit far from complete, appear to confirm its efficacy even in the context of advanced disease and phase III clinical trials are currently underway in many countries. Recent laboratory evidence, however, suggests that the development of drug resistance is a possibility (via amplification of the bcr-abl fusion gene, overexpression of P-glycoprotein or binding of ST1571 to alpha1 acid glycoprotein) and that combination therapy including ST1571 should be considered.
Collapse
Affiliation(s)
- M W Drummond
- Academic Transfusion Medicine Unit, University Department of Medicine, Glasgow Royal Infirmary, Glasgow, UK.
| | | |
Collapse
|
37
|
Barrett P, Choi W, Morris M, Morgan P. A role for tyrosine phosphorylation in the regulation and sensitization of adenylate cyclase by melatonin. FASEB J 2000. [DOI: 10.1096/fj.99-0842com] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Perry Barrett
- Rowett Research InstituteBucksburnAberdeenAB21 9SBScotland
| | - Woo‐Sung Choi
- Rowett Research InstituteBucksburnAberdeenAB21 9SBScotland
| | - Marie Morris
- Rowett Research InstituteBucksburnAberdeenAB21 9SBScotland
| | - Peter Morgan
- Rowett Research InstituteBucksburnAberdeenAB21 9SBScotland
| |
Collapse
|
38
|
Zhao M, Kiyoi H, Yamamoto Y, Ito M, Towatari M, Omura S, Kitamura T, Ueda R, Saito H, Naoe T. In vivo treatment of mutant FLT3-transformed murine leukemia with a tyrosine kinase inhibitor. Leukemia 2000; 14:374-8. [PMID: 10720129 DOI: 10.1038/sj.leu.2401680] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Somatic mutation of the FLT3 gene, in which the juxtamembrane domain has an internal tandem duplication, is found in 20% of human acute myeloid leukemias and causes constitutive tyrosine phosphorylation of the products. In this study, we observed that the transfection of mutant FLT3 gene into an IL3-dependent murine cell line, 32D, abrogated the IL3-dependency. Subcutaneous injection of the transformed 32D cells caused leukemia in addition to subcutaneous tumors in C3H/HeJ mice. To develop a FLT3-targeted therapy, we examined tyrosine kinase inhibitors for in vitro growth suppression of the transformed 32D cells. A tyrosine kinase inhibitor, herbimycin A, remarkably inhibited the growth of the transformed 32D cells at 0.1 microM, at which concentration it was ineffective in parental 32D cells. Herbimycin A suppressed the constitutive tyrosine phosphorylation of the mutant FLT3 but not the phosphorylation of the ligand-stimulated wild-type FLT3. In mice transplanted with the transformed 32D cells, the administration of herbimycin A prolonged the latency of disease or completely prevented leukemia, depending on the number of cells inoculated and schedule of drug administration. These results suggest that mutant FLT3 is a promising target for tyrosine kinase inhibitors in the treatment of leukemia.
Collapse
Affiliation(s)
- M Zhao
- Department of Infectious Diseases, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
White MK, Strayer DS. Surfactant protein A regulates pulmonary surfactant secretion via activation of phosphatidylinositol 3-kinase in type II alveolar cells. Exp Cell Res 2000; 255:67-76. [PMID: 10666335 DOI: 10.1006/excr.1999.4764] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is secreted by the type II alveolar cells of the lung, and this secretion is induced by secretagogues of several types (e.g., ionomycin, phorbol esters, and terbutaline). Secretagogue-induced secretion is inhibited by surfactant-associated protein A (SP-A), which binds to a specific receptor (SPAR) on the surface of type II cells. The mechanism of SP-A-activated SPAR signaling is completely unknown. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 rescued surfactant secretion from inhibition by SP-A. In order to directly demonstrate a role for PI3K in SPAR signaling, PI3K activity was immunoprecipitated from type II cell extracts. PI3K activity increased rapidly after SP-A addition to type II cells. Since many receptors that activate PI3K do so through tyrosine-specific protein phosphorylation, antisera to phosphotyrosine, insulin-receptor substrate-1 (IRS-1), or SPAR were also examined. These antisera coimmunoprecipitated PI3K activity that was stimulated by SP-A. In addition, the tyrosine-specific protein kinase inhibitors genistein and herbimycin A blocked the action of SP-A on surfactant secretion. We conclude that SP-A signals to regulate surfactant secretion through SPAR, via pathways that involve tyrosine phosphorylation, include IRS-1, and entail activation of PI3K. This activation leads to inhibition of secretagogue-induced secretion of pulmonary surfactant.
Collapse
Affiliation(s)
- M K White
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
40
|
Davis MA, Carbott DE. Herbimycin A and geldanamycin inhibit okadaic acid-induced apoptosis and p38 activation in NRK-52E renal epithelial cells. Toxicol Appl Pharmacol 1999; 161:59-74. [PMID: 10558924 DOI: 10.1006/taap.1999.8765] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is important to understand the mechanisms by which phosphorylation-dependent events play a role in regulation of apoptosis in toxicant-metabolizing organs such as the kidney. Our previous work demonstrated that the toxicant and phosphatase inhibitor okadaic acid induces apoptosis of renal epithelial cells via a mechanism that appears to involve the modulation of c-raf-1, p38 kinase, and extracellular regulatory kinase (ERK) cascades. Using the benzoquinone ansamycins and tyrosine kinase inhibitors geldanamycin and herbimycin A, we examined the contribution of tyrosine phosphorylation and c-raf-1 activities to okadaic acid-induced apoptosis. In this report we show that both geldanamycin and herbimycin A protected NRK-52E cells from okadaic acid-induced apoptosis, abrogated the overall okadaic acid-induced kinase activation, and specifically inhibited activation of p38 kinase by okadaic acid. Herbimycin A and geldanamycin also abrogated okadaic-acid induced morphologic changes such as cell rounding and cell membrane blebbing. Herbimycin A and geldanamycin caused pronounced cell spreading, cell flattening, and a decrease in okadaic acid-induced loss of actin filaments. Interestingly, herbimycin A showed more potent inhibitory effect than geldanamycin, and herbimycin A alone inhibited okadaic acid-induced movement of p38 kinase into the cytosol. These results imply that decreased p38 activity and its cytosolic translocation together with cellular resistance to cytoskeletal disorganization may play a significant role in resistance to phosphorylation-dependent apoptosis. Furthermore, the results imply that changes in cell shape may partially modulate the observed alterations in signal transduction induced by okadaic acid.
Collapse
Affiliation(s)
- M A Davis
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | | |
Collapse
|
41
|
Lee KH, Lee SH, Kim D, Rhee S, Kim C, Chung CH, Kwon H, Kang MS. Promotion of skeletal muscle differentiation by K252a with tyrosine phosphorylation of focal adhesion: a possible involvement of small GTPase Rho. Exp Cell Res 1999; 252:401-15. [PMID: 10527630 DOI: 10.1006/excr.1999.4648] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K252a, a protein kinase inhibitor, acts as a neurotrophic factor in several neuronal cells. In this study we show that K252a enhanced the differentiation of C2C12 myoblasts as well as tyrosine phosphorylation of several focal adhesion-associated proteins including p130(Cas), focal adhesion kinase, and paxillin. The tyrosine phosphorylation of these proteins, reaching a maximum at 30 min after K252a treatment, closely correlated with the colocalization of these proteins in focal adhesion complexes and the coimmunoprecipitation of these proteins with p130(Cas). In addition, K252a stimulated longitudinal development of stress fiber-like structures and cell-matrix interaction in postmitotic myoblasts and eventually formation of well-developed myofibrils in multinucleated myotubes. Herbimycin A, a potent inhibitor of Src family kinases, and cytochalasin D, a selective disrupting-agent of actin filament, completely inhibited K252a-induced tyrosine phosphorylation as well as myoblast differentiation. Similar inhibitory effect was observed in the cells scrape loaded with a Rho inhibitor, C3 transferase, and the treatment of K252a induced a rapid translocation of Rho. These results are consistent with the model that Rho-dependent tyrosine phosphorylation of focal adhesion-associated proteins plays an important role in skeletal muscle differentiation.
Collapse
Affiliation(s)
- K H Lee
- Department of Molecular Biology, Research Center for Cell Differentiation, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yakisich JS, Sidén A, Vargas VI, Eneroth P, Cruz M. Early effects of protein kinase modulators on DNA synthesis in rat cerebral cortex. Exp Neurol 1999; 159:164-76. [PMID: 10486185 DOI: 10.1006/exnr.1999.7121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By using tissue miniunits, protein kinase modulators, and topoisomerase inhibitors in short-term incubation (0-90 min) we studied (1) the role of protein phosphorylation in the immediate control of DNA replication in the developing rat cerebral cortex and (2) the mechanism of action for genistein-mediated DNA synthesis inhibition. Genistein decreased the DNA synthesis within less than 30 min. None of the other protein kinase inhibitors examined (herbimycin A, staurosporine, calphostin-C) or the protein phosphatase inhibitor sodium orthovanadate inhibited DNA synthesis and they did not affect the genistein-mediated inhibition. The selective topoisomerase inhibitors camptothecin and etoposide decreased the DNA synthesis to an extent similar to that of genistein and within less than 30 min. In addition, the effects of these substances on topoisomerase I and II were studied. Etoposide and genistein but not herbimycin A, staurosporine, or calphostin-C strongly inhibited the activity of topoisomerase II. Our results (1) strongly suggest that the net rate of DNA replication during the S phase of the cell cycle is independent of protein phosphorylation and (2) indicate that the early inhibitory effect of genistein on DNA synthesis is mediated by topoisomerase II inhibition rather than protein tyrosine kinase inhibition.
Collapse
Affiliation(s)
- J S Yakisich
- Applied Biochemistry, Clinical Research Center, Karolinska Institute, Novum, Huddinge University Hospital, Huddinge, S-141 86, Sweden
| | | | | | | | | |
Collapse
|
43
|
Sairenji T, Ohnishi E, Inouye S, Kurata T. Induction of interleukin-10 on activation of Epstein-Barr virus in EBV-infected B-cell lines. Viral Immunol 1999; 11:221-31. [PMID: 10189189 DOI: 10.1089/vim.1998.11.221] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human (h) interleukin-10 (IL-10) exhibits a strong DNA and amino acid sequence homology to the Epstein-Barr virus (EBV) BCRF1 genome, viral (v) IL-10. We analyzed the production of IL-10 for EBV activation in B-cell lines. The latent EBV in Akata cells was activated by the cross-linking of surface immunoglobulin G (IgG) with anti-human IgG. The levels of IL-10(h+v) and vIL-10 in the culture fluids were measured by a specific enzyme-linked immunosorbent assay (ELISA). IL-10(h+v) was detected at the same time for EBV immediate early gene BZLF1 product ZEBRA and early gene BMRF1 product EA-D. This was more than 4 hours prior to the appearance of vIL-10, and late gene products gp 350/220 and viral capsid antigen. The induction of hIL-10 and vIL-10 mRNAs were detected in anti-IgG-treated Akata cells by reverse transcription-polymerase chain reaction. The induction of IL-10(h+v) and vIL-10 was inhibited with a tyrosine kinase inhibitor, herbimycin, or with an inhibitor of herpesvirus DNA polymerase, phosphonoacetic acid, or acyclovir. IL-10(h+v) and vIL-10 were also detected in the supernatants of Akata and Daudi but not Ramos cells infected with P3HR-1 EBV. These results show the IL-10 induction on EBV activation in EBV-carrying B-cell lines.
Collapse
Affiliation(s)
- T Sairenji
- Department of Biosignaling, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | |
Collapse
|
44
|
Morano KA, Santoro N, Koch KA, Thiele DJ. A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress. Mol Cell Biol 1999; 19:402-11. [PMID: 9858564 PMCID: PMC83898 DOI: 10.1128/mcb.19.1.402] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/1998] [Accepted: 10/06/1998] [Indexed: 11/20/2022] Open
Abstract
Gene expression in response to heat shock is mediated by the heat shock transcription factor (HSF), which in yeast harbors both amino- and carboxyl-terminal transcriptional activation domains. Yeast cells bearing a truncated form of HSF in which the carboxyl-terminal transcriptional activation domain has been deleted [HSF(1-583)] are temperature sensitive for growth at 37 degreesC, demonstrating a requirement for this domain for sustained viability during thermal stress. Here we demonstrate that HSF(1-583) cells undergo reversible cell cycle arrest at 37 degreesC in the G2/M phase of the cell cycle and exhibit marked reduction in levels of the molecular chaperone Hsp90. As in higher eukaryotes, yeast possesses two nearly identical isoforms of Hsp90: one constitutively expressed and one highly heat inducible. When expressed at physiological levels in HSF(1-583) cells, the inducible Hsp90 isoform encoded by HSP82 more efficiently suppressed the temperature sensitivity of this strain than the constitutively expressed gene HSC82, suggesting that different functional roles may exist for these chaperones. Consistent with a defect in Hsp90 production, HSF(1-583) cells also exhibited hypersensitivity to the Hsp90-binding ansamycin antibiotic geldanamycin. Depletion of Hsp90 from yeast cells wild type for HSF results in cell cycle arrest in both G1/S and G2/M phases, suggesting a complex requirement for chaperone function in mitotic division during stress.
Collapse
Affiliation(s)
- K A Morano
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | |
Collapse
|
45
|
Muise-Helmericks RC, Grimes HL, Bellacosa A, Malstrom SE, Tsichlis PN, Rosen N. Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 1998; 273:29864-72. [PMID: 9792703 DOI: 10.1074/jbc.273.45.29864] [Citation(s) in RCA: 373] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin D expression is regulated by growth factors and is necessary for the induction of mitogenesis. Herbimycin A, a drug that binds to Hsp90, induces the destruction of tyrosine kinases and causes the down-regulation of cyclin D and an Rb-dependent growth arrest in the G1 phase of the cell cycle. We find that the induction of D-cyclin expression by serum and its repression by herbimycin A are regulated at the level of mRNA translation. Induction of cyclin D by serum occurs prior to the induction of its mRNA and does not require transcription. Herbimycin A repression is characterized by a decrease in the synthetic rate of D-cyclins prior to changes in mRNA expression and in the absence of changes in the half-life of the protein. This effect on D-cyclin translation is mediated via a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. PI 3-kinase inhibitors such as wortmannin and LY294002, and rapamycin, an inhibitor of FRAP/TOR, cause a decline in the level of D-cyclins, whereas inhibitors of mitogen-activated protein kinase kinase and farnesyltransferase do not. Cells expressing the activated, myristoylated form of Akt kinase, a target of PI 3-kinase, are refractory to the effects of herbimycin A or serum starvation on D-cyclin expression. These data suggest that serum induction of cyclin D expression results from enhanced translation of its mRNA and that this results from activation of a pathway that is dependent upon PI 3-kinase and Akt kinase.
Collapse
Affiliation(s)
- R C Muise-Helmericks
- Program in Cell Biology and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
46
|
Fukuda K, Kawata S, Tamura S, Matsuda Y, Inui Y, Igura T, Inoue S, Kudara T, Matsuzawa Y. Altered regulation of Src tyrosine kinase by transforming growth factor beta1 in a human hepatoma cell line. Hepatology 1998; 28:796-804. [PMID: 9731575 DOI: 10.1002/hep.510280329] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transforming growth factor betas (TGF-betas) are the potent growth inhibitors for various cell types. Certain transformed cells, however, show poor response to TGF-beta-induced growth inhibition, which contributes to their uncontrolled proliferation. Recently, we have reported that TGF-beta1 induces degradation of activated Src tyrosine kinase in rat fibroblasts. To elucidate the alteration in TGF-beta signaling pathway in tumor cells that cannot respond to the cytokine, we compared the effects of TGF-beta1 on Src kinase in two human hepatoma cell lines, TGF-beta1-insensitive Mahlavu cells and TGF-beta1-sensitive HepG2 cells. TGF-beta1 decreased Src kinase activity in HepG2 cells, but increased cellular Src levels and Src kinase activity in Mahlavu cells. Co-incubation of Mahlavu cells with TGF-beta1 and 12-O-tetradecanoyl phorbol 13-acetate (TPA) decreased Src protein levels and Src kinase activity, inducing TGF-beta1 sensitivity. TGF-beta1 induced tyrosine dephosphorylation of Ras guanosine triphosphatase-activating protein (Ras-GAP) and Ras inactivation in HepG2 cells, but induced Ras-GAP phosphorylation and Ras activation in Mahlavu cells. The Src kinase inhibitor abolished the increase of Src kinase activity in TGF-beta1-treated Mahlavu cells, and induced TGF-beta1 sensitivity. These findings suggest that regulation of Src kinase by TGF-beta1 is altered in Mahlavu cells. The altered regulation of Src may contribute to TGF-beta1 insensitivity in this cell line, at least in part through activation of Ras.
Collapse
Affiliation(s)
- K Fukuda
- Second Department of Internal Medicine, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Maeda N, Noda M. Involvement of receptor-like protein tyrosine phosphatase zeta/RPTPbeta and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration. J Cell Biol 1998; 142:203-16. [PMID: 9660874 PMCID: PMC2133018 DOI: 10.1083/jcb.142.1.203] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) is a specific ligand of protein tyrosine phosphatase zeta (PTPzeta)/receptor-like protein tyrosine phosphatase beta (RPTPbeta) expressed in the brain as a chondroitin sulfate proteoglycan. Pleiotrophin and PTPzeta isoforms are localized along the radial glial fibers, a scaffold for neuronal migration, suggesting that these molecules are involved in migratory processes of neurons during brain development. In this study, we examined the roles of pleiotrophin-PTPzeta interaction in the neuronal migration using cell migration assay systems with glass fibers and Boyden chambers. Pleiotrophin and poly-L-lysine coated on the substratums stimulated cell migration of cortical neurons, while laminin, fibronectin, and tenascin exerted almost no effect. Pleiotrophin-induced and poly-L-lysine-induced neuronal migrations showed significant differences in sensitivity to various molecules and reagents. Polyclonal antibodies against the extracellular domain of PTPzeta, PTPzeta-S, an extracellular secreted form of PTPzeta, and sodium vanadate, a protein tyrosine phosphatase inhibitor, added into the culture medium strongly suppressed specifically the pleiotrophin-induced neuronal migration. Furthermore, chondroitin sulfate C but not chondroitin sulfate A inhibited pleiotrophin-induced neuronal migration, in good accordance with our previous findings that chondroitin sulfate constitutes a part of the pleiotrophin-binding site of PTPzeta, and PTPzeta-pleiotrophin binding is inhibited by chondroitin sulfate C but not by chondroitin sulfate A. Immunocytochemical analysis indicated that the transmembrane forms of PTPzeta are expressed on the migrating neurons especially at the lamellipodia along the leading processes. These results suggest that PTPzeta is involved in the neuronal migration as a neuronal receptor of pleiotrophin distributed along radial glial fibers.
Collapse
Affiliation(s)
- N Maeda
- Division of Molecular Neurobiology, National Institute for Basic Biology, and Department of Molecular Biomechanics, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | | |
Collapse
|
48
|
Affiliation(s)
- U Gehring
- Institut für Biologische Chemie, Universität Heidelberg, Germany
| |
Collapse
|
49
|
Mancini M, Sedghinasab M, Knowlton K, Tam A, Hockenbery D, Anderson BO. Flow cytometric measurement of mitochondrial mass and function: a novel method for assessing chemoresistance. Ann Surg Oncol 1998; 5:287-95. [PMID: 9607633 DOI: 10.1007/bf02303787] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chemotherapeutic agents induce apoptosis in cancer cells. Drugs failing to induce apoptosis are likely to have decreased clinical efficacy. We hypothesize that (1) chemotherapeutic agents induce mitochondrial changes and apoptosis through mechanisms associated with reactive oxidant species production; (2) the anti-apoptotic protein Bcl-2 prevents drug-induced mitochondrial changes, reactive oxygen species (ROS) production, and apoptosis; and (3) the assay of drug-induced mitochondrial changes can reflect drug-specific chemoresistance in a given cancer cell line. METHODS A stable Bcl-2 transfectant of the Bcl-2 negative breast cancer cell line SKBr3 was created (SKBr3/Bcl2-2). Both SKBr3 and SKBr3/Bcl2-2 cells were treated with Herbimycin A (300 ng/mL) or vehicle (1% DMSO). Cell cycle changes were assessed by BRDU staining. Apoptosis was determined by electron microscopy, TUNEL (TdT-mediated dUTP-biotin nick end labeling) staining, and diphenylamine assay of DNA fragmentation. Changes in mitochondrial mass and transmembrane potential (deltapsi(m)) were assessed by flow cytometric assessment of JC-1 fluorescence. Reactive oxygen species production was measured by 2',7'-dichlorodihydrofluorescein diacetate (DCFH) fluorescence. RESULTS Both SKBr3 and SKBr3/Bcl2-2 cells show cell cycle arrest after Herbimycin treatment. However, SKBr3 cells, but not SKBr3/Bcl2-2 cells, undergo apoptosis. Herbimycin-treated SKBr3 cells show increased mitochondrial mass (JC-1 green fluorescence), with no corresponding increase in deltapsi(m) (JC-1 red fluorescence). By contrast, Herbimycin-treated SKBr3/Bcl2-2 cells show no change in mitochondrial mass or deltapsi(m). Similarly, drug-treated SKBr3 cells, but not SKBr3/Bcl2-2 cells, demonstrate increased reactive oxygen species (ROS) production concomitant with the development of apoptosis. CONCLUSION SKBr3 cells undergoing apoptosis demonstrate mitochondrial changes associated with ROS production. Bcl-2 transfection prevents these changes because it prevents apoptosis and induces chemoresistance to Herbimycin in SKBr3. Flow cytometric measurement of drug induced mitochondrial changes and ROS production may facilitate in vitro assessment of chemosensitivity or chemoresistance in breast cancer.
Collapse
Affiliation(s)
- M Mancini
- Department of Surgery, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
50
|
The Cytoplasmic Domain of Stem Cell Antigen CD34 Is Essential for Cytoadhesion Signaling But Not Sufficient for Proliferation Signaling. Blood 1998. [DOI: 10.1182/blood.v91.4.1152] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractCD34 is widely used as a marker in the identification and purification of human hematopoietic stem and progenitor cells; however, its function within hematopoiesis is largely unknown. We have investigated the contribution of cytoplasmic domain of CD34 in cytoadhesion signaling and proliferation signaling in hematopoietic cells. Engagement of particular determinants of CD34 by monoclonal antibodies leads to homotypic adhesiveness of the full-length CD34-transfected BaF3 cells. However, this homotypic adhesiveness is abrogated in BaF3 cells transfected with the truncated CD34 lacking the cytoplasmic domain. Cytoadhesion signaling through the cytoplasmic domain of CD34 cannot be restored through that of erythropoietin receptor (EPOR) or granulocyte colony-stimulating factor receptor (G-CSFR), suggesting that the cytoplasmic domain of CD34 is required for its signal transduction of cellular adhesion. In constrast, we show that replacing the cytoplasmic domain of EPOR or G-CSFR with that of CD34 abolished growth signal transduction in response to EPO or G-CSF in the chimeric receptor-transfected BaF3, 32D, and FDCP1 cells, whereas the wild-type EPOR- or G-CSFR-transfected cells responded to EPO or G-CSF growth signaling well. These results suggest that the cytoplasmic portion of CD34 may not contain the elements necessary to transduce a proliferative signal in hematopoietic cells. Thus, the function of CD34 in hematopoiesis is primarily on hematopoietic cell adhesion.
Collapse
|