1
|
Munday MR, Hemingway CJ. The effect of the lipid-lowering agent gemfibrozil on glucose handling. J Pharm Pharmacol 2011. [DOI: 10.1111/j.2042-7158.1998.tb02409.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R Munday
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, Brunswick Square, London WC1N 1AX
| | - Cheryl J Hemingway
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, Brunswick Square, London WC1N 1AX
| |
Collapse
|
2
|
Hagopian K, Munday MR. The role of pyruvate dehydrogenase, phosphofructo-1-kinase and acetyl-CoA carboxylase in the regulation of fatty acid synthesis in the lactating rat mammary gland during the starved to re-fed transition. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1336:474-84. [PMID: 9367175 DOI: 10.1016/s0304-4165(97)00061-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Re-feeding 24-h-starved lactating rats resulted in a rapid (within 0.5 h) restoration of glucose uptake by the mammary gland and a slower (within 3 h) restoration of fatty acid synthesis. The rapid reactivation of glucose uptake (82% of fed value within 0.5 h of re-feeding) correlated with a rapid reactivation of 6-phosphofructo-1-kinase (6-PF-1-K) and glycolysis (as determined by a 97% decrease in the [fructose-6-phosphate]/[fructose-1,6-bisphosphate] ratio). This could not be fully explained by a fall (29%) in the tissue concentration of its allosteric inhibitor, citrate. The delayed reactivation of pyruvate dehydrogenase (PDH) correlated very closely with the delayed reactivation of fatty acid synthesis and explained the continued output of pyruvate and lactate within the first 0.5 h of re-feeding. PDH reactivation preceded the reactivation of acetyl-CoA carboxylase (ACC), which did not occur significantly until 1.5 h of re-feeding. ACC reactivation correlated with a decrease in the tissue concentration of citrate and a second late phase of 6-PF-1-K activation. It is clear that the important regulatory steps 6-PF-1-K, PDH and ACC, are reactivated asynchronously in the lactating mammary gland in response to re-feeding starved rats and that PDH is more important than ACC in the regulation of fatty acid synthesis.
Collapse
Affiliation(s)
- K Hagopian
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, UK
| | | |
Collapse
|
3
|
Perin NM, Clandinin T, Thomson AB. Importance of milk and diet on the ontogeny and adaptation of the intestine. J Pediatr Gastroenterol Nutr 1997; 24:419-25. [PMID: 9144125 DOI: 10.1097/00005176-199704000-00011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- N M Perin
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
4
|
Heesom KJ, Souza PF, Ilic V, Williamson DH. Chain-length dependency of interactions of medium-chain fatty acids with glucose metabolism in acini isolated from lactating rat mammary glands. A putative feed-back to control milk lipid synthesis from glucose. Biochem J 1992; 281 ( Pt 1):273-8. [PMID: 1731763 PMCID: PMC1130673 DOI: 10.1042/bj2810273] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of a series of medium-chain fatty acids (C6-C12) on glucose metabolism in isolated acini from lactating rat mammary glands have been studied. Hexanoate (C6) octanoate (C8) and decanoate (C10), but not laurate (C12), decreased [1-14C]glucose conversion into [14C]lipid and the production of 14CO2 (an index of the pentose phosphate pathway). With hexanoate and octanoate, glucose utilization was decreased, whereas decanoate had a slight stimulatory effect on glucose utilization, but there was a large accumulation of lactate. Addition of dichloroacetate (an inhibitor of pyruvate dehydrogenase kinase) decreased this accumulation of lactate and stimulated the conversion of [1-14C]glucose into [14C]lipid and 14CO2. Insulin had no effect on the rate of glucose utilization in the presence of hexanoate. It stimulated the rate in the presence of octanoate and laurate and increased the conversion of [1-14C]glucose into [14C]lipid in the presence of octanoate, decanoate or laurate. The major fate of 1-14C-labelled medium-chain fatty acids (C6, C8 and C12) was conversion into [14C]lipid. The proportion converted into 14CO2 decreased with increasing chain length, whereas the rate of [14C]lipid formation increased. It is concluded that the interactions between medium-chain fatty acids and glucose metabolism represent a feed-back mechanism to control milk lipid synthesis, and this may be important when milk accumulates in the gland.
Collapse
Affiliation(s)
- K J Heesom
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | | | | | |
Collapse
|
5
|
Hagopian K, Butt J, Munday MR. Regulation of fatty acid synthesis in lactating rat mammary gland in the fed to starved transition: asynchronous control of pyruvate dehydrogenase, phosphofructokinase and acetyl-CoA carboxylase. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1991; 100:527-34. [PMID: 1687675 DOI: 10.1016/0305-0491(91)90215-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Withdrawal of food from lactating rats produced a rapid and dramatic decrease in the uptake of glucose by the mammary gland and an inhibition of the rate of fatty acid synthesis that could not be explained alone by decreased substrate supply to the tissue. 2. Within the first 6 hr starvation, fatty acid synthesis and pyruvate dehydrogenase activity were inhibited by 87 and 80%, respectively, but acetyl-CoA carboxylase activity did not change significantly. 3. Between 6 and 24 hr starvation, total and expressed activities of acetyl-CoA carboxylase decreased by 62 and 55%, respectively. 4. The ratio of fructose-6-phosphate/fructose-1,6-bisphosphate concentration in mammary tissue increased 9-fold during the first 6 hr starvation, indicating an inhibition of 6-phosphofructo-1-kinase. However, the major inhibition of this enzyme occurred between 6 and 24 hr starvation when this metabolite ratio increased a further 160-fold in parallel with increased tissue citrate concentration. 5. The increase in citrate concentration between 6 and 24 hr starvation correlated with acetyl-CoA carboxylase inactivation and ketone body accumulation in the mammary gland. 6. This study confirms the asynchronous control of three important regulatory steps in the pathway of glucose utilization and fatty acid synthesis in the lactating rat mammary gland.
Collapse
Affiliation(s)
- K Hagopian
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of London, UK
| | | | | |
Collapse
|
6
|
Holness MJ, Sugden MC. Pyruvate dehydrogenase activities and rates of lipogenesis during the fed-to-starved transition in liver and brown adipose tissue of the rat. Biochem J 1990; 268:77-81. [PMID: 2188650 PMCID: PMC1131393 DOI: 10.1042/bj2680077] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The percentages of pyruvate dehydrogenase complex (PDH) in the active form (PDHa) in two lipogenic tissues (liver and brown adipose tissue) in the fed state were 12.0% and 13.4% respectively. After acute (0.5 h) insulin treatment, PDHa activities had increased by 77% in liver and by 234% in brown fat. Significant decreases in PDHa activities were observed in both tissues by 5 h after the removal of food. The patterns of decline in PDHa activities in the two lipogenic tissues were similar in that the major decreases in activities were observed within the first 7 h of starvation. The significant decreases in PDHa activities observed after starvation for 6 h were accompanied by decreased rates of lipogenesis. Hepatic and brown-fat PDHa activities after acute (30 min) exposure to exogenous insulin were less in 6 h-starved than in fed rats, but the absolute increases in PDHa activities over the 30 min exposure period were similar in fed and 6 h-starved rats. Increases in PDHa activities were paralleled by increases in lipid synthesis in both tissues. Re-activation of PDH in response to insulin treatment or chow re-feeding after 48 h starvation occurred more rapidly in brown adipose tissue than in liver. The results are discussed in relation to the importance of the activity of the PDH complex as a determinant of the total rate of lipogenesis during the fed-to-starved transition and after insulin challenge or re-feeding.
Collapse
Affiliation(s)
- M J Holness
- Department of Biochemistry, London Hospital Medical College, U.K
| | | |
Collapse
|
7
|
Clegg RA, Ottey KA. Cyclic AMP-dependent protein kinase in mammary tissue of the lactating rat. Activity ratio and responsiveness of the target enzymes acetyl-CoA carboxylase and glycogen phosphorylase to beta-adrenergic stimulation. Biochem J 1990; 265:769-75. [PMID: 1968334 PMCID: PMC1133700 DOI: 10.1042/bj2650769] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The role of cyclic AMP in acute regulation of the metabolism of mammary tissue in the lactating rat was examined by measuring the activity ratio of cyclic AMP-dependent protein kinase (A-kinase) and by examining the properties of this enzyme in its two major isoenzymic forms. Isoenzyme II is the major form in soluble extracts of rat mammary tissue. A-kinase activity ratio in such extracts is unaffected by starvation of the lactating rat. Treatment of the intact rat with isoprenaline, or addition of isoprenaline to incubations in vitro of mammary acini, resulted in a major increase in the activity ratio of A-kinase. These treatments equally affected isoenzymes I and II. The treatment in vitro lead to a rapid depletion of A-kinase as subsequently measured in extracts of acini. The degree of activation of the enzymes acetyl-CoA carboxylase and glycogen phosphorylase in extracts of mammary tissue and of acini was assessed as a function of these treatments. The increased activation of A-kinase induced by isoprenaline was unaccompanied by significant changes in the activity of acetyl-CoA carboxylase in acini, although we previously showed that this agent activates acetyl-CoA carboxylase in intact mammary tissue. Contrastingly, isoprenaline-induced enhancement of A-kinase activity was accompanied by an increase in the activity ratio of phosphorylase in acini. These results indicate that: (a) a normal response of expressed A-kinase activity to cyclic AMP operates in mammary acini and mammary tissue from lactating rats; (b) rapid modulation of the total amount of soluble A-kinase is mediated in mammary epithelial cells by cyclic AMP; (c) phosphorylase, an ultimate target of the protein phosphorylation cascade initiated by A-kinase, is activated in acini under conditions where A-kinase activity is enhanced; and (d) mechanisms other than that of the A-kinase phosphorylation/inhibition model for acetyl-CoA carboxylase regulation must operate in mammary tissue preparations and in vivo to account for the response of this enzyme to enhanced A-kinase activity.
Collapse
Affiliation(s)
- R A Clegg
- Hannah Research Institute, Scotland, U.K
| | | |
Collapse
|
8
|
Argilés JM, Lopez-Soriano FJ, Evans RD, Williamson DH. Interleukin-1 and lipid metabolism in the rat. Biochem J 1989; 259:673-8. [PMID: 2658976 PMCID: PMC1138571 DOI: 10.1042/bj2590673] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intravenous administration of a single dose (20 micrograms) of recombinant interleukin-1-beta to virgin, lactating and litter-removed rats rapidly decreased intestinal lipid absorption in all groups. In vivo, oxidation of [14C]triolein to 14CO2 was also significantly decreased by interleukin-1. In addition, the cytokine decreased [14C]lipid accumulation in the mammary gland of lactating rats and in the adipose tissue of virgin and litter-removed rats. The decrease in lipid uptake in the interleukin-treated rats was accompanied by hypertriglyceridaemia; however, there was no significant decrease in tissue lipoprotein lipase activity, except in heart from lactating rats. In contrast, interleukin-1 administration had no effect on lipogenesis in liver, white or brown adipose tissue of virgin rats fed on glucose. These results suggest that interleukin-1 profoundly affects lipid metabolism by delaying intestinal absorption and decreasing tissue uptake.
Collapse
Affiliation(s)
- J M Argilés
- Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | | | | | |
Collapse
|
9
|
Page T. Evidence for the involvement of a gastrointestinal peptide in the regulation of glucose uptake in the mammary gland of the lactating rat. Biochem J 1989; 258:639-43. [PMID: 2658971 PMCID: PMC1138414 DOI: 10.1042/bj2580639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. A method of obtaining serial arterial and mammary-venous blood samples was used to identify possible factors involved in the regulation of glucose uptake in the gland of the lactating rat. 2. Administration of insulin alone increased the arteriovenous glucose difference across the mammary gland of starved rats, but the time course of the recovery could not account for the restoration of arteriovenous glucose difference observed during refeeding [Page & Kuhn (1986). Biochem. J. 239, 269-274]. 3. A crude extract of the gastrointestinal tract (stomach-ileum) from lactating rats enhanced the change in mammary glucose uptake observed with insulin, but only when large amounts (100 munits/rat) of insulin were used. To achieve a similar recovery of arteriovenous glucose difference using near-physiological amounts (5 munits/rat) of insulin it was necessary to sever the mammary nerves. 4. A peptide fraction (of less than 10 kDa) isolated from the gut extract enhanced the effect of insulin in a similar manner to the crude extract. 5. It is suggested that in addition to insulin at least another component, probably a gut peptide, is required for the restoration of mammary glucose uptake during refeeding. An inhibitory component may also contribute to the regulation of mammary glucose extraction in the lactating rat.
Collapse
Affiliation(s)
- T Page
- Department of Biochemistry, University of Birmingham, U.K
| |
Collapse
|
10
|
Holness MJ, Sugden MC. Pyruvate dehydrogenase activities during the fed-to-starved transition and on re-feeding after acute or prolonged starvation. Biochem J 1989; 258:529-33. [PMID: 2705997 PMCID: PMC1138393 DOI: 10.1042/bj2580529] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We investigated the temporal relationship between hepatic glycogen depletion and cardiac and hepatic PDH (pyruvate dehydrogenase complex) activities during the acute phase of starvation. There was a striking correlation between the decline in hepatic glycogen and PDH inactivation during the first 10 h of starvation. Re-feeding after 6 h starvation was associated with complete re-activation of PDH in liver and re-activation to approx. 75% of the fed value in heart, whereas in rats previously starved for 24-48 h re-activation was delayed in liver and diminished in heart. The results are discussed with reference to the fate of dietary carbohydrate after re-feeding.
Collapse
Affiliation(s)
- M J Holness
- Department of Chemical Pathology, London Hospital Medical College, U.K
| | | |
Collapse
|
11
|
Mercer SW, Williamson DH. Rapid inhibition by intragastric triolein of the re-activation of glucose utilization and lipogenesis in the mammary gland during the starved-refed transition in lactating rats. Evidence for a direct effect of oral lipid on mammary tissue. Biochem J 1988; 250:269-76. [PMID: 3281661 PMCID: PMC1148843 DOI: 10.1042/bj2500269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
1. Oral administration of triacylglycerol (triolein) to starved/chow-refed lactating rats suppressed the lipogenic switch-on in the mammary gland in vivo. 2. A time-course study revealed that triolein, administered at 30 min after the onset of refeeding, had no influence on lipogenic rate in the mammary gland between 30 and 60 min, but markedly decreased it between 60 and 90 min. Glucose uptake by the mammary gland (arteriovenous difference) increased by 30 min of refeeding, as did lactate production. Between 30 and 90 min glucose uptake remained high in the control animals, but glucose uptake and net C3-unit uptake were decreased in the triolein-loaded animals by 90 min. 3. Triolein increased [glucose 6-phosphate] in the gland and simultaneously decreased [fructose 1,6-bisphosphate], indicative of a decrease in phosphofructokinase activity. This cross-over occurred at 60 min, i.e. immediately before the inhibition of lipogenesis, and by 90 min had reached 'starved' values. 4. Triolein had no effect on plasma [insulin] nor on whole-blood [glucose], [lactate] or [3-hydroxybutyrate]; a small increase in [acetoacetate] was observed. 5. Infusion of the lipoprotein lipase inhibitor, Triton WR1339, abolished the suppression of mammary-gland lipogenesis by triolein and the increase in the [glucose 6-phosphate]/[fructose 1,6-bisphosphate] ratio, suggesting a direct influence of dietary lipid on mammary-gland glucose utilization and phosphofructokinase activity.
Collapse
Affiliation(s)
- S W Mercer
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | |
Collapse
|
12
|
Clegg RA, Calvert DT. An 'in situ' perfusion system suitable for investigating mammary-tissue metabolism in the lactating rat. Hormonal regulation of acetyl-CoA carboxylase. Biochem J 1988; 249:771-7. [PMID: 2895636 PMCID: PMC1148773 DOI: 10.1042/bj2490771] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A technique is described for the non-recirculating perfusion of inguinal/abdominal mammary tissue in situ in anaesthetized lactating rats. Tissue viability was maintained, without resort to infusion of vasoactive chemicals which may also be effectors of cellular metabolism, for at least 90 min. Total tissue adenine nucleotides (per mg of DNA) were somewhat decreased in perfused relative to non-perfused mammary tissue. DNA content (per g wet wt. of tissue) was diminished after 90 min of perfusion to approx. 65% of its value in control tissue. Adenylate energy-charge ratios were lower in perfused tissue in the absence of hormones than in control tissue. They were increased to control values by the presence of either insulin or isoprenaline in the perfusate. No changes occurred in flow rate of the perfusate that might account for these increases. In mammary tissue perfused without addition of hormones, acetyl-CoA carboxylase activities were similar to those measured in control tissue samples, although activity-ratio measurements implied some increase in the phosphorylation of this enzyme. Insulin or isoprenaline increased the activity of acetyl-CoA carboxylase, especially when this was measured at low concentrations of citrate. Confirming conclusions from previous experiments with mammary acini and explant preparations, insulin activated acetyl-CoA carboxylase in mammary tissue, but inhibition of its activity was not mediated by cyclic AMP.
Collapse
Affiliation(s)
- R A Clegg
- Hannah Research Institute, Ayr, Scotland, U.K
| | | |
Collapse
|
13
|
Clegg RA. Regulation of fatty acid uptake and synthesis in mammary and adipose tissues: contrasting roles for cyclic AMP. CURRENT TOPICS IN CELLULAR REGULATION 1988; 29:77-128. [PMID: 2840244 DOI: 10.1016/b978-0-12-152829-4.50005-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- R A Clegg
- Hannah Research Institute, Ayr, Scotland
| |
Collapse
|
14
|
Williamson DH, Evans RD, Wood SC. Tumor growth and lipid metabolism during lactation in the rat. ADVANCES IN ENZYME REGULATION 1988; 27:93-104. [PMID: 3250234 DOI: 10.1016/0065-2571(88)90011-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Implantation of the Walker 256 carcinoma in lactating rats 2-3 days after parturition had no effect on maternal food intake or pup weight gain over the next 8-9 days. The rate of mammary gland lipogenesis in vivo, which is an index of glucose utilization by the gland, was similar in control and post-partum implanted rats. The accumulation of 14C-lipid in the mammary tissue after an oral load of [1-14C]triolein was also not altered by the presence of the tumor, nor was there evidence for hypertriglyceridaemia. This suggests that the activity of lipoprotein lipase in mammary tissue is not sensitive to the tumor as it appears to be in adipose tissue of non-lactating rats. In contrast, implantation of the tumor 1-2 days before parturition resulted in a faster rate of tumor growth, decreased maternal food intake and decreased pup weight gain compared to either control rats or rats with tumor implanted post-partum. In addition, the rate of mammary gland lipogenesis was decreased by 70% and that of the carcass by 50%. This decrease in lipogenesis is likely to be due to the relative hypophagia in the pre-partum implanted group. The 14C-lipid accumulation in mammary tissue after oral [1-14C]triolein tended to be lower in the pre-partum group but this was not statistically significant. It is concluded that the marked effects on lactation of pre-partum implantation of the tumor are due to effects of the tumor or its presence on the differentiation of the gland around parturition. The alternative explanation that the pre-partum tumor implantation suppresses the stimulus for physiological hyperphagia during lactation is less likely, because this does not occur with the post-partum implantation. The role of putative humoral factors in these effects of the Walker 256 carcinoma in lactation is discussed.
Collapse
Affiliation(s)
- D H Williamson
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | | | |
Collapse
|
15
|
Munday MR, Williamson DH. Insulin activation of lipogenesis in isolated mammary acini from lactating rats fed on a high-fat diet. Evidence that acetyl-CoA carboxylase is a site of action. Biochem J 1987; 242:905-11. [PMID: 2884993 PMCID: PMC1147794 DOI: 10.1042/bj2420905] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Feeding lactating rats on high-fat cheese crackers in addition to laboratory chow increased the dietary intake of fat from 2 to 20% of the total weight of food eaten and decreased mammary-gland lipogenesis in vivo by approx. 50%. This lipogenic inhibition was also observed in isolated mammary acini, where it was accompanied by decreased glucose uptake. These inhibitions were completely reversed by incubation with insulin. Insulin had no effect on the rate of glucose transport into acini, nor on pyruvate dehydrogenase activity as estimated by the accumulation of pyruvate and lactate, suggesting that these are not the sites of lipogenic inhibition. Insulin stimulated the incorporation of [1-14C]acetate into lipid in acini from high-fat-fed rats. In the presence of alpha-cyanohydroxycinnamate, a potent inhibitor of mitochondrial pyruvate transport, and with glucose as the sole substrate, neither [1-14C]glucose incorporation into lipid nor glucose uptake were stimulated by insulin. Insulin did stimulate the incorporation of [1-14C]acetate into lipid in the presence of alpha-cyanohydroxycinnamate, and this was accompanied by an increase in glucose uptake by the acini. This indicated that increased glucose uptake was secondary to the stimulation of lipogenesis by insulin, which therefore must occur via activation of a step in the pathway distal to mitochondrial pyruvate transport. Insulin stimulated acetyl-CoA carboxylase activity measured in crude extracts of acini from high-fat-fed rats, restoring it to values close to those of chow-fed controls. The effects of insulin on acetyl-CoA carboxylase activity and lipogenesis were not antagonized by adrenaline or dibutyryl cyclic AMP.
Collapse
|
16
|
Mercer SW, Williamson DH. The regulation of lipogenesis in vivo in the lactating mammary gland of the rat during the starved-refed transition. Studies wtih acarbose, a glucosidase inhibitor. Biochem J 1987; 242:235-43. [PMID: 2954538 PMCID: PMC1147688 DOI: 10.1042/bj2420235] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Depression of carbohydrate digestion by oral administration of acarbose, a glucosidase inhibitor, led to a 75% inhibition of the re-activation of lipogenesis in vivo in the mammary gland of 18 h-starved lactating rats refed with 5 g of chow diet. Rates of [1-14C]glucose incorporation in vitro into lipid and CO2 in mammary-gland acini isolated from refed animals were elevated compared with acini from starved rats, but acarbose treatment completely prevented this stimulation. Gastric intubation of glucose led to a large stimulation of lipogenesis in the mammary gland of starved lactating rats, similar to that induced by refeeding with chow diet; this was dependent on the amount of glucose given and the time elapsed between glucose administration and injection of 3H2O for the measurement of lipogenesis. The switch-on of lipogenesis in the mammary gland of starved lactating rats, by refeeding or by intubation of glucose, was associated with a decrease in the ratio of [glucose 6-phosphate]/[fructose 1,6-bisphosphate] in the gland, indicative of an increase in phosphofructokinase activity. A time-course study revealed that the ratio decreased rapidly over the first 30 min of chow refeeding, after which a large surge in lipogenesis was seen. Acarbose, given 25 min after the onset of refeeding, led to a stepwise increase in the ratio, in parallel with the observed decrease in lipogenic activity. It is concluded that the control of lipogenesis in the mammary gland is closely linked to the availability of dietary carbohydrate. An important site of regulation of lipogenesis in the gland appears to be at the level of phosphofructokinase. A possible role of insulin in the regulation of phosphofructokinase activity, and the acute modulation of insulin-sensitivity in the gland during the starved-refed transition, are discussed.
Collapse
|
17
|
Clegg RA, West DW, Aitchison RE. Protein phosphorylation in rat mammary acini and in cytosol preparations in vitro. Phosphorylation of acetyl-CoA carboxylase is unaffected by cyclic AMP. Biochem J 1987; 241:447-54. [PMID: 2884990 PMCID: PMC1147581 DOI: 10.1042/bj2410447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phosphorylation of soluble proteins in rat mammary acinar cells was investigated. When phosphorylation proceeded in intact cells, in the presence of [32P]Pi, the major non-casein phosphoproteins, including acetyl-CoA carboxylase, were unresponsive to incubation conditions that caused major increases in the intracellular concentration of cyclic AMP. The overall 32P specific radioactivity (c.p.m./microgram of protein) of acetyl-CoA carboxylase, assessed after affinity purification of the enzyme with avidin-Sepharose, was unchanged by incubation under such conditions. Furthermore, the distribution of 32P among tryptic phosphopeptides of the enzyme, resolved by reversed-phase h.p.l.c., was not altered by cyclic AMP-increasing treatments of the acinar cells. When cytosol fractions were incubated with [gamma-32P]ATP, some phosphoproteins responded to the addition of micromolar concentrations of dibutyryl cyclic AMP or cyclic AMP by undergoing an enhancement of phosphate incorporation. In these experiments in vitro, protein phosphatase activity did not make a major contribution to the net phosphorylation of individual phosphoproteins, and acetyl-CoA carboxylase was not prominent among the phosphoproteins identified after short (less than 1 min) incubations of cytosols with [gamma-32P]ATP. The resistance of protein phosphorylation to variations in the cyclic AMP concentration in intact mammary epithelial cells, demonstrated by this work, is one of several mechanisms that ensure the pleiotropic refractoriness of those cells to agents which normally cause a stimulation of adenylate cyclase activity in hormone-sensitive cells.
Collapse
|
18
|
5 Acetyl-Coenzyme A Carboxylase. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s1874-6047(08)60256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Clegg RA, Mullaney I, Robson NA, Zammit VA. Modulation of intracellular cyclic AMP content and rate of lipogenesis in mammary acini in vitro. Biochem J 1986; 240:13-8. [PMID: 2881537 PMCID: PMC1147369 DOI: 10.1042/bj2400013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Relationships between the cyclic AMP content, the rate of lipogenesis and the activity of acetyl-CoA carboxylase in acini prepared from lactating rat mammary tissue were investigated by exposing them to agents that increase their cyclic AMP content in the presence or absence of insulin. The dose-dependent inhibition of lipogenesis by theophylline in acini isolated from fed rats was highly correlated with the induced increases in acinar cyclic AMP content. Cyclic AMP of acini from 24 h-starved lactating rats was more sensitive in its response to theophylline than that in acini from fed animals. Neither forskolin nor a mixture of isoprenaline and Ro 7-2956 were able significantly to change either the rate of lipogenesis or the activity of acetyl-CoA carboxylase in acini from fed rats when added to incubations in vitro, in spite of the large increases in cyclic AMP concentration produced by these agents. Insulin was without effect on the activity of acetyl-CoA carboxylase and on either the basal or isoprenaline-stimulated cyclic AMP content of acini. These results are discussed in terms of the possibility that the rate of lipogenesis and the cyclic AMP content in mammary acini can vary independently of one another and of the activity of acetyl-CoA carboxylase.
Collapse
|
20
|
Page T, Kuhn NJ. Arteriovenous glucose differences across the mammary gland of the fed, starved, and re-fed lactating rat. Biochem J 1986; 239:269-74. [PMID: 3545180 PMCID: PMC1147277 DOI: 10.1042/bj2390269] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Arteriovenous glucose difference across the mammary gland of the lactating rat was used as an 'instantaneous' monitor of mammary glucose uptake. Plasma [glucose] and arteriovenous glucose difference varied according to whether Halothane, diethyl ether or sodium pentobarbitone anaesthesia was used. In pentobarbitone-treated rats a 60% glucose extraction in the fed state decreased to 5% after 18 h starvation, and recovered to 40% and 59% after 15 min and 60 min re-feeding respectively. The increase and decrease in plasma [fatty acids] and the depletion and restoration of hepatic glycogen mostly followed similar time courses. Re-feeding was accompanied by a brief surge of plasma [insulin]. Starved lactating rats showed a markedly greater capacity than age-matched virgin rats in the oral and intraperitoneal glucose tolerance tests. Mammary glucose uptake in the starved rat was significantly restored by oral or intraperitoneal glucose or by insulin, but not by acetoacetate or by heparin-induced elevation of plasma [fatty acids]. The role of insulin and of possible changes in mammary sensitivity to insulin in the return of mammary glucose uptake on re-feeding is discussed.
Collapse
|
21
|
Munday MR, Hardie DG. The role of acetyl-CoA carboxylase phosphorylation in the control of mammary gland fatty acid synthesis during the starvation and re-feeding of lactating rats. Biochem J 1986; 237:85-91. [PMID: 2879530 PMCID: PMC1146950 DOI: 10.1042/bj2370085] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Activation of acetyl-CoA carboxylase during incubation of crude extracts of lactating rat mammary gland with Mg2+ and citrate can be blocked by NaF, suggesting that it represents a dephosphorylation of the enzyme. The greater extent of activation in extracts from 24 h-starved rats (200%) compared with fed controls (70%) implies that the decrease in acetyl-CoA carboxylase activity in response to 24 h starvation may involve increased phosphorylation of the enzyme. Acetyl-CoA carboxylase was purified from the mammary glands of lactating rats in the presence of protein phosphatase inhibitors by avidin-Sepharose chromatography. Starvation of the rats for 24 h increased the concentration of citrate giving half-maximal activation by 75%, and decreased the Vmax. of the purified enzyme by 73%. This was associated with an increase in the alkali-labile phosphate content from 3.3 +/- 0.2 to 4.5 +/- 0.4 mol/mol of enzyme subunit. Starvation of lactating rats for 6 h, or short-term insulin deficiency induced by streptozotocin injection, did not effect the kinetic parameters or the phosphate content of acetyl-CoA carboxylase purified from mammary glands. The effects of 24 h starvation on the kinetic parameters and phosphate content of the purified enzyme were completely reversed by re-feeding for only 2.5 h. This effect was blocked if the animals were injected with streptozotocin before re-feeding, suggesting that the increase in plasma insulin that occurs on re-feeding was responsible for the activation of the enzyme. The effects of re-feeding 24 h-starved rats on the kinetic parameters and phosphate content of acetyl-CoA carboxylase could be mimicked by treating enzyme purified from 24 h-starved rats with protein phosphatase-2A in vitro. Our results suggest that, in mammary glands of 24 h-starved lactating rats, insulin brings about a dephosphorylation of acetyl-CoA carboxylase in vivo, which may be at least partly responsible for the reactivation of mammary lipogenesis in response to re-feeding.
Collapse
|
22
|
Ward S, Kuhn NJ. Role of fructose 2,6-bisphosphate in mammary gland of fed, starved and re-fed lactating rats. Biochem J 1985; 232:931-4. [PMID: 2936337 PMCID: PMC1152973 DOI: 10.1042/bj2320931] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The fructose 2,6-bisphosphate (Fru-2,6-P2) content and intracellular concentration of lactating mammary gland was measured in fed, starved and re-fed rats. There was little or no change on starvation, and about 1.5-fold rise on re-feeding, contrasting with estimated glycolytic changes of about 10-fold. The 6-phosphofructokinase (PFK-1) activity of mammary extracts was highly sensitive to added Fru-2,6-P2 under all conditions examined, and appeared to approach saturation at physiological concentrations of this effector. The activity of mammary PFK-1 measured under optimal and 'physiological' conditions suggested that this enzyme operates in vivo at about 24% of maximal rate, and is likely to be an important rate-limiting factor in mammary glycolysis.
Collapse
|
23
|
Clegg RA, Mullaney I. Acute change in the cyclic AMP content of rat mammary acini in vitro. Influence of physiological and pharmacological agents. Biochem J 1985; 230:239-46. [PMID: 2864919 PMCID: PMC1152607 DOI: 10.1042/bj2300239] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The cyclic AMP content of acini, freshly prepared from mammary tissue of lactating rats, was measured during incubation in vitro. Neither adrenergic agonists nor cyclic AMP phosphodiesterase inhibitors alone caused a change of more than 2-fold in the basal cyclic AMP content of acini. Together, however, these agents provoked increases of around 20-fold in acini cyclic AMP content. Forskolin caused similar effects. The relative potency of adrenergic agonists in increasing cyclic AMP in acini, together with the ability of selective antagonists to oppose such rises, indicated that beta 2-adrenergic receptors were involved in mediating the effects. Receptor-binding experiments using [3H]dihydroalprenolol and selective beta-antagonists confirmed the predominant presence of beta 2-adrenergic receptors on acini membranes and on membranes prepared from purified mammary secretory epithelial cells. These results elucidate some previous findings [Robson, Clegg & Zammit (1984) Biochem. J. 217, 743-749; Williamson, Munday, Jones, Roberts & Ramsey (1983) Adv. Enzyme Regul. 21, 135-145], questioning the role of cyclic AMP in the regulation of lipogenesis in mammary acini.
Collapse
|
24
|
Williamson DH, Ilic V, Jones RG. Evidence that the stimulation of lipogenesis in the mammary glands of starved lactating rats re-fed with a chow diet is dependent on continued hepatic gluconeogenesis during the absorptive period. Effects of a gluconeogenic inhibitory, mercaptopicolinic acid, in vivo. Biochem J 1985; 228:727-33. [PMID: 4026806 PMCID: PMC1145044 DOI: 10.1042/bj2280727] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The rapid stimulation of lipogenesis in mammary gland that occurs on re-feeding starved lactating rats with a chow diet was decreased (60%) by injection of mercaptopicolinic acid, an inhibitor of hepatic gluconeogenesis at the phosphoenolpyruvate carboxykinase step. Mercaptopicolinate had no effect on lipogenesis in mammary glands of fed lactating rats. The inhibition of lipogenesis persisted in vitro when acini from mammary glands of re-fed rats treated with mercaptopicolinate were incubated with [1-14C]glucose. Mercaptopicolinate added in vitro had no significant effect on lipogenesis in acini from starved-re-fed lactating rats. Mercaptopicolinate prevented the deposition of glycogen and increased the rate of lipogenesis in livers of starved-re-fed lactating rats, whereas it had no significant effect on livers of fed lactating rats. Administration of intraperitoneal glucose restored the rate of mammary-gland lipogenesis in re-fed rats treated with mercaptopicolinate to the values for re-fed rats. Hepatic glycogen deposition was also restored, and the rate of hepatic lipogenesis was stimulated 5-fold. It is concluded that stimulation of mammary-gland lipogenesis on re-feeding with a chow diet after a period of starvation is in part dependent on continued hepatic gluconeogenesis during the absorptive period. Possible sources of the glucose precursors are discussed.
Collapse
|
25
|
Jones RG, Ilic V, Williamson DH. Regulation of lactating-rat mammary-gland lipogenesis by insulin and glucagon in vivo. The role and site of action of insulin in the transition to the starved state. Biochem J 1984; 223:345-51. [PMID: 6388568 PMCID: PMC1144306 DOI: 10.1042/bj2230345] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Starvation for 6h and 24h caused an 80% and 95% decrease in the rate of mammary-gland lipogenesis respectively in conscious lactating rats. 2. Plasma insulin concentrations decreased and circulating ketone-body concentrations increased with the length of starvation. 3. The inhibition of lipogenesis after 24h starvation was accompanied by increased concentrations of glucose, glucose 6-phosphate and citrate in the mammary gland. Qualitatively similar changes were observed after 6h starvation. 4. Infusion of insulin at physiological concentrations caused a 100% increase in the rate of lipogenesis in fed animals and partially reversed the inhibition of lipogenesis caused by starvation. 5. Infusion of insulin tended to reverse the changes seen in intracellular metabolite concentrations. 4. Infusion of glucagon into fed rats caused no change in the rates of lipogenesis in mammary gland, liver or white adipose tissue. 7. It is concluded that (a) insulin acts physiologically to regulate lipogenesis in the mammary gland, (b) hexokinase and phosphofructokinase are important regulatory enzymes in the short-term control of lipogenesis in the mammary gland, which are under the influence of insulin, and (c) the unresponsiveness of mammary-gland lipogenesis in vivo to infusions of glucagon is consistent with an adaptive mechanism which diverts substrate towards the lactating mammary gland and away from other tissues.
Collapse
|
26
|
Munday MR, Hardie DG. Isolation of three cyclic-AMP-independent acetyl-CoA carboxylase kinases from lactating rat mammary gland and characterization of their effects on enzyme activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 141:617-27. [PMID: 6146523 DOI: 10.1111/j.1432-1033.1984.tb08237.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Three cyclic AMP-independent acetyl-CoA carboxylase kinases (A, B1 and B2) have been isolated from lactating rat mammary gland, using phosphocellulose chromatography, high performance gel filtration, and affinity chromatography on casein-Sepharose and phosvitin-Sepharose. These protein kinases have been identified with previously described kinases by the following criteria. Kinase A phosphorylates the same sites on rabbit mammary acetyl-CoA carboxylase as acetyl-CoA carboxylase kinase 2, which was originally described as a contaminant of rabbit mammary acetyl-CoA carboxylase purified by the poly(ethylene glycol)procedure. Kinase A will henceforth be referred to as acetyl-CoA carboxylase kinase-2. Kinase B1 has been identified with casein kinase II by its heparin sensitivity, elution behaviour on phosphocellulose, molecular mass, substrate specificity and subunit composition. Kinase B2 has been identified with casein kinase I by its elution behaviour on phosphocellulose, molecular mass, substrate specificity and subunit composition. The three kinases phosphorylate distinct sites on acetyl-CoA carboxylase. Phosphorylation by either casein kinase I or II does not affect enzyme activity. However, acetyl-CoA carboxylase kinase 2 inactivates acetyl-CoA carboxylase reversibly, in an identical manner to cyclic-AMP-dependent protein kinase, and phosphorylates sites located on identical peptides. Acetyl-CoA carboxylase kinase-2 can, however, be distinguished from the free catalytic subunit of cyclic-AMP-dependent protein kinase by its molecular mass, its substrate specificity, its elution behaviour on phosphocellulose, and its complete lack of sensitivity to the protein inhibitor of cyclic-AMP-dependent protein kinase. We also present evidence that phosphorylation of acetyl-CoA carboxylase by cyclic-AMP-dependent protein kinase occurs directly and not via a bicyclic cascade system as proposed by other laboratories.
Collapse
|
27
|
Jones RG, Ilic V, Williamson DH. Physiological significance of altered insulin metabolism in the conscious rat during lactation. Biochem J 1984; 220:455-60. [PMID: 6146315 PMCID: PMC1153647 DOI: 10.1042/bj2200455] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Uptake of radioactively labelled insulin by the mammary gland of the rat increased 12-fold in lactation compared with non-lactating controls. This uptake was decreased by the presence of unlabelled insulin, indicating that it occurred via insulin receptors. The plasma half-life of insulin is decreased in lactation from 9.4 min to 4.8 min, and the metabolic clearance rate for insulin increased from 7.26 to 13.03 ml/kg body wt. per min. The basal insulin and glucose concentrations in the plasma were decreased in lactation. Infusion of insulin at a dose which led to a small physiological rise in plasma insulin concentration increased lipogenic rates in the mammary gland by 100% without causing marked hypoglycaemia. It is concluded that the lactating mammary gland is a highly insulin-sensitive tissue and that the lower plasma insulin during lactation occurs primarily as a result of this sensitivity increasing extraction of glucose by the gland and thus producing a decrease in the plasma glucose concentration. It is suggested that a secondary result of the fall in plasma insulin concentration is the preferential direction of substrates (glucose and non-esterified fatty acids) towards the lactating mammary gland and away from adipose tissue and the liver.
Collapse
|
28
|
Abstract
The factors which regulate the utilization of blood-borne substrates by mammalian tissues are discussed. These include the availability of the substrates, the blood flow to tissues, the permeability of cells to the substrate, the activities of initiating enzymes and the regulation of the metabolic pathway. These various factors are illustrated by specific examples. In addition, the methodology involved in measurement of substrate utilization by tissues is briefly outlined.
Collapse
Affiliation(s)
- D H Williamson
- Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE, U.K
| |
Collapse
|
29
|
Aitchison R, West DW, Clegg RA. Insulin-stimulated high affinity cyclic AMP phosphodiesterase in rat mammary acini. FEBS Lett 1984; 167:25-8. [PMID: 6321236 DOI: 10.1016/0014-5793(84)80825-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
High affinity cyclic AMP phosphodiesterase activity in preparations of acini isolated from mammary tissue of lactating rats is shown to be stimulated by the addition of physiological concentrations of insulin to incubations of acini in vitro. This effect is expressed specifically on membrane-associated phosphodiesterase and occurs in the absence of concurrent protein synthesis. The possible functional role of this aspect of insulin's action on mammary tissue is discussed and compared with the well-known reversal by this hormone of the effects of lipolytic agents in adipose tissue and liver.
Collapse
|
30
|
Robson NA, Clegg RA, Zammit VA. Regulation of peripheral lipogenesis by glucagon. Inability of the hormone to inhibit lipogenesis in rat mammary acini in vitro in the presence or absence of agents which alter its effects on adipocytes. Biochem J 1984; 217:743-9. [PMID: 6370233 PMCID: PMC1153277 DOI: 10.1042/bj2170743] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rate of lipogenesis in acini isolated from mammary glands of mid-lactating rats was studied by measuring the rate of incorporation of 3H from 3H2O into total lipid and fatty acids, with glucose as substrate. Glucagon did not affect the rate of lipogenesis in acini. Glucagon did not antagonize the maximal stimulatory effect of insulin, nor did it alter the insulin dose-response curve. Theophylline, at concentrations up to 20 mM, was a potent inhibitor of lipogenesis in acini. Glucagon did not augment the degree of inhibition of lipogenesis induced by 5 mM-theophylline. The results suggest that mammary-gland acini do not respond to glucagon in vitro under conditions in which the hormone induces inhibition of lipogenesis (the present paper) and of individual key steps in the lipogenic pathway in adipocytes [Zammit & Corstorphine (1982) Biochem. J. 208, 783-788; Green (1983) Biochem. J. 212, 189-195]. In agreement with these observations, we could detect only a minimal degree of specific binding of 125I-labelled glucagon to acini which bound insulin normally. This difference in responsiveness of mammary and adipose cell preparations in vitro to glucagon suggests that the two tissues may be differentially responsive to changes in the circulating insulin/glucagon concentration ratio in vivo. The significance of these findings for the regulation of substrate utilization for lipogenesis in the two tissues during lactation is discussed.
Collapse
|
31
|
Munday MR, Williamson DH. Diurnal variations in food intake and in lipogenesis in mammary gland and liver of lactating rats. Biochem J 1983; 214:183-7. [PMID: 6137213 PMCID: PMC1152224 DOI: 10.1042/bj2140183] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite the hyperphagia, the food intake of the lactating rat showed marked diurnal changes which paralleled those of virgin rats. The major difference was that lactating rats consumed a higher proportion (35%) of their diet during the light period than did virgin rats (14%). The peak rate of lipogenesis in the lactating mammary gland occurred around midnight, and this decreased by 67% to reach a nadir around mid-afternoon; this corresponded with the period of lowest food intake. The diurnal variations in hepatic lipogenesis in lactating rats were much less marked. The changes in hepatic glycogen over 24 h suggest that it acts to supply carbon for lipogenesis during the period of decreased food intake. The activation state of acetyl-CoA carboxylase in mammary gland altered during 24 h, but the changes did not always correlate with alterations in the rate of lipogenesis. The changes in plasma insulin concentration tended to parallel the food intake in the lactating rats, but they did not appear to be sufficient to explain the large alterations in lipogenic rate in the mammary gland.
Collapse
|