1
|
Xu Z, Tan JK, Vetrivel K, Jiang X, Leo SM, Bhatti T, Tariq A, Webster AR, Robson AG, Hammond CJ, Hysi PG, Mahroo OA. The Electroretinogram I-Wave, a Component Originating in the Retinal OFF-Pathway, Associates With a Myopia Genetic Risk Polymorphism. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 39530998 PMCID: PMC11562975 DOI: 10.1167/iovs.65.13.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose One of the strongest genetic associations with myopia is near the GJD2 gene. Recently, this locus was associated with cone-driven electroretinograms (ERGs), with findings highlighting OFF pathway signals specifically. The ERG i-wave is thought to originate in retinal OFF pathways. We explored this component and tested the hypothesis that it would be associated with the myopia risk locus. Methods International standard LA3 ERGs, recorded with conductive fiber electrodes, were analyzed, first from patients with rare monogenic deficits impairing the ON pathway, or both ON and OFF pathways, to explore effects on the i-wave. Responses were then analyzed from adult participants from the TwinsUK cohort: i-wave amplitudes were measured by two investigators independently, blinded to genotype at the GJD2 locus. We investigated the association between i-wave amplitude and allelic identity at this locus, adjusting for age, sex, and familial relatedness. Results Patient recordings showed the i-wave persisted in the absence of ON pathway signals, but was abolished when both ON and OFF pathways were impaired. For TwinsUK participants, recordings and genotypes were available in 184 individuals (95% female participants; mean standard deviation [SD] age, 64.1 [9.7] years). Mean (SD) i-wave amplitude was 14.5 (SD = 6.5) microvolts. Allelic dosage at the risk locus was significantly associated with i-wave amplitude (P = 0.027). Conclusions Patient ERGs were consistent with the i-wave arising from cone-driven OFF pathways. Amplitudes associated significantly with allelic dosage at the myopia risk locus, supporting the importance of cone-driven signaling in myopia development and further highlighting relevance of the OFF pathway in relation to this locus.
Collapse
Affiliation(s)
- Zihe Xu
- Section of Ophthalmology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
| | - Jit Kai Tan
- Section of Ophthalmology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Krishnika Vetrivel
- Section of Ophthalmology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
| | - Xiaofan Jiang
- Section of Ophthalmology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Shaun M. Leo
- Institute of Ophthalmology, University College London, London, United Kingdom
- Electrophysiology Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Taha Bhatti
- Section of Ophthalmology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
| | - Ambreen Tariq
- Section of Ophthalmology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
| | - Andrew R. Webster
- Institute of Ophthalmology, University College London, London, United Kingdom
- Genetics Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Anthony G. Robson
- Institute of Ophthalmology, University College London, London, United Kingdom
- Electrophysiology Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Christopher J. Hammond
- Section of Ophthalmology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
| | - Pirro G. Hysi
- Section of Ophthalmology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
- Sørlandet Sykehus Arendal, Arendal Hospital, Norway
| | - Omar A. Mahroo
- Section of Ophthalmology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas’ Hospital Campus, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Genetics Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Ablordeppey RK, Nieu R, Lin CR, Benavente-Perez A. Early Alterations in Inner-Retina Neural and Glial Saturated Responses in Lens-Induced Myopia. Transl Vis Sci Technol 2024; 13:16. [PMID: 38591944 PMCID: PMC11008749 DOI: 10.1167/tvst.13.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Purpose Myopic marmosets are known to exhibit significant inner retinal thinning compared to age-matched controls. The purpose of this study was to assess inner retinal activity in marmosets with lens-induced myopia compared to age-matched controls and evaluate its relationship with induced changes in refractive state and eye growth. Methods Cycloplegic refractive error (Rx), vitreous chamber depth (VCD), and photopic full-field electroretinogram were measured in 14 marmosets treated binocularly with negative contact lenses compared to 9 untreated controls at different stages throughout the experimental period (from 74 to 369 days of age). The implicit times of the a-, b-, d-, and photopic negative response (PhNR) waves, as well as the saturated amplitude (Vmax), semi-saturation constant (K), and slope (n) estimated from intensity-response functions fitted with Naka-Rushton equations were analyzed. Results Compared to controls, treated marmosets exhibited attenuated b-, d-, and PhNR waves Vmax amplitudes 7 to 14 days into treatment before compensatory changes in refraction and eye growth occurred. At later time points, when treated marmosets had developed axial myopia, the amplitudes and implicit times of the b-, d-, and PhNR waves were similar between groups. In controls, the PhNR wave saturated amplitude increased as the b + d-wave Vmax increased. This trend was absent in treated marmosets. Conclusions Marmosets induced with negative defocus exhibit early alterations in inner retinal saturated amplitudes compared to controls, prior to the development of compensatory myopia. These early ERG changes are independent of refraction and eye size and may reflect early changes in bipolar, ganglion, amacrine, or glial cell physiology prior to myopia development. Translational Relevance The early changes in retinal function identified in the negative lens-treated marmosets may serve as clinical biomarkers to help identify children at risk of developing myopia.
Collapse
Affiliation(s)
- Reynolds K. Ablordeppey
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Rita Nieu
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Carol R. Lin
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Alexandra Benavente-Perez
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| |
Collapse
|
3
|
Huang L, Bai X, Xie Y, Zhou Y, Wu J, Li N. Clinical and genetic studies for a cohort of patients with congenital stationary night blindness. Orphanet J Rare Dis 2024; 19:101. [PMID: 38448886 PMCID: PMC10918914 DOI: 10.1186/s13023-024-03091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Congenital stationary night blindness (CSNB) is an inherited retinal disorder. Most of patients have myopia. This study aims to describe the clinical and genetic characteristics of fifty-nine patients with CSNB and investigate myopic progression under genetic cause. RESULTS Sixty-five variants were detected in the 59 CSNB patients, including 32 novel and 33 reported variants. The most frequently involved genes were NYX, CACNA1F, and TRPM1. Myopia (96.61%, 57/59) was the most common clinical finding, followed by nystagmus (62.71%, 37/59), strabismus (52.54%, 31/59), and nyctalopia (49.15%, 29/59). An average SE of -7.73 ± 3.37 D progressed to -9.14 ± 2.09 D in NYX patients with myopia, from - 2.24 ± 1.53 D to -4.42 ± 1.43 D in those with CACNA1F, and from - 5.21 ± 2.89 D to -9.24 ± 3.16 D in those with TRPM1 during the 3-year follow-up; the TRPM1 group showed the most rapid progression. CONCLUSIONS High myopia and strabismus are distinct clinical features of CSNB that are helpful for diagnosis. The novel variants identified in this study will further expand the knowledge of variants in CSNB and help explore the molecular mechanisms of CSNB.
Collapse
Affiliation(s)
- Lijuan Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xueqing Bai
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Yan Xie
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Yunyu Zhou
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Jin Wu
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Ningdong Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200940, China.
| |
Collapse
|
4
|
Deng B, Li W, Chen Z, Zeng J, Zhao F. Temporal bright light at low frequency retards lens-induced myopia in guinea pigs. PeerJ 2023; 11:e16425. [PMID: 38025747 PMCID: PMC10655705 DOI: 10.7717/peerj.16425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Bright light conditions are supposed to curb eye growth in animals with experimental myopia. Here we investigated the effects of temporal bright light at very low frequencies exposures on lens-induced myopia (LIM) progression. Methods Myopia was induced by application of -6.00 D lenses over the right eye of guinea pigs. They were randomly divided into four groups based on exposure to different lighting conditions: constant low illumination (CLI; 300 lux), constant high illumination (CHI; 8,000 lux), very low frequency light (vLFL; 300/8,000 lux, 10 min/c), and low frequency light (LFL; 300/8,000 lux, 20 s/c). Refraction and ocular dimensions were measured per week. Changes in ocular dimensions and refractions were analyzed by paired t-tests, and differences among the groups were analyzed by one-way ANOVA. Results Significant myopic shifts in refractive error were induced in lens-treated eyes compared with contralateral eyes in all groups after 3 weeks (all P < 0.05). Both CHI and LFL conditions exhibited a significantly less refractive shift of LIM eyes than CLI and vLFL conditions (P < 0.05). However, only LFL conditions showed significantly less overall myopic shift and axial elongation than CLI and vLFL conditions (both P < 0.05). The decrease in refractive error of both eyes correlated significantly with axial elongation in all groups (P < 0.001), except contralateral eyes in the CHI group (P = 0.231). LFL condition significantly slacked lens thickening in the contralateral eyes. Conclusions Temporal bright light at low temporal frequency (0.05 Hz) appears to effectively inhibit LIM progression. Further research is needed to determine the safety and the potential mechanism of temporal bright light in myopic progression.
Collapse
Affiliation(s)
- Baodi Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wentao Li
- Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Ziping Chen
- Guangdong Light Visual Health Research Institute, Guangzhou, China
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
5
|
Huang Y, Chen X, Zhuang J, Yu K. The Role of Retinal Dysfunction in Myopia Development. Cell Mol Neurobiol 2023; 43:1905-1930. [PMID: 36427109 PMCID: PMC11412200 DOI: 10.1007/s10571-022-01309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Myopia is a refractive disorder arising from a mismatch between refractive power and relatively long axial length of the eye. With its dramatically increasing prevalence, myopia has become a pervasive social problem. It is commonly accepted that abnormal visual input acts as an initiating factor of myopia. As the first station to perceive visual signals, the retina plays an important role in myopia etiology. The retina is a fine-layered structure with multitudinous cells, processing intricate visual signals via numerous molecular pathways. Accordingly, dopaminergic mechanisms, contributions of rod and cone photoreceptors, myopic structural changes of retinal pigment epithelium (RPE) and neuro-retinal layers have all suggested a vital role of retinal dysfunction in myopia development. Herein, we separately discuss myopia-related retinal dysfunction and current dilemmas by different levels, from molecules to cells, with the hope that the comprehensive delineation could contribute to a better understanding of myopia etiology, indicate novel therapeutic targets, and inspire future studies.
Collapse
Affiliation(s)
- Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China.
| |
Collapse
|
6
|
Breher K, Neumann A, Kurth D, Schaeffel F, Wahl S. ON and OFF receptive field processing in the presence of optical scattering. BIOMEDICAL OPTICS EXPRESS 2023; 14:2618-2628. [PMID: 37342711 PMCID: PMC10278613 DOI: 10.1364/boe.489117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 06/23/2023]
Abstract
The balance of ON/OFF pathway activation in the retina plays a role in emmetropization. A new myopia control lens design uses contrast reduction to down-regulate a hypothesized enhanced ON contrast sensitivity in myopes. The study thus examined ON/OFF receptive field processing in myopes and non-myopes and the impact of contrast reduction. A psychophysical approach was used to measure the combined retinal-cortical output in the form of low-level ON and OFF contrast sensitivity with and without contrast reduction in 22 participants. ON responses were lower than OFF responses (ON 1.25 ± 0.03 vs. OFF 1.39 ± 0.03 log(CS); p < 0.0001) and myopes showed generally reduced sensitivities (myopes 1.25 ± 0.05 vs. non-myopes 1.39 ± 0.05 log(CS); p = 0.05). These findings remained unaffected by contrast reduction (p > 0.05). The study suggests that perceptual differences in ON and OFF signal processing between myopes and non-myopes exist but cannot explain how contrast reduction can inhibit myopia development.
Collapse
Affiliation(s)
- Katharina Breher
- Carl Zeiss Vision International GmbH, Turnstr. 27, 73430 Aalen, Germany
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| | - Antonia Neumann
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| | - Dominik Kurth
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| | - Frank Schaeffel
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Str. 91, 4056 Basel, Switzerland
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Turnstr. 27, 73430 Aalen, Germany
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Poudel S, Rahimi-Nasrabadi H, Jin J, Najafian S, Alonso JM. Differences in visual stimulation between reading and walking and implications for myopia development. J Vis 2023; 23:3. [PMID: 37014657 PMCID: PMC10080958 DOI: 10.1167/jov.23.4.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/11/2023] [Indexed: 04/05/2023] Open
Abstract
Visual input plays an important role in the development of myopia (nearsightedness), a visual disorder that blurs vision at far distances. The risk of myopia progression increases with the time spent reading and decreases with outdoor activity for reasons that remain poorly understood. To investigate the stimulus parameters driving this disorder, we compared the visual input to the retina of humans performing two tasks associated with different risks of myopia progression, reading and walking. Human subjects performed the two tasks while wearing glasses with cameras and sensors that recorded visual scenes and visuomotor activity. When compared with walking, reading black text in white background reduced spatiotemporal contrast in central vision and increased it in peripheral vision, leading to a pronounced reduction in the ratio of central/peripheral strength of visual stimulation. It also made the luminance distribution heavily skewed toward negative dark contrast in central vision and positive light contrast in peripheral vision, decreasing the central/peripheral stimulation ratio of ON visual pathways. It also decreased fixation distance, blink rate, pupil size, and head-eye coordination reflexes dominated by ON pathways. Taken together with previous work, these results support the hypothesis that reading drives myopia progression by understimulating ON visual pathways.
Collapse
Affiliation(s)
- Sabina Poudel
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Hamed Rahimi-Nasrabadi
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Jianzhong Jin
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Sohrab Najafian
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| |
Collapse
|
8
|
Zahra S, Murphy MJ, Crewther SG, Riddell N. Flash Electroretinography as a Measure of Retinal Function in Myopia and Hyperopia: A Systematic Review. Vision (Basel) 2023; 7:vision7010015. [PMID: 36977295 PMCID: PMC10052972 DOI: 10.3390/vision7010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Refractive errors (myopia and hyperopia) are the most common visual disorders and are severe risk factors for secondary ocular pathologies. The development of refractive errors has been shown to be associated with changes in ocular axial length, suggested to be induced by outer retinal elements. Thus, the present study systematically reviewed the literature examining retinal function as assessed using global flash electroretinograms (gfERGs) in human clinical refractive error populations. Electronic database searching via Medline, PubMed, Web of Science, Embase, Psych INFO, and CINAHL retrieved 981 unique records (last searched on the 29 May 2022). Single case studies, samples with ocular comorbidities, drug trials, and reviews were excluded. Demographic characteristics, refractive state, gfERG protocol details, and waveform characteristics were extracted for the eight studies that met the inclusion criteria for the review and were judged to have acceptable risk of bias using the OHAT tool (total N = 552 participants; age 7 to 50). Study synthesis suggests that myopia in humans involves attenuation of gfERG photoreceptor (a-wave) and bipolar cell (b-wave) function, consistent with the animal literature. Meaningful interpretation of the overall findings for hyperopia was limited by inconsistent reporting, highlighting the need for future studies to report key aspects of gfERG research design and outcomes more consistently for myopic and hyperopic refractive errors.
Collapse
Affiliation(s)
- Sania Zahra
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne 3083, Australia
| | - Melanie J. Murphy
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne 3083, Australia
| | - Sheila G. Crewther
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne 3083, Australia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne 3122, Australia
| | - Nina Riddell
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne 3083, Australia
- Correspondence:
| |
Collapse
|
9
|
Gupta SK, Chakraborty R, Verkicharla PK. Electroretinogram responses in myopia: a review. Doc Ophthalmol 2022; 145:77-95. [PMID: 34787722 PMCID: PMC9470726 DOI: 10.1007/s10633-021-09857-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/11/2021] [Indexed: 11/02/2022]
Abstract
The stretching of a myopic eye is associated with several structural and functional changes in the retina and posterior segment of the eye. Recent research highlights the role of retinal signaling in ocular growth. Evidence from studies conducted on animal models and humans suggests that visual mechanisms regulating refractive development are primarily localized at the retina and that the visual signals from the retinal periphery are also critical for visually guided eye growth. Therefore, it is important to study the structural and functional changes in the retina in relation to refractive errors. This review will specifically focus on electroretinogram (ERG) changes in myopia and their implications in understanding the nature of retinal functioning in myopic eyes. Based on the available literature, we will discuss the fundamentals of retinal neurophysiology in the regulation of vision-dependent ocular growth, findings from various studies that investigated global and localized retinal functions in myopia using various types of ERGs.
Collapse
Affiliation(s)
- Satish Kumar Gupta
- Myopia Research Lab, Prof. Brien Holden Eye Research Centre, Brien Holden Institute of Optometry and Vision Sciences, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| | - Ranjay Chakraborty
- Caring Futures Institute, College of Nursing and Health Sciences, Optometry and Vision Science, Flinders University, Adelaide, South Australia, Australia
| | - Pavan Kumar Verkicharla
- Myopia Research Lab, Prof. Brien Holden Eye Research Centre, Brien Holden Institute of Optometry and Vision Sciences, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India.
| |
Collapse
|
10
|
Gajjar S, Ostrin LA. A systematic review of near work and myopia: measurement, relationships, mechanisms and clinical corollaries. Acta Ophthalmol 2022; 100:376-387. [PMID: 34622560 DOI: 10.1111/aos.15043] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
After decades of investigation, the role of near work in myopia remains unresolved, with some studies reporting no relationship and others finding the opposite. This systematic review is intended to summarize classic and recent literature investigating near work and the onset and progression of myopia, potential mechanisms and pertinent clinical recommendations. The impact of electronic device use is considered. PubMed and Medline were used to find peer-reviewed cross-sectional and longitudinal studies related to near work and myopia from 1980 to July 2020 using the PRISMA checklist. Studies were chosen using the Joanna Briggs Institute checklist, with a focus on studies with a sample size greater than 50. Studies were independently evaluated; conclusions were drawn per these evaluations. Numerous cross-sectional studies found increased odds ratio of myopia with increased near work. While early longitudinal studies failed to find this relationship, more recent longitudinal studies have found a relationship between myopia and near work. Rather than daily duration of near work, interest has increased regarding absolute working distance and duration of continuous near viewing. Several reports have found that shorter working distances (<30 cm) and continuous near-work activity (>30 min) are risk factors for myopia onset and progression. Novel objective continuously measuring rangefinding devices have been developed to better address these questions. The literature is conflicting, likely due to the subjective and variable nature in which near work has been quantified and a paucity of longitudinal studies. We conclude that more precise objective measures of near viewing behaviour are necessary to make definitive conclusions regarding the relationship between myopia and near work. Focus should shift to utilizing objective and continuously measuring instruments to quantify near-work behaviours in children, followed longitudinally, to understand the complex factors related to near work. A better understanding of the roles of absolute working distance, temporal properties, viewing breaks and electronic device use on myopia development and progression will aid in the development of evidence-based clinical recommendations for behavioural modifications to prevent and slow myopia.
Collapse
Affiliation(s)
- Shail Gajjar
- University of Houston College of Optometry Houston TX USA
| | - Lisa A. Ostrin
- University of Houston College of Optometry Houston TX USA
| |
Collapse
|
11
|
Jiang X, Xu Z, Soorma T, Tariq A, Bhatti T, Baneke AJ, Pontikos N, Leo SM, Webster AR, Williams KM, Hammond CJ, Hysi PG, Mahroo OA. Electrical responses from human retinal cone pathways associate with a common genetic polymorphism implicated in myopia. Proc Natl Acad Sci U S A 2022; 119:e2119675119. [PMID: 35594404 PMCID: PMC9173800 DOI: 10.1073/pnas.2119675119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/08/2022] [Indexed: 11/25/2022] Open
Abstract
Myopia is the commonest visual impairment. Several genetic loci confer risk, but mechanisms by which they do this are unknown. Retinal signals drive eye growth, and myopia usually results from an excessively long eye. The common variant most strongly associated with myopia is near the GJD2 gene, encoding connexin-36, which forms retinal gap junctions. Light-evoked responses of retinal neurons can be recorded noninvasively as the electroretinogram (ERG). We analyzed these responses from 186 adult twin volunteers who had been genotyped at this locus. Participants underwent detailed ERG recordings incorporating international standard stimuli as well as experimental protocols aiming to separate dark-adapted rod- and cone-driven responses. A mixed linear model was used to explore association between allelic dosage at the locus and international standard ERG parameters after adjustment for age, sex, and family structure. Significant associations were found for parameters of light-adapted, but not dark-adapted, responses. Further investigation of isolated rod- and cone-driven ERGs confirmed associations with cone-driven, but not rod-driven, a-wave amplitudes. Comparison with responses to similar experimental stimuli from a patient with a prior central retinal artery occlusion, and from two patients with selective loss of ON-bipolar cell signals, was consistent with the associated parameters being derived from signals from cone-driven OFF-bipolar cells. Analysis of single-cell transcriptome data revealed strongest GJD2 expression in cone photoreceptors; bipolar cell expression appeared strongest in OFF-bipolar cells and weakest in rod-driven ON-bipolar cells. Our findings support a potential role for altered signaling in cone-driven OFF pathways in myopia development.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
| | - Zihe Xu
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
| | - Talha Soorma
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
| | - Ambreen Tariq
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
| | - Taha Bhatti
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
| | - Alexander J. Baneke
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
| | - Nikolas Pontikos
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Shaun M. Leo
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Medical Retina Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
- Inherited Eye Disease Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
| | - Andrew R. Webster
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Medical Retina Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
- Inherited Eye Disease Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
| | - Katie M. Williams
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
- Medical Retina Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
- Inherited Eye Disease Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
| | - Christopher J. Hammond
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
| | - Pirro G. Hysi
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
| | - Omar A. Mahroo
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
- Medical Retina Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
- Inherited Eye Disease Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
- Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| |
Collapse
|
12
|
Karouta C, Kucharski R, Hardy K, Thomson K, Maleszka R, Morgan I, Ashby R. Transcriptome-based insights into gene networks controlling myopia prevention. FASEB J 2021; 35:e21846. [PMID: 34405458 DOI: 10.1096/fj.202100350rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Myopia (short-sightedness), usually caused by excessive elongation of the eye during development, has reached epidemic proportions worldwide. In animal systems including the chicken model, several treatments have been shown to inhibit ocular elongation and experimental myopia. Although diverse in their apparent mechanism of action, each one leads to a reduction in the rate of ocular growth. We hypothesize that a defined set of retinal molecular changes may underlie growth inhibition, irrespective of the treatment agent used. Accordingly, across five well-established but diverse methods of inhibiting myopia, significant overlap is seen in the retinal transcriptome profile (transcript levels and alternative splicing events) in chicks when analyzed by RNA-seq. Within the two major pathway networks enriched during growth inhibition, that of cell signaling and circadian entrainment, transcription factors form the largest functional grouping. Importantly, a large percentage of those genes forming the defined retinal response are downstream targets of the transcription factor EGR1 which itself shows a universal response to all five growth-inhibitory treatments. This supports EGR1's previously implicated role in ocular growth regulation. Finally, by contrasting our data with human linkage and GWAS studies on refractive error, we confirm the applicability of our study to the human condition. Together, these findings suggest that a universal set of transcriptome changes, which sit within a well-defined retinal network that cannot be bypassed, is fundamental to growth regulation, thus paving a way for designing novel targets for myopia therapies.
Collapse
Affiliation(s)
- Cindy Karouta
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Robert Kucharski
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Kristine Hardy
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Kate Thomson
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ian Morgan
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
13
|
Wang M, Aleman AC, Schaeffel F. Probing the Potency of Artificial Dynamic ON or OFF Stimuli to Inhibit Myopia Development. Invest Ophthalmol Vis Sci 2019; 60:2599-2611. [PMID: 31219534 DOI: 10.1167/iovs.18-26471] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine whether equiluminant artificial dynamic ON or OFF stimuli on a computer screen can induce bidirectional changes in choroidal thickness (ChTh) in both humans and chickens, and whether such changes are associated with bidirectional changes in retinal dopamine release in chickens. Methods Experiment 1: Before and after ON or OFF stimulation for 1 hour, ChTh was measured with optical coherence tomography (OCT). Experiment 2: chicks (n = 14) were raised under ON or OFF stimulation for 3 hours. ChTh was determined by OCT. Experiment 3: chicks were raised for 7 days either under room light (500 lux, n = 11), dynamic ON stimulus (700 lux, n = 15), or dynamic OFF stimulus (700 lux, n = 7). In addition, negative lenses were attached to their right eyes. After experiments 2 and 3, retinal and vitreal dopamine (DA), and its metabolites, were measured by HPLC-electrochemical detection. Results Experiment 1: Dynamic ON stimuli caused thicker choroids (+5.3 ± 2.0 μm), whereas OFF stimuli caused choroidal thinning (-4.7 ± 0.5 μm) (right eye data only, P < 0.001). Experiment 2: After 3 hours, chickens developed thicker choroids with ON stimuli (+37.4 ± 12.4 μm) and thinner choroids with OFF stimuli (-11.3 ± 3.6 μm, difference P < 0.01). Vitreal DA, 3-methoxytyramine, and homovanillic acid levels were elevated after ON stimulation, compared with the OFF (P < 0.05). Experiment 3: After 7 days, chickens with lenses developed more myopia both with ON and OFF stimulation, compared with room light. ON stimulation increased vitreal DA compared with OFF. Conclusions Artificial dynamic ON or OFF stimuli had similar effects on ChTh in humans and chickens, but more work will be necessary to determine whether such stimuli can be used as novel interventions of myopia.
Collapse
Affiliation(s)
- Min Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Hunan Province, China.,Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Germany
| | - Andrea C Aleman
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Germany
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Germany
| |
Collapse
|
14
|
Pan F. Defocused Image Changes Signaling of Ganglion Cells in the Mouse Retina. Cells 2019; 8:cells8070640. [PMID: 31247948 PMCID: PMC6678497 DOI: 10.3390/cells8070640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/22/2019] [Accepted: 06/22/2019] [Indexed: 12/14/2022] Open
Abstract
Myopia is a substantial public health problem worldwide. Although it is known that defocused images alter eye growth and refraction, their effects on retinal ganglion cell (RGC) signaling that lead to either emmetropization or refractive errors have remained elusive. This study aimed to determine if defocused images had an effect on signaling of RGCs in the mouse retina. ON and OFF alpha RGCs and ON-OFF RGCs were recorded from adult C57BL/6J wild-type mice. A mono green organic light-emitting display presented images generated by PsychoPy. The defocused images were projected on the retina under a microscope. Dark-adapted mouse RGCs were recorded under different powers of projected defocused images on the retina. Compared with focused images, defocused images showed a significantly decreased probability of spikes. More than half of OFF transient RGCs and ON sustained RGCs showed disparity in responses to the magnitude of plus and minus optical defocus (although remained RGCs we tested exhibited similar response to both types of defocus). ON and OFF units of ON-OFF RGCs also responded differently in the probability of spikes to defocused images and spatial frequency images. After application of a gap junction blocker, the probability of spikes of RGCs decreased with the presence of optical defocused image. At the same time, the RGCs also showed increased background noise. Therefore, defocused images changed the signaling of some ON and OFF alpha RGCs and ON-OFF RGCs in the mouse retina. The process may be the first step in the induction of myopia development. It appears that gap junctions also play a key role in this process.
Collapse
Affiliation(s)
- Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| |
Collapse
|
15
|
Murphy MJ, Riddell N, Crewther DP, Simpson D, Crewther SG. Temporal whole field sawtooth flicker without a spatial component elicits a myopic shift following optical defocus irrespective of waveform direction in chicks. PeerJ 2019; 7:e6277. [PMID: 30697484 PMCID: PMC6347968 DOI: 10.7717/peerj.6277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023] Open
Abstract
Purpose Myopia (short-sightedness) is the commonest visual disorder and greatest risk factor for sight threatening secondary pathologies. Myopia and hyperopia can be induced in animal models by rearing with optical lens defocus of opposite sign. The degree of refractive compensation to lens-induced defocus in chicks has been shown to be modified by directionally drifting sawtooth spatio-temporal luminance diamond plaids, with Fast-ON sawtooth spatio-temporal luminance profiles inhibiting the myopic shift in response to negative lenses, and Fast-OFF profiles inhibiting the hyperopic shift in response to positive lenses. What is unknown is whether similar sign-of-defocus dependent results produced by spatio-temporal modulation of sawtooth patterns could be achieved by rearing chicks under whole field low temporal frequency sawtooth luminance profiles at 1 or 4 Hz without a spatial component, or whether such stimuli would indiscriminately elicit a myopic shift such as that previously shown with symmetrical (or near-symmetrical) low frequency flicker across a range of species. Methods Hatchling chicks (n = 166) were reared from days five to nine under one of three defocus conditions (No Lens, +10D lens, or -10D lens) and five light conditions (No Flicker, 1 Hz Fast-ON/Slow-OFF sawtooth flicker, 4 Hz Fast-ON/Slow-OFF sawtooth flicker, 1 Hz Fast-OFF/Slow-ON sawtooth flicker, or 4Hz Fast-OFF/Slow-ON sawtooth flicker). The sawtooth flicker was produced by light emitting diodes (white LEDs, 1.2 -183 Lux), and had no measurable dark phase. Biometrics (refraction and ocular axial dimensions) were measured on day nine. Results Both 1 Hz and 4 Hz Fast-ON and Fast-OFF sawtooth flicker induced an increase in vitreous chamber depth that was greater in the presence of negative compared to positive lens defocus. Both sawtooth profiles at both temporal frequencies inhibited the hyperopic shift in response to +10D lenses, whilst full myopic compensation (or over-compensation) in response to -10D lenses was observed. Conclusions Whole field low temporal frequency Fast-ON and Fast-OFF sawtooth flicker induces a generalized myopic shift, similar to that previously shown for symmetrical sine-wave and square-wave flicker. Our findings highlight that temporal modulation of retinal ON/OFF pathways per se (without a spatial component) is insufficient to produce strong sign-of-defocus dependent effect.
Collapse
Affiliation(s)
- Melanie J Murphy
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Nina Riddell
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - David P Crewther
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - David Simpson
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Sheila G Crewther
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Riddell N, Faou P, Crewther SG. Short term optical defocus perturbs normal developmental shifts in retina/RPE protein abundance. BMC DEVELOPMENTAL BIOLOGY 2018; 18:18. [PMID: 30157773 PMCID: PMC6116556 DOI: 10.1186/s12861-018-0177-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Myopia (short-sightedness) affects approximately 1.4 billion people worldwide, and prevalence is increasing. Animal models induced by defocusing lenses show striking similarity with human myopia in terms of morphology and the implicated genetic pathways. Less is known about proteome changes in animals. Thus, the present study aimed to improve understanding of protein pathway responses to lens defocus, with an emphasis on relating expression changes to no lens control development and identifying bidirectional and/or distinct pathways across myopia and hyperopia (long-sightedness) models. RESULTS Quantitative label-free proteomics and gene set enrichment analysis (GSEA) were used to examine protein pathway expression in the retina/RPE of chicks following 6 h and 48 h of myopia induction with - 10 dioptre (D) lenses, hyperopia induction with +10D lenses, or normal no lens rearing. Seventy-one pathways linked to cell development and neuronal maturation were differentially enriched between 6 and 48 h in no lens chicks. The majority of these normal developmental changes were disrupted by lens-wear (47 of 71 pathways), however, only 11 pathways displayed distinct expression profiles across the lens conditions. Most notably, negative lens-wear induced up-regulation of proteins involved in ATP-driven ion transport, calcium homeostasis, and GABA signalling between 6 and 48 h, while the same proteins were down-regulated over time in normally developing chicks. Glutamate and bicarbonate/chloride transporters were also down-regulated over time in normally developing chicks, and positive lens-wear inhibited this down-regulation. CONCLUSIONS The chick retina/RPE proteome undergoes extensive pathway expression shifts during normal development. Most of these pathways are further disrupted by lens-wear. The identified expression patterns suggest close interactions between neurotransmission (as exemplified by increased GABA receptor and synaptic protein expression), cellular ion homeostasis, and associated energy resources during myopia induction. We have also provided novel evidence for changes to SLC-mediated transmembrane transport during hyperopia induction, with potential implications for signalling at the photoreceptor-bipolar synapse. These findings reflect a key role for perturbed neurotransmission and ionic homeostasis in optically-induced refractive errors, and are predicted by our Retinal Ion Driven Efflux (RIDE) model.
Collapse
Affiliation(s)
- Nina Riddell
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Plenty Rd., Bundoora, Melbourne, VIC, 3083, Australia.
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Plenty Rd., Bundoora, Melbourne, VIC, 3083, Australia
| |
Collapse
|
17
|
Abstract
In myopia the eye grows too long, generating poorly focused retinal images when people try to look at a distance. Myopia is tightly linked to the educational status and is on the rise worldwide. It is still not clear which kind of visual experience stimulates eye growth in children and students when they study. We propose a new and perhaps unexpected reason. Work in animal models has shown that selective activation of ON or OFF pathways has also selective effects on eye growth. This is likely to be true also in humans. Using custom-developed software to process video frames of the visual environment in realtime we quantified relative ON and OFF stimulus strengths. We found that ON and OFF inputs were largely balanced in natural environments. However, black text on white paper heavily overstimulated retinal OFF pathways. Conversely, white text on black paper overstimulated ON pathways. Using optical coherence tomography (OCT) in young human subjects, we found that the choroid, the heavily perfused layer behind the retina in the eye, becomes about 16 µm thinner in only one hour when subjects read black text on white background but about 10 µm thicker when they read white text from black background. Studies both in animal models and in humans have shown that thinner choroids are associated with myopia development and thicker choroids with myopia inhibition. Therefore, reading white text from a black screen or tablet may be a way to inhibit myopia, while conventional black text on white background may stimulate myopia.
Collapse
|
18
|
Chakraborty R, Ostrin LA, Nickla DL, Iuvone PM, Pardue MT, Stone RA. Circadian rhythms, refractive development, and myopia. Ophthalmic Physiol Opt 2018; 38:217-245. [PMID: 29691928 PMCID: PMC6038122 DOI: 10.1111/opo.12453] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Despite extensive research, mechanisms regulating postnatal eye growth and those responsible for ametropias are poorly understood. With the marked recent increases in myopia prevalence, robust and biologically-based clinical therapies to normalize refractive development in childhood are needed. Here, we review classic and contemporary literature about how circadian biology might provide clues to develop a framework to improve the understanding of myopia etiology, and possibly lead to rational approaches to ameliorate refractive errors developing in children. RECENT FINDINGS Increasing evidence implicates diurnal and circadian rhythms in eye growth and refractive error development. In both humans and animals, ocular length and other anatomical and physiological features of the eye undergo diurnal oscillations. Systemically, such rhythms are primarily generated by the 'master clock' in the surpachiasmatic nucleus, which receives input from the intrinsically photosensitive retinal ganglion cells (ipRGCs) through the activation of the photopigment melanopsin. The retina also has an endogenous circadian clock. In laboratory animals developing experimental myopia, oscillations of ocular parameters are perturbed. Retinal signaling is now believed to influence refractive development; dopamine, an important neurotransmitter found in the retina, not only entrains intrinsic retinal rhythms to the light:dark cycle, but it also modulates refractive development. Circadian clocks comprise a transcription/translation feedback control mechanism utilizing so-called clock genes that have now been associated with experimental ametropias. Contemporary clinical research is also reviving ideas first proposed in the nineteenth century that light exposures might impact refraction in children. As a result, properties of ambient lighting are being investigated in refractive development. In other areas of medical science, circadian dysregulation is now thought to impact many non-ocular disorders, likely because the patterns of modern artificial lighting exert adverse physiological effects on circadian pacemakers. How, or if, such modern light exposures and circadian dysregulation contribute to refractive development is not known. SUMMARY The premise of this review is that circadian biology could be a productive area worthy of increased investigation, which might lead to the improved understanding of refractive development and improved therapeutic interventions.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | | | | | | | - Machelle T. Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur
| | - Richard A. Stone
- University of Pennsylvania School of Medicine, Philadelphia, USA
| |
Collapse
|
19
|
Hendriks M, Verhoeven VJ, Buitendijk GH, Polling JR, Meester-Smoor MA, Hofman A, Kamermans M, Ingeborgh van den Born L, Klaver CC, van Huet RA, Klevering BJ, Bax NM, Lambertus S, Klaver CC, Hoyng CB, Oomen CJ, van Zelst-Stams WA, Cremers FP, Plomp AS, van Schooneveld MJ, van Genderen MM, Schuil J, Boonstra FN, Schlingemann RO, Bergen AA, Pierrache L, Meester-Smoor M, van den Born LI, Boon CJ, Pott JW, van Leeuwen R, Kroes HY, de Jong-Hesse Y. Development of Refractive Errors-What Can We Learn From Inherited Retinal Dystrophies? Am J Ophthalmol 2017; 182:81-89. [PMID: 28751151 DOI: 10.1016/j.ajo.2017.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 01/13/2023]
Abstract
PURPOSE It is unknown which retinal cells are involved in the retina-to-sclera signaling cascade causing myopia. As inherited retinal dystrophies (IRD) are characterized by dysfunction of a single retinal cell type and have a high risk of refractive errors, a study investigating the affected cell type, causal gene, and refractive error in IRDs may provide insight herein. DESIGN Case-control study. METHODS Study Population: Total of 302 patients with IRD from 2 ophthalmogenetic centers in the Netherlands. Reference Population: Population-based Rotterdam Study-III and Erasmus Rucphen Family Study (N = 5550). Distributions and mean spherical equivalent (SE) were calculated for main affected cell type and causal gene; and risks of myopia and hyperopia were evaluated using logistic regression. RESULTS Bipolar cell-related dystrophies were associated with the highest risk of SE high myopia 239.7; odds ratio (OR) mild hyperopia 263.2, both P < .0001; SE -6.86 diopters (D) (standard deviation [SD] 6.38), followed by cone-dominated dystrophies (OR high myopia 19.5, P < .0001; OR high hyperopia 10.7, P = .033; SE -3.10 D [SD 4.49]); rod dominated dystrophies (OR high myopia 10.1, P < .0001; OR high hyperopia 9.7, P = .001; SE -2.27 D [SD 4.65]), and retinal pigment epithelium (RPE)-related dystrophies (OR low myopia 2.7; P = .001; OR high hyperopia 5.8; P = .025; SE -0.10 D [SD 3.09]). Mutations in RPGR (SE -7.63 D [SD 3.31]) and CACNA1F (SE -5.33 D [SD 3.10]) coincided with the highest degree of myopia and in CABP4 (SE 4.81 D [SD 0.35]) with the highest degree of hyperopia. CONCLUSIONS Refractive errors, in particular myopia, are common in IRD. The bipolar synapse and the inner and outer segments of the photoreceptor may serve as critical sites for myopia development.
Collapse
|
20
|
Martemyanov KA, Sampath AP. The Transduction Cascade in Retinal ON-Bipolar Cells: Signal Processing and Disease. Annu Rev Vis Sci 2017; 3:25-51. [PMID: 28715957 DOI: 10.1146/annurev-vision-102016-061338] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our robust visual experience is based on the reliable transfer of information from our photoreceptor cells, the rods and cones, to higher brain centers. At the very first synapse of the visual system, information is split into two separate pathways, ON and OFF, which encode increments and decrements in light intensity, respectively. The importance of this segregation is borne out in the fact that receptive fields in higher visual centers maintain a separation between ON and OFF regions. In the past decade, the molecular mechanisms underlying the generation of ON signals have been identified, which are unique in their use of a G-protein signaling cascade. In this review, we consider advances in our understanding of G-protein signaling in ON-bipolar cell (BC) dendrites and how insights about signaling have emerged from visual deficits, mostly night blindness. Studies of G-protein signaling in ON-BCs reveal an intricate mechanism that permits the regulation of visual sensitivity over a wide dynamic range.
Collapse
Affiliation(s)
| | - Alapakkam P Sampath
- Jules Stein Eye Institute, University of California, Los Angeles, California 90095;
| |
Collapse
|
21
|
Chakraborty R, Pardue MT. Molecular and Biochemical Aspects of the Retina on Refraction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:249-67. [PMID: 26310159 DOI: 10.1016/bs.pmbts.2015.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutant mouse models with specific visual pathway defects offer an advantage to comprehensively investigate the role of specific pathways/neurons involved in refractive development. In this review, we will focus on recent studies using mouse models that have provided insight into retinal pathways and neurotransmitters controlling refractive development. Specifically, we will examine the contributions of rod and cone photoreceptors and the ON and OFF retinal pathways to visually driven eye growth with emphasis on dopaminergic mechanisms.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
22
|
Verhoeven VJM, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, Höhn R, MacGregor S, Hewitt AW, Nag A, Cheng CY, Yonova-Doing E, Zhou X, Ikram MK, Buitendijk GHS, McMahon G, Kemp JP, Pourcain BS, Simpson CL, Mäkelä KM, Lehtimäki T, Kähönen M, Paterson AD, Hosseini SM, Wong HS, Xu L, Jonas JB, Pärssinen O, Wedenoja J, Yip SP, Ho DWH, Pang CP, Chen LJ, Burdon KP, Craig JE, Klein BEK, Klein R, Haller T, Metspalu A, Khor CC, Tai ES, Aung T, Vithana E, Tay WT, Barathi VA, Chen P, Li R, Liao J, Zheng Y, Ong RT, Döring A, Evans DM, Timpson NJ, Verkerk AJMH, Meitinger T, Raitakari O, Hawthorne F, Spector TD, Karssen LC, Pirastu M, Murgia F, Ang W, Mishra A, Montgomery GW, Pennell CE, Cumberland PM, Cotlarciuc I, Mitchell P, Wang JJ, Schache M, Janmahasatian S, Janmahasathian S, Igo RP, Lass JH, Chew E, Iyengar SK, Gorgels TGMF, Rudan I, Hayward C, Wright AF, Polasek O, Vatavuk Z, Wilson JF, Fleck B, Zeller T, Mirshahi A, Müller C, Uitterlinden AG, Rivadeneira F, Vingerling JR, Hofman A, Oostra BA, Amin N, Bergen AAB, Teo YY, Rahi JS, Vitart V, Williams C, Baird PN, Wong TY, Oexle K, et alVerhoeven VJM, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, Höhn R, MacGregor S, Hewitt AW, Nag A, Cheng CY, Yonova-Doing E, Zhou X, Ikram MK, Buitendijk GHS, McMahon G, Kemp JP, Pourcain BS, Simpson CL, Mäkelä KM, Lehtimäki T, Kähönen M, Paterson AD, Hosseini SM, Wong HS, Xu L, Jonas JB, Pärssinen O, Wedenoja J, Yip SP, Ho DWH, Pang CP, Chen LJ, Burdon KP, Craig JE, Klein BEK, Klein R, Haller T, Metspalu A, Khor CC, Tai ES, Aung T, Vithana E, Tay WT, Barathi VA, Chen P, Li R, Liao J, Zheng Y, Ong RT, Döring A, Evans DM, Timpson NJ, Verkerk AJMH, Meitinger T, Raitakari O, Hawthorne F, Spector TD, Karssen LC, Pirastu M, Murgia F, Ang W, Mishra A, Montgomery GW, Pennell CE, Cumberland PM, Cotlarciuc I, Mitchell P, Wang JJ, Schache M, Janmahasatian S, Janmahasathian S, Igo RP, Lass JH, Chew E, Iyengar SK, Gorgels TGMF, Rudan I, Hayward C, Wright AF, Polasek O, Vatavuk Z, Wilson JF, Fleck B, Zeller T, Mirshahi A, Müller C, Uitterlinden AG, Rivadeneira F, Vingerling JR, Hofman A, Oostra BA, Amin N, Bergen AAB, Teo YY, Rahi JS, Vitart V, Williams C, Baird PN, Wong TY, Oexle K, Pfeiffer N, Mackey DA, Young TL, van Duijn CM, Saw SM, Bailey-Wilson JE, Stambolian D, Klaver CC, Hammond CJ. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet 2013; 45:314-8. [PMID: 23396134 PMCID: PMC3740568 DOI: 10.1038/ng.2554] [Show More Authors] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/16/2013] [Indexed: 02/06/2023]
Abstract
Refractive error is the most common eye disorder worldwide and is a prominent cause of blindness. Myopia affects over 30% of Western populations and up to 80% of Asians. The CREAM consortium conducted genome-wide meta-analyses, including 37,382 individuals from 27 studies of European ancestry and 8,376 from 5 Asian cohorts. We identified 16 new loci for refractive error in individuals of European ancestry, of which 8 were shared with Asians. Combined analysis identified 8 additional associated loci. The new loci include candidate genes with functions in neurotransmission (GRIA4), ion transport (KCNQ5), retinoic acid metabolism (RDH5), extracellular matrix remodeling (LAMA2 and BMP2) and eye development (SIX6 and PRSS56). We also confirmed previously reported associations with GJD2 and RASGRF1. Risk score analysis using associated SNPs showed a tenfold increased risk of myopia for individuals carrying the highest genetic load. Our results, based on a large meta-analysis across independent multiancestry studies, considerably advance understanding of the mechanisms involved in refractive error and myopia.
Collapse
|
23
|
Chen JC, Brown B, Schmid KL. Slow flash multifocal electroretinogram in myopia. Vision Res 2006; 46:2869-76. [PMID: 16647738 DOI: 10.1016/j.visres.2006.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 02/18/2006] [Accepted: 02/23/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this study was to investigate the characteristics of retinal function in myopes using a modified multifocal electroretinogram (mfERG) protocol, the slow flash (sf-mfERG) paradigm, which is thought to primarily reflect responses of ON- and OFF-bipolar cells and emphasize the late response components. METHODS Twenty-eight subjects (10 emmetropes and 18 myopes) underwent mfERG testing using VERIS 5.1.5X. The sf-mfERG stimulus array consisted of 103-scaled hexagons and flickered according to a pseudorandom binary m-sequence (2(13)-1). The stimulation sequence was slowed by inserting three dark frames such that each step in the m-sequence was four frames long (53.3ms). The amplitude and implicit time of the major sf-mfERG waveform features (N1, P1, and N2) of the first-order kernel were analysed. RESULTS Myopes had significantly reduced P1 and N2 amplitudes compared to the emmetropes (F(1,25)=8.818, p=0.007; F(1,25)=6.723, p=0.017). There were no significant differences in N1 amplitude or implicit time between the groups (F(1,25)=1.506, p=0.233; F(1,25)=1.291, p=0.269). CONCLUSIONS Late response components (P1 and N2) of the first-order sf-mfERG responses were preferentially affected in myopia, suggesting possible reduced ON- and OFF-bipolar cell activity. As bipolar cells form the first synapse of the visual system with the photoreceptors to initiate the ON- and OFF-pathways, future investigations of ON- and OFF-systems in myopia are of interest.
Collapse
Affiliation(s)
- Jennifer C Chen
- School of Optometry, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | | | | |
Collapse
|
24
|
Abstract
PURPOSE Inspired by the finding in chickens that preferential stimulation of the ON retinal system suppresses myopia induced by negative spectacle lens wear and that stimulation of the OFF system suppresses the hyperopia induced by positive lens wear, we sought to determine whether stimulation of the ON-OFF retinal systems could drive directional accommodation responses in humans. If emmetropisation and accommodation use similar image processing algorithms, more accommodation would be expected with OFF stimulation. METHODS Accommodation responses were measured while viewing a computer-generated pattern designed to stimulate the ON-OFF systems. The stimulus comprised a rectangular field (12 x 9.5 cm) on a black background filled with 196 discs (diameters: 0.4-1.0 cm). These were presented on an LCD monitor in a dark room at a viewing distance of 55 cm (1.8 D). Thirteen subjects aged 21-37 years took part. The individual discs had saw-tooth shaped temporal luminance profiles with the same time period but with random phases with respect to each other, so that the mean brightness of the stimulus was constant. To eliminate accommodation responses based on other cues (i.e. proximity) a 0.5 mm artificial pupil was used to open the accommodation loop. Refraction in the vertical pupil meridian was continuously recorded with an infrared photorefractor (the PowerRefractor). To verify that computer-based stimuli presented within our experimental design were effective in driving accommodation, previously studied stimuli were also tested: changes in size (looming) and incremental low pass filtering. RESULTS Preferential stimulation of the ON or OFF subsystems produced a convincing depth illusion in all subjects (which was psychophysically confirmed in four subjects). Although the stimulus appeared to move in depth it did not produce accommodation responses that were consistent with that, i.e. the accommodation system did not appear to fluctuate in rhythm with the temporal oscillations of the stimulus. As the target appeared to loom it induced a greater accommodation response then when it appeared to recede. The looming target produced changes in the accommodation response in nine of 13 subjects that were consistent with its perceived change in proximity (although the target did not actually move in depth). Incremental low pass filtering produced non-directional drifts of accommodation in all subjects. Combinations of the stimuli (i.e. looming and low pass filtering, ON/OFF and looming) were not more effective stimuli to accommodation. After removal of the artificial pupil (closed loop conditions), accommodation was no longer induced with any of these stimuli. CONCLUSIONS Although the preferential ON or OFF stimulation produced a pronounced illusion of motion in depth despite constant average brightness, proximal accommodation was induced in only one subject. Therefore, the ON/OFF stimulation appeared to have only minor input into proximal accommodation. Potential inputs into reflex accommodation need to be defined in further studies.
Collapse
Affiliation(s)
- Monika Weiss
- Section of Neurobiology of the Eye, University Eye Hospital, Calwerstr. 7/1, 72076 Tuebingen, Germany
| | | | | |
Collapse
|
25
|
Crewther SG, Crewther DP. Inhibition of retinal ON/OFF systems differentially affects refractive compensation to defocus. Neuroreport 2003; 14:1233-7. [PMID: 12824766 DOI: 10.1097/00001756-200307010-00009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hatchling chicks reared with defocusing spectacle lenses compensate for the applied defocus, both refractively and through changes in eye growth, in about 1 week. In this experiment, we show that pharmacological inhibition of the retinal ON or OFF responses to light stimulation with isomers of alpha-aminoadipic acid results in a sign-dependent pattern of interference with the refractive compensation mechanism. An intravitreal injection of 2.5 microM L-alpha-aminoadipic acid inhibited the ERG ON response and inhibited refractive compensation to negative lens defocus, but not to positive or zero power lens defocus. D-alpha-aminoadipic acid in the same dose reduced the retinal OFF response and inhibited refractive compensation to positive lens defocus, but not to negative or zero power lenses. Thus the pharmacological manipulation of induced refractive change suggests that the retinal ON and OFF subsystems play independent roles in the emmetropization process.
Collapse
Affiliation(s)
- S G Crewther
- School of Psychological Science, La Trobe University, Melbourne, Australia.
| | | |
Collapse
|
26
|
Abstract
The current state of research into experimentally induced refractive errors is reviewed. The area is analysed in three components-the transduction of defocus or deprivation, the vector for transmitting the error message from the retina to the outer tunics of the eye, and the identity of the effector for causing growth modulation in the sclera. Anatomical, pharmacological, electrophysiological and optical factors are considered in terms of which elements of the retina are necessary to support a refractive response to deprivation or defocus. Two of the current models are discussed-one emphasizing the role of the choroid in effecting ocular and refractive change, while the second model approaches the problem from the aspect of scleral changes that are associated with growth adaptation without emphasis on the error detection mechanism. A third model is proposed in which the error signal for deprivation or defocus is detected in the outer retina and where error is translated through separate signals for stimulus brightening and darkening into a net signal for fluid flow across and under the active control of the retinal pigment epithelium with the fluid communication between the vitreous chamber and the choroidal lymphatics. The directions of research both fundamental and clinical which are needed to create pharmaceutical or environmental solutions to refractive control are discussed.
Collapse
Affiliation(s)
- D P Crewther
- School of Psychological Science, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
27
|
Abstract
The human eye is programmed to achieve emmetropia in youth and to maintain emmetropia with advancing years. This is despite the changes in all eye dimensions during the period of growth and the continuing growth of the lens throughout life. The process of emmetropisation in the child's eye is indicated by a shift from the Gaussian distribution of refractive errors around a hypermetropic mean value at birth to the non-Gaussian leptokurtosis around an emmetropic mean value in the adult. Emmetropisation is the result of both passive and active processes. The passive process is that of proportional enlargement of the eye in the child. The proportional enlargement of the eye reduces the power of the dioptric system in proportion to the increasing axial length. The power of the cornea is reduced by lengthening of the radius of curvature. The power of the lens is reduced by lengthening radii of curvature and the effectivity of the lens is reduced by deepening of the anterior chamber. Ametropia results when these changes are not proportional. The active mechanism involves the feedback of image focus information from the retina and consequent adjustment of the axial length. Defective image formation interferes with this feedback and ametropia then results. Heredity determines the tendency to certain globe proportions and environment plays a part in influencing the action of active emmetropisation. The maintenance of emmetropia in the adult in spite of continuing lens growth with increasing lens thickness and increasing lens curvature, which is known as the lens paradox, is due to the refractive index changes balancing the effect of the increased curvature. These changes may be due to the differences between nucleus and cortex or to gradient changes within the cortex.
Collapse
Affiliation(s)
- N P Brown
- Clinical Cataract Research Unit, Nuffield Laboratory of Ophthalmology, Oxford, UK
| | | | | |
Collapse
|
28
|
Wang IJ, Shih YF, Sung YS, Yu MJ, Lin LL, Hung PT. Influence of destruction of retina-RPE complex on the proliferation of scleral chondrocytes in chicks. J Ocul Pharmacol Ther 1998; 14:429-36. [PMID: 9811232 DOI: 10.1089/jop.1998.14.429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We studied the role of the retina-retinal pigment epithelium (RPE) complex in the proliferation of scleral chondrocytes in chicks. Seventy-two chicks were allocated to one of four groups: intravitreal gentamicin (400 microg) injection (destruction of retina-RPE complex); intravitreal gentamicin injection with goggling; goggling only (form-deprivation myopia); and intravitreal saline injection (control). The chicks were killed and retina-RPE complexes were harvested under a microscope. Retina-RPE complexes were then co-cultured with primary culture of first day scleral chondrocytes in Transwell-COL co-culture systems (Costar), with two different pore sizes (0.4 and 3.0 microm) and serum-deprivation medium. An MTT assay was performed at A550 after 4 days. In the 0.4 microm pore size system, the absorbency at A550 showed no differences between groups. However, in the 3.0 microm pore size system, the absorbency at A550s in the intravitreal gentamicin groups was significantly lower than in the control and the goggle groups (p<0.05), indicating that destruction of the retina-RPE complex inhibited chondrocyte proliferation. The absorbency in the goggle group was higher than in the control group (p<0.05). These results indicate that the retina-RPE complex exerts a positive effect on the proliferation of scleral chondrocytes via a molecule sized between 0.4.and 3.0 microm in diameter.
Collapse
Affiliation(s)
- I J Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Fujikado T, Hosohata J, Omoto T. ERG of form deprivation myopia and drug induced ametropia in chicks. Curr Eye Res 1996; 15:79-86. [PMID: 8631207 DOI: 10.3109/02713689609017614] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chick eyes occluded for various periods or treated with various concentrations of kainic acid (KA) or 2-amino-4-phosphonobutylate (APB) during development showed characteristic changes of electroretinography and of refraction. In occluded eyes, oscillatory potential amplitudes (OP-A) were reduced, even with high-intensity stimulation, in proportion to duration of occlusion, but b wave amplitude was unchanged, implying functional changes in inner layers of the deprived retina. OP-A reduction after only 1 week of occlusion and reversibility of this change might reflect retinal changes preceding axial elongation. KA was confirmed to induce myopia with axial elongation and APB to induce hyperopia with axial shortening. KA and APB both suppressed OP-A. KA reduced ON and OFF responses, but low-dose APB suppressed only ON responses. Study results suggest that myopia could be induced by changes of inner retina mediating OP attenuation and degradation of ON and OFF responses. This manuscript reports unpublished work that is not currently under consideration for publication elsewhere.
Collapse
Affiliation(s)
- T Fujikado
- Department of Ophthalmology, Osaka University Medical School, Japan
| | | | | |
Collapse
|
30
|
Crewther DP, Crewther SG, Xie RZ. Changes in eye growth produced by drugs which affect retinal ON or OFF responses to light. J Ocul Pharmacol Ther 1996; 12:193-208. [PMID: 8773935 DOI: 10.1089/jop.1996.12.193] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The interaction between drugs which affect ON and OFF responses to light and ocular growth was investigated in 154 eyes of newly-hatched chicks raised with normal vision or monocular occlusion with regular intravitreal injections of APB (2-amino-4 phosphonobutyric acid) or PDA (cis 2,3-piperidine-dicarboxylic acid). The experimental results indicate that APB, at a dose sufficient to abolish the b-wave of the electroretinogram (but not to show extensive damage to the retinal neurons at the light microscopic level), caused a significant decrease in the axial growth of the eyes when compared with normal eyes. APB did not result in a significant difference in the growth rates of the occluded eyes compared with occluded controls. By contrast, injection of PDA into occluded eyes at a dose which reduced the response at light offset in the electroretinogram (and also affected the ON-response), caused a dramatic reduction in elongation of those eyes compared with occluded controls. Injection of PDA into eyes raised in a normal visual environment did not induce a significant difference from the growth rate of normally reared control eyes. These growth changes support the hypothesis that drugs which affect the physiological function of the retina, in particular, the strength of the ON and OFF responses, interact with the visual rearing environment to cause a consistent pattern of changes to eye growth and refractive error.
Collapse
Affiliation(s)
- D P Crewther
- School of Optometry, University of New South Wales, Kensington, Australia
| | | | | |
Collapse
|
31
|
Goss DA, Wickham MG. Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization. A literature review. Doc Ophthalmol 1995; 90:341-75. [PMID: 8620819 DOI: 10.1007/bf01268122] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The very common ocular clinical ocular condition in children juvenile onset myopia results from axial elongation of the eye. In humans, some studies have found an association of myopia with greater levels of nearpoint activity and with differences in accommodation and convergence function. This paper reviews a variety of laboratory and clinical studies which are consistent with the hypothesis that retinal image defocus is biochemically transformed into an axial elongation expressed through increased posterior segment growth, and thus myopia. This paper also reviews theories of emmetropization, and classifies them as correlational, feedback, and combination. Evidence is presented to suggest that a combination theory, which combines both correlation of the ocular dioptric components and some feedback mechanism for growth of the eye, is the most correct. Current laboratory research suggests that quality and/or focus (defocus) of retinal imagery is involved in this feedback mechanism and that experimentally induced myopia might be enhanced, reduced or eliminated by pharmaceutical application. Direction of defocus may affect the rate of posterior segment growth, and thus the rate of ocular axial elongation.
Collapse
Affiliation(s)
- D A Goss
- School of Optometry, Indiana University Bloomington 47405, USA
| | | |
Collapse
|
32
|
Fulton AB, Hansen RM. Electroretinogram responses and refractive errors in patients with a history of retinopathy prematurity. Doc Ophthalmol 1995; 91:87-100. [PMID: 8813488 DOI: 10.1007/bf01203688] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ametropias, particularly myopia, and mild retinal dysfunction are found in eyes with a history of retinopathy of prematurity. The retina is an important controller of refractive development. The aims of this study were to find out whether altered measures of retinal function and ametropias are associated and to consider mechanisms by which the retina might control refractive development. Nine infants and children with a history of stage 1, 2 or 3 retinopathy of prematurity and known courses of refractive development were studied. Spherical equivalents at the time of the electroretinogram ranged from +5.50 to -9.00 diopters. Rod photoresponse characteristics were derived from the a-wave, and postreceptoral components were also analyzed with calculation of the sensitivity and saturated amplitude of the b-wave, the sensitivity of oscillatory wavelet OP2, and average amplitudes of OP3 and OP4. In hyperopic and myopic patients alike, the saturated amplitude and gain of the rod cell response were attenuated. In all patients, b-wave sensitivity was low, but in most there was little effect on saturated b-wave amplitude. In patients with courses toward myopia, the amplitude of OP4, an 'OFF' signal, is relatively more attenuated than that of OP3, an 'ON' signal. OP4 is relatively larger in patients with courses toward hyperopia. The OP results suggest that an imbalance of 'ON' and 'OFF' activity in the retina is associated with development of ametropias in retinopathy of prematurity.
Collapse
Affiliation(s)
- A B Fulton
- Department of Ophthalmology, Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
33
|
|