1
|
Boldogkői Z, Balázs Z, Moldován N, Prazsák I, Tombácz D. Novel classes of replication-associated transcripts discovered in viruses. RNA Biol 2019; 16:166-175. [PMID: 30608222 PMCID: PMC6380287 DOI: 10.1080/15476286.2018.1564468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The role of RNA molecules in the priming of DNA replication and in providing a template for telomerase extension has been known for decades. Since then, several transcripts have been discovered, which play diverse roles in governing replication, including regulation of RNA primer formation, the recruitment of replication origin (Ori) recognition complex, and the assembly of replication fork. Recent studies on viral transcriptomes have revealed novel classes of replication-associated (ra)RNAs, which are expressed from the genomic locations in close vicinity to the Ori. Many of them overlap the Ori, whereas others are terminated close to the replication origin. These novel transcripts can be both protein-coding and non-coding RNAs. The Ori-overlapping part of the mRNAs is generally either the 5ʹ-untranslated regions (UTRs), or the 3ʹ-UTRs of the longer isoforms. Several raRNAs have been identified in various viral families using primarily third-generation long-read sequencing. Hyper-editing of these transcripts has also been described.
Collapse
Affiliation(s)
- Zsolt Boldogkői
- a Department of Medical Biology, Faculty of Medicine , University of Szeged , Szeged , Hungary
| | - Zsolt Balázs
- a Department of Medical Biology, Faculty of Medicine , University of Szeged , Szeged , Hungary
| | - Norbert Moldován
- a Department of Medical Biology, Faculty of Medicine , University of Szeged , Szeged , Hungary
| | - István Prazsák
- a Department of Medical Biology, Faculty of Medicine , University of Szeged , Szeged , Hungary
| | - Dóra Tombácz
- a Department of Medical Biology, Faculty of Medicine , University of Szeged , Szeged , Hungary
| |
Collapse
|
2
|
Kay NE, Bainbridge TW, Condit RC, Bubb MR, Judd RE, Venkatakrishnan B, McKenna R, D'Costa SM. Biochemical and biophysical properties of a putative hub protein expressed by vaccinia virus. J Biol Chem 2013; 288:11470-81. [PMID: 23476017 DOI: 10.1074/jbc.m112.442012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
H5 is a constitutively expressed, phosphorylated vaccinia virus protein that has been implicated in viral DNA replication, post-replicative gene expression, and virus assembly. For the purpose of understanding the role of H5 in vaccinia biology, we have characterized its biochemical and biophysical properties. Previously, we have demonstrated that H5 is associated with an endoribonucleolytic activity. In this study, we have shown that this cleavage results in a 3'-OH end suitable for polyadenylation of the nascent transcript, corroborating a role for H5 in vaccinia transcription termination. Furthermore, we have shown that H5 is intrinsically disordered, with an elongated rod-shaped structure that preferentially binds double-stranded nucleic acids in a sequence nonspecific manner. The dynamic phosphorylation status of H5 influences this structure and has implications for the role of H5 in multiple processes during virus replication.
Collapse
Affiliation(s)
- Nicole E Kay
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Yang Z, Martens CA, Bruno DP, Porcella SF, Moss B. Pervasive initiation and 3'-end formation of poxvirus postreplicative RNAs. J Biol Chem 2012; 287:31050-60. [PMID: 22829601 DOI: 10.1074/jbc.m112.390054] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poxviruses are large DNA viruses that replicate within the cytoplasm and encode a complete transcription system, including a multisubunit RNA polymerase, stage-specific transcription factors, capping and methylating enzymes, and a poly(A) polymerase. Expression of the more than 200 open reading frames by vaccinia virus, the prototype poxvirus, is temporally regulated: early mRNAs are synthesized immediately after infection, whereas intermediate and late mRNAs are synthesized following genome replication. The postreplicative transcripts are heterogeneous in length and overlap the entire genome, which pose obstacles for high resolution mapping. We used tag-based methods in conjunction with high throughput cDNA sequencing to determine the precise 5'-capped and 3'-polyadenylated ends of postreplicative RNAs. Polymerase slippage during initiation of intermediate and late RNA synthesis results in a 5'-poly(A) leader that allowed the unambiguous identification of true transcription start sites. Ninety RNA start sites were located just upstream of intermediate and late open reading frames, but many more appeared anomalous, occurring within coding and non-coding regions, indicating pervasive transcription initiation. We confirmed the presence of functional promoter sequences upstream of representative anomalous start sites and demonstrated that alternative start sites within open reading frames could generate truncated isoforms of proteins. In an analogous manner, poly(A) sequences allowed accurate mapping of the numerous 3'-ends of postreplicative RNAs, which were preceded by a pyrimidine-rich sequence in the DNA coding strand. The distribution of postreplicative promoter sequences throughout the genome provides enormous transcriptional complexity, and the large number of previously unmapped RNAs may have novel functions.
Collapse
Affiliation(s)
- Zhilong Yang
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3210, USA
| | | | | | | | | |
Collapse
|
4
|
D'Costa SM, Bainbridge TW, Condit RC. Purification and properties of the vaccinia virus mRNA processing factor. J Biol Chem 2007; 283:5267-75. [PMID: 18089571 DOI: 10.1074/jbc.m709258200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mRNAs encoding the vaccinia virus F17 protein and the cowpox A-type inclusion protein are known to possess sequence-homogeneous 3' ends, generated by a post-transcriptional cleavage event. By using partially purified extracts, we have previously shown that the same factor probably cleaves both the F17 and A-type inclusion protein transcripts and that the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. In this study, we have purified the cleavage factor from vaccinia-infected HeLa cells using column chromatography and gel filtration. The factor eluted from the gel filtration column with an apparent molecular mass of approximately 440 kDa. Mass spectrometric analyses of the proteins present in the peak active fractions revealed the presence of at least one vaccinia protein with a high degree of certainty, the H5R gene product. To extend this finding, extracts were prepared from HeLa cells infected with vaccinia virus overexpressing His-tagged H5, chromatographed on a nickel affinity column, and eluted using an imidazole gradient. Cleavage activity eluted with the peak of His-tagged H5. Gel filtration of the affinity-purified material further demonstrated that cleavage activity and His-tagged H5 co-chromatographed with an apparent molecular mass of 463 kDa. We therefore conclude that H5 is specifically associated with post-transcriptional cleavage of F17R transcripts. In addition, we show that dephosphorylation of a cleavage competent extract with a nonspecific phosphatase abolishes cleavage activity implying a role for phosphorylation in cleavage activity.
Collapse
Affiliation(s)
- Susan M D'Costa
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA.
| | | | | |
Collapse
|
5
|
D'Costa SM, Antczak JB, Pickup DJ, Condit RC. Post-transcription cleavage generates the 3' end of F17R transcripts in vaccinia virus. Virology 2004; 319:1-11. [PMID: 14967483 DOI: 10.1016/j.virol.2003.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 09/16/2003] [Accepted: 09/25/2003] [Indexed: 10/26/2022]
Abstract
Most vaccinia virus intermediate and late mRNAs possess 3' ends that are extremely heterogeneous in sequence. However, late mRNAs encoding the cowpox A-type inclusion protein (ATI), the second largest subunit of the RNA polymerase, and the late telomeric transcripts possess homogeneous 3' ends. In the case of the ATI mRNA, it has been shown that the homogeneous 3' end is generated by a post-transcriptional endoribonucleolytic cleavage event. We have determined that the F17R gene also produces homogeneous transcripts generated by a post-transcriptional cleavage event. Mapping of in vivo mRNA shows that the major 3' end of the F17R transcript maps 1262 nt downstream of the F17R translational start site. In vitro transcripts spanning the in vivo 3' end are cleaved in an in vitro reaction using extracts from virus infected cells, and the site of cleavage is the same both in vivo and in vitro. Cleavage is not observed using extract from cells infected in the presence of hydroxyurea; therefore, the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. The cis-acting sequence responsible for cleavage is orientation specific and the factor responsible for cleavage activity has biochemical properties similar to the factor required for cleavage of ATI transcripts. Partially purified cleavage factor generates cleavage products of expected size when either the ATI or F17R substrates are used in vitro, strongly suggesting that cleavage of both transcripts is mediated by the same factor.
Collapse
Affiliation(s)
- Susan M D'Costa
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266, USA.
| | | | | | | |
Collapse
|
6
|
Guo P. Structure and function of phi29 hexameric RNA that drives the viral DNA packaging motor: review. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:415-72. [PMID: 12206459 DOI: 10.1016/s0079-6603(02)72076-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One notable feature of linear dsDNA viruses is that, during replication, their lengthy genome is squeezed with remarkable velocity into a preformed procapsid and packed into near crystalline density. A molecular motor using ATP as energy accomplishes this energetically unfavorable motion tack. In bacterial virus phi29, an RNA (pRNA) molecule is a vital component of this motor. This 120-base RNA has many novel and distinctive features. It contains strong secondary structure, is tightly folded, and unusually stable. Upon interaction with ion and proteins, it has a knack to adapt numerous conformations to perform versatile function. It can be easily manipulated to form stable homologous monomers, dimers, trimers and hexamers. As a result, many unknown properties of RNA have been and will be unfolded by the study of this extraordinary molecule. This article reviews the structure and function of this pRNA and focuses on novel methods and unique approaches that lead to the illumination of its structure and function.
Collapse
Affiliation(s)
- Peixuan Guo
- Department of Pathobiology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
7
|
Condit RC, Niles EG. Regulation of viral transcription elongation and termination during vaccinia virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:325-36. [PMID: 12213661 DOI: 10.1016/s0167-4781(02)00461-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccinia virus provides a useful genetic and biochemical tool for studies of the basic mechanisms of eukaryotic transcription. Vaccinia genes are transcribed in three successive gene classes during infection, early, intermediate, and late. Vaccinia transcription is regulated primarily by virus gene products not only during initiation, but also during elongation and termination. The factors and mechanisms regulating early elongation and termination differ from those regulating intermediate and late gene expression. Control of transcription elongation and termination in vaccinia virus bears some similarity to the same process in other prokaryotic and eukaryotic systems, yet features some novel mechanisms as well.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
8
|
Howard ST, Ray CA, Patel DD, Antczak JB, Pickup DJ. A 43-nucleotide RNA cis-acting element governs the site-specific formation of the 3' end of a poxvirus late mRNA. Virology 1999; 255:190-204. [PMID: 10049834 DOI: 10.1006/viro.1998.9547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 3' ends of late mRNAs of the ati gene, encoding the major component of the A-type inclusions, are generated by endoribonucleolytic cleavage at a specific site in the primary transcript [Antczak et al., (1992), Proc. Natl. Acad. Sci. USA 89, 12033-12037]. In this study, sequence analysis of cDNAs of the 3' ends of ati mRNAs showed these mRNAs are 3' polyadenylated at the RNA cleavage site. This suggests that ati mRNA 3' end formation involves cleavage of a late transcript, with subsequent 3' polyadenylation of the 5' cleavage product. The RNA cis-acting element, the AX element, directing orientation-dependent formation of these mRNA 3' ends, was mapped to a 345-bp AluI-XbaI fragment. Deletion analyses of this fragment showed that the boundaries of the AX element are within -5 and +38 of the RNA cleavage site. Scanning mutagenesis showed that the AX element contains at least two subelements: subelement I, 5'-UUUAU downward arrowCCGAUAAUUC-3', containing the cleavage site ( downward arrow), separated from the downstream subelement II, 5'-AAUUUCGGAUUUGAAUGC-3', by a 10-nucleotide region, whose composition may be altered without effect on RNA 3' end formation. These features, which differ from those of other elements controlling RNA processing, suggest that the AX element is a component of a novel mechanism of RNA 3' end formation.
Collapse
Affiliation(s)
- S T Howard
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
9
|
Hassett DE, Lewis JI, Xing X, DeLange L, Condit RC. Analysis of a temperature-sensitive vaccinia virus mutant in the viral mRNA capping enzyme isolated by clustered charge-to-alanine mutagenesis and transient dominant selection. Virology 1997; 238:391-409. [PMID: 9400612 DOI: 10.1006/viro.1997.8820] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously reported the successful development of a targeted genetic method for the creation of temperature-sensitive vaccinia virus mutants [D. E. Hassett and R. C. Condit (1994) Proc. Natl. Acad. Sci. USA 91, 4554-4558]. This method has now been applied to the large subunit of the multifunctional vaccinia virus capping enzyme, encoded by gene D1R. Ten clustered charge-to-alanine mutations were created in a cloned copy of D1R. Four of these mutations were successfully transferred into the viral genome using transient dominant selection, and each of these four mutations yielded viruses with plaque phenotypes different from that of wild-type virus. Two of the mutant viruses, 516 and 793, were temperature sensitive in a plaque assay. Mutant 793 was also temperature sensitive in a one-step growth experiment. Phenotypic characterization of the 793 virus under both permissive and nonpermissive conditions revealed nearly normal patterns of viral protein and mRNA synthesis. Under nonpermissive conditions the 793 virus was defective in telomere resolution and blocked at an intermediate stage of viral morphogenesis. In vitro assays of various capping enzyme activities revealed that in permeabilized virions, enzyme guanylylate intermediate formation was reduced and methyltransferase activity was thermolabile, while in solubilized virion extracts enzyme guanylylate activity was reduced and both guanylyltransferase and methyltransferase activities were absent. Thus, the 793 mutation affects at least two separate enzymatic activities of the capping enzyme, guanylyltransferase and methyltransferase, and when incorporated into the virus genome, the mutation yields a virus that is temperature sensitive for growth, telomere resolution, and virion morphogenesis.
Collapse
Affiliation(s)
- D E Hassett
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
10
|
Chen C, Guo P. Magnesium-induced conformational change of packaging RNA for procapsid recognition and binding during phage phi29 DNA encapsidation. J Virol 1997; 71:495-500. [PMID: 8985376 PMCID: PMC191077 DOI: 10.1128/jvi.71.1.495-500.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteriophage phi29 is typical of double-stranded DNA viruses in that its genome is packaged into a preformed procapsid during maturation. An intriguing feature of phi29 assembly is that a virus-encoded RNA (pRNA) is required for the packaging of its genomic DNA. Psoralen cross-linking, primer extension, and T1 RNase partial digestion revealed that pRNA had at least two conformations; one was able to bind procapsids, and the other was not. In the presence of Mg2+, one stretch of pRNA, consisting of bases 31 to 35, was confirmed to be proximal to base 69, as revealed by its efficient cross-linking by psoralen. Two cross-linking sites in the helical region were identified. Mg2+ induced a conformational change of pRNA that exposes the portal protein binding site by promoting the refolding of two strands of the procapsid binding region, resulting in the formation of pRNA-procapsid complexes. The procapsid binding region in this binding-competent conformation could not be cross-linked with psoralen. When the two strands of the procapsid binding region were fastened by cross-linking, pRNA could neither bind procapsids nor package phi29 DNA. A pRNA conformational change was also discernible by comparison of migration rates in native EDTA and Mg2+ polyacrylamide gel electrophoresis and was revealed by T1 RNase probing. The Mg2+ concentration required for the detection of a change in pRNA cross-linking patterns was 1 mM, which was the same as that required for pRNA-procapsid complex formation and DNA packaging and was also close to that in normal host cells.
Collapse
Affiliation(s)
- C Chen
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
11
|
Du S, Traktman P. Vaccinia virus DNA replication: two hundred base pairs of telomeric sequence confer optimal replication efficiency on minichromosome templates. Proc Natl Acad Sci U S A 1996; 93:9693-8. [PMID: 8790393 PMCID: PMC38491 DOI: 10.1073/pnas.93.18.9693] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vaccinia virus is a complex DNA virus that exhibits significant genetic and physical autonomy from the host cell. Most if not all of the functions involved in replication and transcription of the 192-kb genome are virally encoded. Although significant progress has been made in identifying trans-acting factors involved in DNA synthesis, the mechanism of genome replication has remained poorly understood. The genome is a linear duplex with covalently closed hairpin termini, and it has been presumed that sequences and/or structures within these termini are important for the initiation of genome replication. In this report we describe the construction of minichromosomes containing a central plasmid insert flanked by hairpin termini derived from the viral genome and their use as replication templates. When replication of these minichromosomes was compared with a control substrate containing synthetic hairpin termini, specificity for viral telomeres was apparent. Inclusion of > or = 200 bp from the viral telomere was sufficient to confer optimal replication efficiency, whereas 65-bp telomeres were not effective. Chimeric 200-bp telomeres containing the 65-bp terminal element and 135 bp of ectopic sequence also failed to confer efficient replication, providing additional evidence that telomere function is sequence-specific. Replication of these exogenous templates was dependent upon the viral replication machinery, was temporally coincident with viral replication, and generated covalently closed minichromosome products. These data provide compelling evidence for specificity in template recognition and utilization in vaccinia virus-infected cells.
Collapse
Affiliation(s)
- S Du
- Graduate Program in Cell Biology and Genetics, Cornell University Graduate School of Medical Sciences, New York, NY, USA
| | | |
Collapse
|
12
|
Lu C, Bablanian R. Characterization of small nontranslated polyadenylylated RNAs in vaccinia virus-infected cells. Proc Natl Acad Sci U S A 1996; 93:2037-42. [PMID: 8700881 PMCID: PMC39905 DOI: 10.1073/pnas.93.5.2037] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Host protein synthesis is selectively inhibited in vaccinia virus-infected cells. This inhibition has been associated with the production of a group of small, nontranslated, polyadenylylated RNAs (POLADS) produced during the early part of virus infection. The inhibitory function of POLADS is associated with the poly(A) tail of these small RNAs. To determine the origin of the 5'-ends of POLADS, reverse transcription was performed with POLADS isolated from VV-infected cells at 1 hr and 3.5 hr post infection. The cDNAs of these POLADS were cloned into plasmids (pBS or pBluescript II KS +/-), and their nucleotide composition was determined by DNA sequencing. The results of this investigation show the following: There is no specific gene encoding for POLADS. The 5' ends of POLADS may be derived from either viral or cellular RNAs. Any RNA sequence including tRNAs, small nuclear RNAs and 5'ends of mRNAs can become POLADS if they acquire a poly(A) tail at their 3' ends during infection. This nonspecific polyadenylylation found in vaccinia virus-infected cells is probably conducted by vaccinia virus poly(A)+ polymerase. No consensus sequence is found on the 5' ends of POLADS for polyadenylylation. The 5' ends of POLADS have no direct role in their inhibitory activity of protein synthesis.
Collapse
Affiliation(s)
- C Lu
- Department of Microbiology and Immunology, State University of New York, Health Science Center at Brooklyn, NY 11203, USA
| | | |
Collapse
|
13
|
Abstract
We have examined the effects of transcription on recombination frequencies in poxvirus-infected cells. A synthetic poxviral promoter was shown to function as a hybrid early/late transcription element when fused to a luciferase reporter gene, and then cloned into genetically-marked recombination substrates. These lambda DNA substrates were transfected into cells infected with Shope fibroma virus (SFV) and the recombinants detected by recovering the transfected DNA, packaging it in vitro into infectious particles, and then assaying the yield of recombinants on Escherichia coli. Controls showed that the poxviral promoter conferred no replicative advantage, or disadvantage, on molecules encoding the promoter. Furthermore, the promoter had no detectable effect on the recombination frequency when recombination was measured in the interval immediately adjacent to the promoter-insertion site. However, the promoter did appear to stimulate recombination at a distance, in a manner that appeared to be dependent on the level of transcription, and the effect was observed regardless of whether or not the promoter was present on one or both of the recombinational substrates. The peak of recombinational enhancement was centered about 500 bp away from the promoter element, where the frequency of recombination was 30-50% higher than that seen when the recombinational substrates lacked the promoter. Possible explanations for these observations are discussed.
Collapse
Affiliation(s)
- R J Parks
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | |
Collapse
|
14
|
Trottier M, Zhang C, Guo P. Complete inhibition of virion assembly in vivo with mutant procapsid RNA essential for phage phi 29 DNA packaging. J Virol 1996; 70:55-61. [PMID: 8523569 PMCID: PMC189787 DOI: 10.1128/jvi.70.1.55-61.1996] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A highly efficient method for the inhibition of bacteriophage phi 29 assembly was developed with the use of mutant forms of the viral procapsid (or packaging) RNA (pRNA) indispensable for phi 29 DNA packaging. Phage phi 29 assembly was severely reduced in vitro in the presence of mutant pRNA and completely blocked in vivo when the host cell expressed mutant pRNA. Addition of 45% mutant pRNA resulted in a reduction of infectious virion production by 4 orders of magnitude, indicating that factors involved in viral assembly can be targets for efficient and specific antiviral treatment. The mechanism leading to the high efficiency of inhibition was attributed to two pivotal features. First, the pRNA contains two separate, essential functional domains, one for procapsid binding and the other for a DNA-packaging role other than procapsid binding. Mutation of the DNA-packaging domain resulted in a pRNA with no DNA-packaging activity but intact procapsid binding competence. Second, multiple copies of the pRNA were involved in the packaging of one genome. This higher-order dependence of pRNA in viral replication concomitantly resulted in its higher-order inhibitory effect. This finding suggested that the collective DNA-packaging activity of multiple copies of pRNA could be disrupted by the incorporation of perhaps an individual mutant pRNA into the group. Although this mutant pRNA could not be used for the inhibition of the replication of other viruses directly, the principle of using molecules with two functional domains and multiple-copy involvement as targets for antiviral agents could be applied to certain viral structural proteins, enzymes, and other factors or RNAs involved in the viral life cycle. This principle also implies a strategy for gene therapy, intracellular immunization, or construction of transgenic plants resistant to viral infection.
Collapse
Affiliation(s)
- M Trottier
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
15
|
DeLange AM, Carpenter MS, Choy J, Newsway VE. An etoposide-induced block in vaccinia virus telomere resolution is dependent on the virus-encoded DNA ligase. J Virol 1995; 69:2082-91. [PMID: 7884854 PMCID: PMC188874 DOI: 10.1128/jvi.69.4.2082-2091.1995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Etoposide, an inhibitor of the breakage-reunion reaction associated with cellular type II DNA topoisomerases, was shown to inhibit plaque formation of vaccinia virus. This drug had a major effect on the segregation of newly replicated DNA concatemers. Gene expression and the initiation and elongation phases of viral DNA replication were essentially unaffected. Pulsed-field gel electrophoresis of viral DNA replicated in the presence of etoposide revealed two major classes of DNA: the mature monomeric linear genome and DNA that failed to enter the gel (the relative proportions depending on the concentrations of drug). Restriction enzyme analysis showed a severe defect in telomere resolution. In addition, slowly migrating restriction fragments were suggestive of a general recombination defect. We have isolated several etoposide-resistant mutants and used marker rescue and DNA sequencing to localize the resistance-causing mutation to the amino terminus of the viral DNA ligase gene. Inactivation of the DNA ligase also resulted in an etoposide-resistant phenotype, but to a lesser extent. The telomere resolution and segregation defects were corrected both in the drug-resistant mutants and in the DNA ligase knockout mutants. Reinsertion of wild-type or mutant DNA ligase in the viral thymidine kinase locus confirmed the role of the viral DNA ligase in conferring sensitivity not only to etoposide but also to another topoisomerase II inhibitor, 4'-(9-acridinylamino) methanesulphon-m-anisidide (mAMSA). The data suggest that the nonessential DNA ligase is involved in telomere resolution, possibly as part of a general recombinase.
Collapse
Affiliation(s)
- A M DeLange
- Department of Human Genetics, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
16
|
Abstract
Comparison of the genomic organization of variola and vaccinia viruses has been carried out. Molecular factors of virulence of these viruses is the focus of this review. Possible roles of the genes of soluble cytokine receptors, complement control proteins, factors of virus replication, and dissemination in vivo for variola virus pathogenesis are discussed. The existence of "buffer" genes in the vaccinia virus genome is proposed.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology, Vector, Koltsovo, Russia
| |
Collapse
|
17
|
Antczak JB, Patel DD, Ray CA, Ink BS, Pickup DJ. Site-specific RNA cleavage generates the 3' end of a poxvirus late mRNA. Proc Natl Acad Sci U S A 1992; 89:12033-7. [PMID: 1465436 PMCID: PMC50692 DOI: 10.1073/pnas.89.24.12033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cowpox virus late mRNAs encoding the major protein of the A-type inclusions have 3' ends corresponding to a single site in the DNA template. The DNA sequence of the Alu I-Xba I fragment at this position encodes an RNA cis-acting signal, designated the AX element, which directs this RNA 3' end formation. In cells infected with vaccinia virus the AX element functions independently of either the nature of the promoter element or the RNA polymerase responsible for generating the primary RNA. At late times during virus replication, vaccinia virus induces or activates a site-specific endoribonuclease that cleaves primary RNAs within the AX element. The 3' end produced by RNA cleavage is then polyadenylylated to form the 3' end of the mature mRNA. Therefore, the poxviruses employ at least two mechanisms of RNA 3' end formation during the viral replication cycle. One mechanism, which is operative at early times in viral replication, involves the termination of transcription [Rohrmann, G., Yuen, L. & Moss, B. (1986) Cell 46, 1029-1035]. A second mechanism, which is operative at late times during viral replication, involves the site-specific cleavage of primary RNAs.
Collapse
Affiliation(s)
- J B Antczak
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | |
Collapse
|
18
|
Knight JC, Goldsmith CS, Tamin A, Regnery RL, Regnery DC, Esposito JJ. Further analyses of the orthopoxviruses volepox virus and raccoon poxvirus. Virology 1992; 190:423-33. [PMID: 1529541 DOI: 10.1016/0042-6822(92)91228-m] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Volepox virus (VPX) from skin lesions on a vole and a piñon mouse caught in California and raccoon poxvirus (RCN) from raccoons trapped in Maryland were examined to begin elucidating their relationship to other orthopoxviruses, most of which are not known to be indigenous to the Americas. VPX and RCN produced pinpoint, nonhemorrhagic pocks on chick embryo chorioallantoic membranes. In cell cultures both viruses produced 1-mm diameter, irregular plaques, A-type inclusions (ATIs), and despite production of hemagglutinin, both viruses caused syncytia formation. Considerable cross-hybridization was seen between VPX and RCN DNA and the DNAs of other orthopoxviruses; however, HindIII cleavage site maps showed marked central and terminal region differences between VPX (222.8 kbp) and RCN (224.8 kbp) DNA and mapped DNAs of other orthopoxviruses. Cognate DNAs of the ATI 160-kDa protein and 38-kDa serine protease inhibitor homologue of cowpox virus (CPV) and the 14-kDa fusion protein of vaccinia virus (VAC) were present within the right end of VPX and RCN DNA, matching their location in CPV and VAC. VPX and RCN, respectively, expressed a 150- and a 155-kDa ATI major protein and a 20- and an 18-kDa fusion protein. Low stringency annealing suggested that cognate DNAs for the VAC growth factor and the alpha-amanitin target protein were present within the left end of VPX and RCN DNA, matching their location in VAC. Terminal tandem repeat sequences of VAC and RCN did not cross-hybridize with each other or with VPX DNA end fragments. Together, the data suggested that VPX and RCN are phylogenetically rather distant from orthopoxviruses not indigenous to the Americas, although genetic information is arranged as in other examined orthopoxviruses.
Collapse
Affiliation(s)
- J C Knight
- Division of Viral and Rickettsial Diseases, Centers for Disease Control, Atlanta, Georgia 30333
| | | | | | | | | | | |
Collapse
|
19
|
Carpenter MS, DeLange AM. Identification of a temperature-sensitive mutant of vaccinia virus defective in late but not intermediate gene expression. Virology 1992; 188:233-44. [PMID: 1566576 DOI: 10.1016/0042-6822(92)90753-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The vaccinia virus conditional-lethal temperature-sensitive (ts) mutant tsC63 is defective in the synthesis of some but not all postreplicative proteins. Synthesis of the temporal "intermediate" class of proteins was unaffected, whereas "late" proteins were absent at the nonpermissive temperature. At the DNA level, DNA synthesis was unaffected, but telomere resolution was severely inhibited. In order to identify the defective gene responsible for this ts defect, we performed marker rescue and DNA sequencing experiments. We localized the lesion to open reading frame (ORF) A1L, which has recently been identified as one of the three intermediate genes required for the transcription of late genes (J.G. Keck, C.J. Baldick, Jr., and B. Moss, (1990). Cell 61, 801-809). S1 nuclease analysis of viral mRNA demonstrated that the ts defect in late protein synthesis was caused by a defect in the transcription of stable mRNA and therefore provides evidence for a role of the A1L gene product during in vivo transcriptional activation of late genes or stabilization of late RNA. Furthermore, the kinetics of early protein synthesis in tsC63-infected cells suggests that, in addition to its role in trans-activation of late genes, intermediate gene expression mediates suppression of early protein synthesis. The telomere resolution defect of this mutant is presumably a secondary consequence of the defect in late gene expression.
Collapse
Affiliation(s)
- M S Carpenter
- Department of Human Genetics, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
20
|
Guo PX, Rajagopal BS, Anderson D, Erickson S, Lee CS. sRNA of phage phi 29 of Bacillus subtilis mediates DNA packaging of phi 29 proheads assembled in Escherichia coli. Virology 1991; 185:395-400. [PMID: 1926784 DOI: 10.1016/0042-6822(91)90787-c] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The structural genes of the prohead of phage phi 29 of Bacillus subtilis and a small phi 29 RNA (sRNA) were cloned and expressed in Escherichia coli individually or in combination to study the role of the sRNA in prohead assembly and the mechanism of prohead morphogenesis. The genes coding for the proteins of the scaffold (gp7), the capsid (gp8), the portal vertex (gp10), and the dispensable head fiber (gp8.5) were expressed in E. coli and the gene products were assembled, with and without the presence of the sRNA, into uniform and prolate particles that resembled the typical native phi 29 prohead. No differences in particle size and shape were found between the particles of 7-8-8.5-10 (scaffold-capsid-fiber-portal vertex) and 7-8-8.5-10-RNA (scaffold-capsid-fiber-portal vertex-RNA), suggesting that the phi 29 sRNA was not required for phi 29 prohead assembly. The 7-8-8.5-10 particles produced in E. coli in the absence of phi 29 sRNA were fully competent to package phi 29 DNA in the defined in vitro DNA packaging system by the addition of purified sRNA. Moreover, these DNA-filled heads were assembled into infectious virions in extracts. Without the addition of the sRNA, the 7-8-8.5-10 particles were incompetent while the 7-8-8.5-10-RNA particles were competent in DNA packaging. Bacterial sRNA present in E. coli cannot substitute for the phi 29 sRNA. The assembly of prohead particles in E. coli indicated that host factors unique to B. subtilis were not required. The evidence that the phi 29 sRNA was not required for phi 29 prohead assembly and was not a fixed structural component of the phi 29 prohead favors the conclusion that the phi 29 sRNA is a specific enzyme or morphogenetic factor in DNA packaging.
Collapse
Affiliation(s)
- P X Guo
- Department of Veterinary Pathobiology, Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | |
Collapse
|
21
|
Carpenter MS, DeLange AM. A temperature-sensitive lesion in the small subunit of the vaccinia virus-encoded mRNA capping enzyme causes a defect in viral telomere resolution. J Virol 1991; 65:4042-50. [PMID: 1649315 PMCID: PMC248835 DOI: 10.1128/jvi.65.8.4042-4050.1991] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Using pulsed-field gel electrophoresis, we demonstrated that the temperature-sensitive (ts) conditional lethal mutant ts9383 is, at the nonpermissive temperature, defective in the resolution of concatemeric replicative intermediate DNA to linear 185-kb monomeric DNA genomes. The resolution defect was shown to be the result of a partial failure of the mutant virus to convert the replicated form of the viral telomere to hairpin termini. In contrast to other mutants of this phenotype, pulse-labeling of viral proteins at various times postinfection revealed no obvious difference in the quantity or temporal appearance of members of the late class of polypeptides. Using the marker rescue technique, we localized the ts lesion in ts9383 to an approximately 1-kb region within the HindIII D fragment. Both the ts phenotype and the resolution defect were shown to be caused by a single-base C----T point mutation resulting in the conversion of the amino acid proline to serine in codon 23 of open reading frame D12. This gene encodes a 33-kDa polypeptide which is known to be the small subunit of the virus-encoded mRNA capping enzyme (E. G. Niles, G. J. Lee-Chen, S. Shuman, B. Moss, and S. S. Broyles, Virology 172:513-522, 1989). The data are consistent with a role for this capping enzyme subunit during poxviral telomere resolution.
Collapse
Affiliation(s)
- M S Carpenter
- Department of Human Genetics, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
22
|
Hu FQ, Pickup DJ. Transcription of the terminal loop region of vaccinia virus DNA is initiated from the telomere sequences directing DNA resolution. Virology 1991; 181:716-20. [PMID: 2014645 DOI: 10.1016/0042-6822(91)90905-q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The telomeres of vaccinia virus DNA are transcribed at late times after infection. Analysis of cDNAs of RNA transcripts of the terminal loop region of the viral DNA shows that both inverted and complementary forms of the terminal loop region are transcribed. These late RNAs, which contain 5' poly(A) sequences, do not appear to encode any proteins. The transcriptional start sites for most of these RNAs are within the sequences that direct the resolution of concatemeric DNA replication intermediates (M. Merchlinsky and B. Moss, 1989, J. Virol. 63, 4354-4361). This suggests that the process of DNA resolution may involve transcription initiated from the telomere sequences required for resolution.
Collapse
Affiliation(s)
- F Q Hu
- Department of Microbiology and Immunology, Duke University Medical Center, Duke University, Durham, North Carolina 27710
| | | |
Collapse
|
23
|
Stuart D, Graham K, Schreiber M, Macaulay C, McFadden G. The target DNA sequence for resolution of poxvirus replicative intermediates is an active late promoter. J Virol 1991; 65:61-70. [PMID: 1845909 PMCID: PMC240489 DOI: 10.1128/jvi.65.1.61-70.1991] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The linear double-stranded genomes of poxviruses such as Shope fibroma virus (SFV) replicate autonomously within the cytoplasm of infected cells, and it is believed that all of the replication functions are virally encoded. During DNA replication the incompletely base-paired terminal hairpin loops of the viral genome transiently exist in the form of inverted repeat replicative intermediates. These inverted repeat structures form the target for telomere resolution events that include sequence-specific cleavage and directed strand exchange to form the hairpin termini of progeny virus genomes. The terminal sequence domain which forms the telomere resolution target (TRT) shares considerable sequence similarity with viral late promoters. In this study we demonstrate that the TRT of SFV is capable of functioning as a strong viral promoter late in infection. A spectrum of TRT mutations affects telomere resolution and late transcription in a strictly concordant fashion, suggesting that the two activities may be inextricably linked. Further support for this concept comes from the demonstration that a late SFV promoter sequence designated cryptic TRT, which differs substantially from the native TRT in terms of sequence, can support telomere resolution when placed in the correct spatial context. The proposed model for telomere resolution invokes directed unwinding of the TRT double helix by a transcription initiation complex and processing of the resulting secondary structure by viral late-gene products.
Collapse
Affiliation(s)
- D Stuart
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
24
|
Mutational analysis of the resolution sequence of vaccinia virus DNA: essential sequence consists of two separate AT-rich regions highly conserved among poxviruses. J Virol 1990; 64:5029-35. [PMID: 2398534 PMCID: PMC247994 DOI: 10.1128/jvi.64.10.5029-5035.1990] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In replicative forms of vaccinia virus DNA, the unit genomes are connected by palindromic junction fragments that are resolved into mature viral genomes with hairpin termini. Bacterial plasmids containing the junction fragment for vaccinia virus or Shope fibroma virus were converted into linear minichromosomes of vector sequence flanked by poxvirus hairpin loops after transfection into infected cells. Analysis of a series of symmetrical deletion mutations demonstrated that in vaccinia virus the presence of the DNA sequence ATTTAGTGTCTAGAAAAAAA on both sides of the apical segment of the concatemer junction is crucial for resolution. To determine the precise architecture of the resolution site, a series of site-directed mutations within this tract of nucleotides were made and the relative contribution of each nucleotide to the efficaciousness of resolution was determined. The nucleotide sequence necessary for the resolution of the vaccinia virus concatemer junction, (A/T)TTT(A/G)N7-9AAAAAAA, is highly conserved among poxviruses and found proximal to the hairpin loop in the genomes of members of the Leporipoxvirus, Avipoxvirus, and Capripoxvirus genera.
Collapse
|