1
|
Drouin R, Bastien N, Millau JF, Vigneault F, Paradis I. In Cellulo DNA Analysis: LMPCR Footprinting. Methods Mol Biol 2016; 1334:41-84. [PMID: 26404143 DOI: 10.1007/978-1-4939-2877-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The in cellulo analysis of protein-DNA interactions and chromatin structure is very important to better understand the mechanisms involved in the regulation of gene expression. The nuclease-hypersensitive sites and sequences bound by transcription factors often correspond to genetic regulatory elements. Using the ligation-mediated polymerase chain reaction (LMPCR) technology, it is possible to precisely analyze these DNA sequences to demonstrate the existence of DNA-protein interactions or unusual DNA structures directly in living cells. Indeed, the ideal chromatin substrate is, of course, found inside intact cells. LMPCR, a genomic sequencing technique that map DNA single-strand breaks at the sequence level of resolution, is the method of choice for in cellulo footprinting and DNA structure studies because it can be used to investigate complex animal genomes, including human. The detailed conventional and automated LMPCR protocols are presented in this chapter.
Collapse
Affiliation(s)
- Régen Drouin
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada. .,Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, Canada, J1H 5N4.
| | - Nathalie Bastien
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-François Millau
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Isabelle Paradis
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Vigneault F, Guérin SL. Regulation of gene expression: probing DNA–protein interactionsin vivoandin vitro. Expert Rev Proteomics 2014; 2:705-18. [PMID: 16209650 DOI: 10.1586/14789450.2.5.705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tremendous efforts have been put together over the last several years to complete the entire sequencing of the human genome. As we enter the proteomic era, when the major aim is understanding which gene encodes which protein, the time has also come to identify their precise function inside the astonishing signaling network required to accomplish all cellular functions. Understanding when, why and how a gene is expressed has now become a necessity toward identifying all the regulatory pathways that mediate cellular processes such as differentiation, migration, replication, DNA repair and apoptosis. Regulation of gene transcription is a process that is primarily under the influence of nuclear-located transcription factors. Consequently, identifying which protein activates or represses a specific gene is a prerequisite for understanding cell fate and function. The current state of, and recent advances in, transcriptional regulation approaches are reviewed here, with special emphasis on new technologies required when probing for DNA-protein interactions. This review explores different strategies aimed at identifying both the regulatory sequences of any given gene and the trans-acting regulatory factors that recognize these elements as their target sites in the nucleus. Ongoing developments in the fields of nanotechnology, RNA silencing and protein modeling toward the investigation of DNA-protein interactions and their relevance in the battle against cancer are discussed.
Collapse
Affiliation(s)
- Francois Vigneault
- Laboratoire d'Endocrinologie Moléculaire et Oncologique, Centre de recherche du CHUL (CHUQ), Sainte-Foy, Québec, G1V 4G2, Canada.
| | | |
Collapse
|
3
|
Drouin R, Bastien N, Millau JF, Vigneault F, Paradis I. In cellulo DNA analysis (LMPCR footprinting). Methods Mol Biol 2009; 543:293-336. [PMID: 19378174 DOI: 10.1007/978-1-60327-015-1_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The in cellulo analysis of DNA protein interactions and chromatin structure is very important to better understand the mechanisms involved in the regulation of gene expression. The nuclease-hypersensitive sites and sequences bound by transcription factors often correspond to genetic regulatory elements. Using the Ligation-mediated polymerase chain reaction (LMPCR) technology, it is possible to precisely analyze these DNA sequences to demonstrate the existence of DNA-protein interactions or unusual DNA structures directly in living cells. Indeed, the ideal chromatin substrate is, of course, found inside intact cells. LMPCR, a genomic-sequencing, technique that map DNA single-strand breaks at the sequence level of resolution, is the method of choice for in cellulo footprinting and DNA structure studies because it can be used to investigate any complex genomes, including human. The detailed conventional and automated LMPCR protocols are presented in this chapter.
Collapse
Affiliation(s)
- Régen Drouin
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
4
|
Fundador EV, Choudhary D, Schenkman JB, Rusling JF. Accurate DNA fragment sizing by capillary electrophoresis with laser-induced fluorescence array for detection of sequence specificity of DNA damage. Anal Chem 2008; 80:2212-21. [PMID: 18266391 DOI: 10.1021/ac702265b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cancer has been linked to mutations within specific codons in genes that code for critical biomolecules such as tumor suppressor proteins (e.g., p53). Activated metabolites like benzo[a]pyrenediol epoxide act on preferred nucleotide sequences of DNA, and such mutations have been identified in cancers. DNA reaction site identification depends on accurate analysis of oligonucleotide fragment sizes produced by strand breakage at the damaged sites. Herein, we report a new method for DNA fragment sizing using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). Absolute sizing accuracy and speed are achieved by utilizing a CE-LIF array with two-color fluorescence detection. Accuracy depends on correcting results with commercial standards by referring them to primary standards with the same sequences and identical labels as sample fragments. The method is demonstrated by detection of a [...GGCGCGCAG...] G reaction site for styrene oxide on an oligonucleotide representing the CYP1B1 gene. This approach avoids the need for radioactive isotopes and is less labor intensive and faster than the alternative PAGE with (32)P end labeling.
Collapse
Affiliation(s)
- Erwin V Fundador
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | | | | | |
Collapse
|
5
|
Vigneault F, Drouin R. Optimal conditions and specific characteristics of Vent exo- DNA polymerase in ligation-mediated polymerase chain reaction protocols. Biochem Cell Biol 2005; 83:147-65. [PMID: 15864324 DOI: 10.1139/o04-134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An optimized procedure for the ligation-mediated polymerase chain reaction (PCR) technique using Thermococcus litoralis exo- DNA polymerase (Vent exo-) was developed. The optimal dosage of Vent exo- at the primer extension and PCR amplification steps as well as the optimal DNA quantity to use were established. We showed that Vent exo- can efficiently create the blunt-ended termini required for subsequent linker ligation. Vent exo- proves to be more efficient than Pyrococcus furiosus exo- (Pfu exo-) for this task. Vent exo- resolves highly GC-rich sequence substantially better than Thermus aquaticus DNA polymerase (Taq) and with a similar efficiency as Pfu exo-. The DNA/DNA polymerase activity ratio is significantly higher for Vent exo- than for Pfu exo-, which is reflected by the sensibility of Vent exo- in efficiently amplifying genomic DNA. Furthermore, the range of efficiency of Vent exo- demonstrates the importance of conducting evaluative testing to identify the optimal dosage of use of this polymerase to obtain successful PCR amplification. Optimal MgSO4 concentrations to use with Vent exo- were established. Our results show that Vent exo- DNA polymerase produces bands of uniform and strong intensity and can efficiently be used for the analysis of DNA in living cells by ligation-mediated PCR.
Collapse
Affiliation(s)
- François Vigneault
- Unité de Recherche en Génétique Humaine et Moléculaire, Research Center, Hôpital St-François d'Assise, Centre Hospitalier Universitaire de Québec, QC, Canada
| | | |
Collapse
|
6
|
Koizume S, Sekiya T, Shiraishi M. Specific methylation status of the entire CpG island is not a prerequisite for the formation of an inactive chromatin at the promoter region in cancer cells. Biol Pharm Bull 2003; 26:127-8. [PMID: 12520191 DOI: 10.1248/bpb.26.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well-recognized that DNA methylation causes gene silencing. However, although DNA methylation is closely associated with alterations in chromatin structure, it is not clear whether methylation at a particular locus contributes to the formation of an inactive chromatin structure. In this study, we have investigated the chromatin structure of the CpG island of the human CDH1 gene in cancer cells. The CDH1-CpG island was differentially methylated between silenced cells, however, DNase I hypersensitive site that are present in the expressing cell were commonly lost in silenced cells and transcription factors were excluded from their binding sites. These results demonstrate that formation of an inactive structure was not affected by heterogeneous methylation status of the CpG island.
Collapse
Affiliation(s)
- Shiro Koizume
- DNA Methylation and Genome Function Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | |
Collapse
|
7
|
Angers M, Cloutier JF, Castonguay A, Drouin R. Optimal conditions to use Pfu exo(-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols. Nucleic Acids Res 2001; 29:E83. [PMID: 11504891 PMCID: PMC55867 DOI: 10.1093/nar/29.16.e83] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ligation-Mediated Polymerase Chain Reaction (LMPCR) is the most sensitive sequencing technique available to map single-stranded DNA breaks at the nucleotide level of resolution using genomic DNA. LMPCR has been adapted to map DNA damage and reveal DNA-protein interactions inside living cells. However, the sequence context (GC content), the global break frequency and the current combination of DNA polymerases used in LMPCR affect the quality of the results. In this study, we developed and optimized an LMPCR protocol adapted for Pyrococcus furiosus exo(-) DNA polymerase (Pfu exo(-)). The relative efficiency of Pfu exo(-) was compared to T7-modified DNA polymerase (Sequenase 2.0) at the primer extension step and to Thermus aquaticus DNA polymerase (Taq) at the PCR amplification step of LMPCR. At all break frequencies tested, Pfu exo(-) proved to be more efficient than Sequenase 2.0. During both primer extension and PCR amplification steps, the ratio of DNA molecules per unit of DNA polymerase was the main determinant of the efficiency of Pfu exo(-), while the efficiency of Taq was less affected by this ratio. Substitution of NaCl for KCl in the PCR reaction buffer of Taq strikingly improved the efficiency of the DNA polymerase. Pfu exo(-) was clearly more efficient than Taq to specifically amplify extremely GC-rich genomic DNA sequences. Our results show that a combination of Pfu exo(-) at the primer extension step and Taq at the PCR amplification step is ideal for in vivo DNA analysis and DNA damage mapping using LMPCR.
Collapse
Affiliation(s)
- M Angers
- Unite de Recherche en Genetique Humaine et Moleculaire, Centre de Recherche, Hopital Saint-Francois d'Assise, Centre Hospitalier Universitaire de Quebec, 10 rue de l'Espinay, Quebec, QC G1L 3L5, Canada
| | | | | | | |
Collapse
|
8
|
Rodriguez H, Akman SA, Holmquist GP, Wilson GL, Driggers WJ, LeDoux SP. Mapping oxidative DNA damage using ligation-mediated polymerase chain reaction technology. Methods 2000; 22:148-56. [PMID: 11020329 DOI: 10.1006/meth.2000.1055] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Reactive oxygen species induce a pharmacopoeia of oxidized bases in DNA. DNA can be cleaved at most of the sites of these modified bases by digestion with a combination of two base excision repair glycosylases from Escherichia coli, Fpg glycosylase, and endonuclease III. The frequency of the resulting glycosylase-dependent 5'-phosphoryl ends can be mapped at nucleotide resolution along a sequencing gel autoradiogram by a genomic sequencing technique, ligation-mediated polymerase chain reaction (LMPCR). In cultured rat cells, the frequency of endogenous oxidized bases in mitochondrial DNA is sufficiently high, about one oxidized base per 100 kb, to be directly mapped from 0.1 microg of total cellular DNA preparations by LMPCR. Nuclear DNA has a lower frequency of endogenous oxidative base damage which cannot be mapped from 1-microg preparations of total cellular DNA. Preparative gel electrophoresis of the PGK1 and p53 genes from 300 microg of restriction endonuclease-digested genomic DNA showed a 25-fold enrichment for the genes and, after endonuclease digestion followed by LMPCR, gave sufficient signal to map the frequency of oxidized bases from human cells treated with 50 microM H2O2.
Collapse
Affiliation(s)
- H Rodriguez
- Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | | | | | | | | |
Collapse
|
9
|
Buettner VL, LeBon JM, Gao C, Riggs AD, Singer-Sam J. Use of terminal transferase-dependent antisense RNA amplification to determine the transcription start site of the Snrpn gene in individual neurons. Nucleic Acids Res 2000; 28:E25. [PMID: 10710442 PMCID: PMC102808 DOI: 10.1093/nar/28.7.e25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/1999] [Revised: 01/04/2000] [Accepted: 01/20/2000] [Indexed: 11/14/2022] Open
Abstract
We describe here a very sensitive technique for RNA structure analysis and the determination of transcription start sites and demonstrate its use for mapping the start site of the imprinted Snrpn gene in individual hippocampal neurons. The method is adapted from reverse transcription-terminal transferase-dependent PCR (RT-TDPCR) to include amplification of the antisense sequence by in vitro transcription just prior to the final PCR step. The method should be useful for analysis of all genes for which variation in promoter usage and/or differences in RNA secondary structure may be specific to a given cell type or developmental stage.
Collapse
Affiliation(s)
- V L Buettner
- Mammalian Genetics and Molecular Biology Sections, Biology Department, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
10
|
Yoon JH, Lee CS. Mapping of altromycin B-DNA adduct at nucleotide resolution in the human genomic DNA by ligation-mediated PCR. Mol Cells 2000; 10:71-5. [PMID: 10774750 DOI: 10.1007/s10059-000-0071-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The ligation-mediated PCR was used to map DNA alkylation sites induced by altromycin B at nucleotide resolution in genomic DNA purified from cultured human colon carcinoma. Altromycin B, one of the pluramycin group of antitumor antibiotics, is characterized as intercalator with the added ability to alkylate N7 guanine. DNA adducts formed in genomic DNA were cleaved into DNA strand breaks by hot piperidine treatment, and fragments containing ligatable breaks were then amplified in a single-sided, ligation-mediated PCR. The alkylation sites observed in exon 9 of the p53 gene revealed that the most high reactivity sites for altromycin B were found to be N7 of guanine in a 5'-AG* sequence. Determination of the DNA alkylation sites in naked radiolabeled plasmid DNA also showed that altromycin B preferred N7 of guanine in a 5'-AG* sequence. Thus, it can be concluded that the sequence selective DNA adduct formation induced by the intercalating alkylator, altromycin B, in genomic DNA is similar to that observed in naked plasmid DNA.
Collapse
Affiliation(s)
- J H Yoon
- Department of Biochemistry, College of Natural Sciences, Yeungnam University, Kyongsan, Korea
| | | |
Collapse
|
11
|
Tommasi S, Pfeifer GP. In vivo structure of two divergent promoters at the human PCNA locus. Synthesis of antisense RNA and S phase-dependent binding of E2F complexes in intron 1. J Biol Chem 1999; 274:27829-38. [PMID: 10488129 DOI: 10.1074/jbc.274.39.27829] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) synthesis is strictly regulated during the cell cycle. To investigate PCNA transcriptional regulation, we have analyzed protein-DNA interactions at the promoter region and in the first intron in quiescent fibroblasts and following serum stimulation. Twenty putative protein-binding sites, distributed in two divergent promoters at the PCNA locus, were identified in vivo by genomic footprinting. These elements bind transcription factors continuously throughout the cell cycle with the exception of one E2F consensus site, located in the first intron at position +583. This E2F site becomes strongly occupied 18 h after serum stimulation, implying that an E2F activator complex plays a role in activation of the PCNA gene at the onset of S phase. We detected a 500-600-base pair-long antisense transcript by Northern blot analysis. This RNA has no apparent coding capacity and is constitutively transcribed from a promoter located within the first intron. We suggest that silencing of the PCNA gene is accomplished through base pairing between sense pre-mRNA and antisense RNA. The binding of S phase-specific E2F complexes at the +583 element may help to overcome the negative effect of the antisense transcript, which results in up-regulation of PCNA expression in proliferating cells.
Collapse
Affiliation(s)
- S Tommasi
- Department of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA.
| | | |
Collapse
|
12
|
Pfeifer GP, Chen HH, Komura J, Riggs AD. Chromatin structure analysis by ligation-mediated and terminal transferase-mediated polymerase chain reaction. Methods Enzymol 1999; 304:548-71. [PMID: 10372381 DOI: 10.1016/s0076-6879(99)04032-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- G P Pfeifer
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
13
|
You YH, Halangoda A, Buettner V, Hill K, Sommer S, Pfeifer G. Methylation of CpG dinucleotides in the lacI gene of the Big Blue transgenic mouse. Mutat Res 1998; 420:55-65. [PMID: 9838042 DOI: 10.1016/s1383-5718(98)00147-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytosine residues at CpG dinucleotides can be methylated by endogenous methyltransferases in mammalian cells. The resulting 5-methylcytosine base may undergo spontaneous deamination to form thymine causing G/C to A/T transition mutations. Methylated CpGs also can form preferential targets for environmental mutagens and carcinogens. The Big Blue(R) transgenic mouse has been used to investigate tissue and organ specificity of mutations and to deduce mutational mechanisms in a mammal in vivo. The transgenic mouse contains approximately 40 concatenated lambda-like shuttle vectors, each of which contains one copy of an Escherichia coli lacI gene as a mutational target. lacI mutations in lambda transgenic mice are characterized by a high frequency of spontaneous mutations targeted to CpG dinucleotides suggesting an important contribution from methylation-mediated events. To study the methylation status of CpGs in the lacI gene, we have mapped the distribution of 5-methylcytosines along the DNA-binding domain and flanking sequences of the lacI gene of transgenic mice. We analyzed genomic DNA from various tissues including thymus, liver, testis, and DNA derived from two thymic lymphomas. The mouse genomic DNAs and methylated and unmethylated control DNAs were chemically cleaved, then the positions of 5-methylcytosines were mapped by ligation-mediated PCR which can be used to distinguish methylated from unmethylated cytosines. Our data show that most CpG dinucleotides in the DNA binding domain of the lacI gene are methylated to a high extent (>98%) in all tissues tested; only a few sites are partially (70-90%) methylated. We conclude that tissue-specific methylation is unlikely to contribute significantly to tissue-specific mutational patterns, and that the occurrence of common mutation sites at specific CpGs in the lacI gene is not related to selective methylation of only these sequences. The data confirm previous suggestions that the high frequency of CpG mutations in lacI transgenes is related to the presence of 5-methylcytosine bases.
Collapse
Affiliation(s)
- Y H You
- Beckman Research Institute of the City of Hope, Department of Biology, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
14
|
Szabó PE, Pfeifer GP, Mann JR. Characterization of novel parent-specific epigenetic modifications upstream of the imprinted mouse H19 gene. Mol Cell Biol 1998; 18:6767-76. [PMID: 9774690 PMCID: PMC109260 DOI: 10.1128/mcb.18.11.6767] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic imprinting results in parent-specific monoallelic expression of a small number of genes in mammals. The identity of imprints is unknown, but much evidence points to a role for DNA methylation. The maternal alleles of the imprinted H19 gene are active and hypomethylated; the paternal alleles are inactive and hypermethylated. Roles for other epigenetic modifications are suggested by allele-specific differences in nuclease hypersensitivity at particular sites. To further analyze the possible epigenetic mechanisms determining monoallelic expression of H19, we have conducted in vivo dimethylsulfate and DNase I footprinting of regions upstream of the coding sequence in parthenogenetic and androgenetic embryonic stem cells. These cells carry only maternally and paternally derived alleles, respectively. We observed the presence of maternal-allele-specific dimethylsulfate and DNase I footprints at the promoter indicative of protein-DNA interactions at a CCAAT box and at binding sites for transcription factors Sp1 and AP-2. Also, at the boundary of a region further upstream for which existent differential methylation has been suggested to constitute an imprint, we observed a number of strand-specific dimethylsulfate reactivity differences specific to the maternal allele, along with an unusual chromatin structure in that both strands of maternally derived DNA were strongly hypersensitive to DNase I cutting over a distance of 100 nucleotides. We therefore reveal the existence of novel parent-specific epigenetic modifications, which in addition to DNA methylation, could constitute imprints or maintain monoallelic expression of H19.
Collapse
Affiliation(s)
- P E Szabó
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | |
Collapse
|
15
|
Rein T, DePamphilis ML, Zorbas H. Identifying 5-methylcytosine and related modifications in DNA genomes. Nucleic Acids Res 1998; 26:2255-64. [PMID: 9580672 PMCID: PMC147551 DOI: 10.1093/nar/26.10.2255] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Intense interest in the biological roles of DNA methylation, particularly in eukaryotes, has produced at least eight different methods for identifying 5-methylcytosine and related modifications in DNA genomes. However, the utility of each method depends not only on its simplicity but on its specificity, resolution, sensitivity and potential artifacts. Since these parameters affect the interpretation of data, they should be considered in any application. Therefore, we have outlined the principles and applications of each method, quantitatively evaluated their specificity,resolution and sensitivity, identified potential artifacts and suggested solutions, and discussed a paradox in the distribution of m5C in mammalian genomes that illustrates how methodological limitations can affect interpretation of data. Hopefully, the information and analysis provided here will guide new investigators entering this exciting field.
Collapse
Affiliation(s)
- T Rein
- National Institute of Child Health and Human Development, Building 6, Room 416, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | |
Collapse
|
16
|
Komura J, Riggs AD. Terminal transferase-dependent PCR: a versatile and sensitive method for in vivo footprinting and detection of DNA adducts. Nucleic Acids Res 1998; 26:1807-11. [PMID: 9512556 PMCID: PMC147463 DOI: 10.1093/nar/26.7.1807] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report here a new, sensitive and versatile genomic sequencing method, which can be used for in vivo footprinting and studies of DNA adducts. Starting with mammalian genomic DNA, single-stranded products are made by repeated primer extension; these products are subjected to homopolymeric ribonucleotide tailing at the 3' termini with terminal deoxynucleotidyl transferase and then ligated to a double-stranded linker having a complementary 3' overhang, and used for PCR. This terminal transferase-dependent PCR (TDPCR) method can generate band signals many-fold stronger than conventional ligation-mediated PCR (LMPCR). A UV photofootprint in the mouse Xist gene promoter can be easily detected using TDPCR. No special enzymes or chemical reagents are needed to convert DNA adducts into strand breaks. Any lesion that blocks primer extension should be detectable.
Collapse
Affiliation(s)
- J Komura
- Biology Department, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
17
|
Tommasi S, Pfeifer GP. Constitutive protection of E2F recognition sequences in the human thymidine kinase promoter during cell cycle progression. J Biol Chem 1997; 272:30483-90. [PMID: 9374541 DOI: 10.1074/jbc.272.48.30483] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The sequences responsible for S phase-specific induction of the human thymidine kinase (TK) gene have been mapped to a small region that contains putative E2F binding sites. We have analyzed protein-DNA interactions at the TK promoter during cell cycle progression in human fibroblasts using an in vivo footprinting approach. We found 14 protein binding sites that were occupied in vivo. All of the sites (among them two inverted CCAAT boxes and several Sp1 sites) bound transcription factors constitutively throughout the cell cycle, i.e. none of the factor binding was cell cycle-dependent. An E2F-like site located between nucleotides -97 and -89 relative to the major transcription start site was protected in G0, G1, S, and G2 phases. This cell cycle-independent protection of E2F sequences in the TK promoter differs from the G0/G1-restricted binding of E2F complexes observed for genes in which the E2F sites function as repressor elements (Tommasi, S., and Pfeifer, G. P. (1995) Mol. Cell. Biol. 15, 6901-6913; Zwicker, J., Liu, N., Engeland, K., Lucibello, F. C., and Müller, R. (1996) Science 271, 1595-1597). A comparison of several genes containing E2F motifs indicates that E2F sites located in proximity to the transcription initiation site (-50 to +20) in TATA-less promoters predominantly function as repressor elements, while in other genes constitutively bound E2F complexes located further upstream mediate activation presumably in conjunction with a functional TATA box.
Collapse
Affiliation(s)
- S Tommasi
- Department of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA.
| | | |
Collapse
|
18
|
Drouin R, Angers M, Dallaire N, Rose TM, Khandjian EW, Rousseau F. Structural and functional characterization of the human FMR1 promoter reveals similarities with the hnRNP-A2 promoter region. Hum Mol Genet 1997; 6:2051-60. [PMID: 9328468 DOI: 10.1093/hmg/6.12.2051] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fragile X mental retardation syndrome is associated with an expansion of a CGG repeat within the 5'UTR of the first exon of the FMR1 gene, abnormal methylation of the CpG island in the promoter region, and a transcriptional silencing of this gene. We studied transcriptional regulation of the FMR1 gene using protein footprint analysis of the active and inactive gene in vivo . We identified four footprints within the FMR1 promoter region which correspond to consensus binding sites of known transcription factors, alpha-PAL/NRF1, Sp1, H4TF1/Sp1-like and c-myc. These footprints were present in normal cells with a transcriptionally active FMR1 gene. The same footprints were present in different cell types: primary fibroblasts, lymphoblastoid cells and peripheral lymphocytes. However, for the 1.1 kb region analyzed, no footprints were detected in a variety of cell types derived from patients with fragile X syndrome which have a transcriptionally inactive FMR1 gene. A BLAST nucleotide search identified sequence similarities between the region of the FMR1 gene containing the footprints and an analogous region within the promoter region of the gene for the heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a member of a family of ribonucleoproteins implicated in mRNA processing and nuclear-cytoplasm transport. The nucleotide sequences identified in the hnRNP-A2 promoter region correspond to the same consensus binding sites showing DNA-protein interactions in the FMR1 gene. Our previous functional studies and the studies of others demonstrate that FMR proteins, like hnRNP-A2, are also ribonucleoproteins which appear to be involved in mRNA transport. The results from our footprint studies suggest that the expression of the FMR1 gene is regulated by the binding of specific transcription factors to sequence elements in the 5' region of the gene and that this expression may be regulated by elements in common with the hnRNP-A2 gene. Common regulation of these two genes might play an important role in the cooperative processing and transport of mRNA from the nucleus to the translation machinery.
Collapse
Affiliation(s)
- R Drouin
- Unité de Recherche en Génétique Humaine et Moléculaire,Centre de Recherche, Pavillon Saint-François d'Assise, Centre Hospitalier Universitaire de Québec, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Komura JI, Sheardown SA, Brockdorff N, Singer-Sam J, Riggs AD. In vivo ultraviolet and dimethyl sulfate footprinting of the 5' region of the expressed and silent Xist alleles. J Biol Chem 1997; 272:10975-80. [PMID: 9099757 DOI: 10.1074/jbc.272.16.10975] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Xist (X inactive specific transcript) gene plays an essential role in X chromosome inactivation. To elucidate the mechanisms controlling Xist expression and X inactivation, we examined in vivo DNA-protein interactions in the Xist promoter region in a female mouse cell line (BMSL2), which has distinguishable Xist alleles. In vivo footprinting was accomplished by treatment of cells with dimethyl sulfate or ultraviolet light, followed by ligation-mediated polymerase chain reaction of purified DNA. The expressed allele on the inactive X chromosome and the silent allele on the active X chromosome were separated by the use of a restriction fragment length polymorphism prior to ligation-mediated polymerase chain reaction. The chromatin structure of the Xist promoter was found to be consistent with the activity state of the Xist gene. The silent allele (on the active X chromosome) showed no footprints, while the expressed allele (on the inactive X chromosome) showed footprints at a consensus sequence for a CCAAT box, two weak Sp1 sites, and a weak TATA box.
Collapse
Affiliation(s)
- J i Komura
- Biology Department, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
20
|
Denissenko MF, Chen JX, Tang MS, Pfeifer GP. Cytosine methylation determines hot spots of DNA damage in the human P53 gene. Proc Natl Acad Sci U S A 1997; 94:3893-8. [PMID: 9108075 PMCID: PMC20538 DOI: 10.1073/pnas.94.8.3893] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/1996] [Accepted: 02/10/1997] [Indexed: 02/04/2023] Open
Abstract
In the P53 tumor suppressor gene, a remarkably large number of somatic mutations are found at methylated CpG dinucleotides. We have previously mapped the distribution of (+/-) anti-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy -7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) adducts along the human P53 gene [Denissenko, M. F., Pao, A., Tang, M.-s. & Pfeifer, G. P. (1996) Science 274, 430-432]. Strong and selective formation of adducts occurred at guanines in CpG sequences of codons 157, 248, and 273, which are the major mutational hot spots in lung cancer. Chromatin structure was not involved in preferential modification of these sites by BPDE. To investigate other possible mechanisms underlying the selectivity of BPDE binding, we have mapped the adducts in plasmid DNA containing genomic P53 sequences. The adduct profile obtained was different from that in genomic DNA. However, when cytosines at CpG sequences were converted to 5-methylcytosines by the CpG-specific methylase SssI and the DNA was subsequently treated with BPDE, adduct hot spots were created which were similar to those seen in genomic DNA where all CpGs are methylated. A strong positive effect of 5-methylcytosine on BPDE adduct formation at CpG sites was also documented with sequences of the PGK1 gene derived from an active or inactive human X chromosome and having differential methylation patterns. These results show that methylated CpG dinucleotides, in addition to being an endogenous promutagenic factor, may represent a preferential target for exogenous chemical carcinogens. The data open new avenues concerning the reasons that the majority of mutational hot spots in human genes are at CpGs.
Collapse
Affiliation(s)
- M F Denissenko
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
21
|
Dammann R, Pfeifer GP. Lack of gene- and strand-specific DNA repair in RNA polymerase III-transcribed human tRNA genes. Mol Cell Biol 1997; 17:219-29. [PMID: 8972202 PMCID: PMC231746 DOI: 10.1128/mcb.17.1.219] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UV light induces DNA lesions which are removed by nucleotide excision repair. Genes transcribed by RNA polymerase II are repaired faster than the flanking chromatin, and the transcribed strand is repaired faster than the coding strand. Transcription-coupled repair is not seen in RNA polymerase I-transcribed human rRNA genes. Since repair of genes transcribed by RNA polymerase III has not been analyzed before, we investigated DNA repair of tRNA genes after irradiation of human fibroblasts with UVC. We studied the repair of UV-induced cyclobutane pyrimidine dimers at nucleotide resolution by ligation-mediated PCR. A single-copy gene encoding selenocysteine tRNA, a tRNA valine gene, and their flanking sequences were analyzed. Protein-DNA footprinting showed that both genes were occupied by regulatory factors in vivo, and Northern blotting and nuclear run-on analysis of the tRNA indicated that these genes were actively transcribed. We found that both genes were repaired slower than RNA polymerase II-transcribed genes. No major difference between repair of the transcribed and the coding DNA strands was detected. Transcribed sequences of the tRNA genes were not repaired faster than flanking sequences. Indeed, several sequence positions in the 5' flanking region of the tRNA(Val) gene were repaired more efficiently than the gene itself. These results indicate that unlike RNA polymerase II, RNA polymerase III has no stimulatory effect on DNA repair. Since tRNA genes are covered by the regulatory factor TFIIIC and RNA polymerase III, these proteins may actually inhibit the DNA's accessibility to repair enzymes.
Collapse
Affiliation(s)
- R Dammann
- Department of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | |
Collapse
|
22
|
Abstract
A detailed investigation of how nucleosomes are formed and arranged on the DNA sequence is a prerequisite to understanding the molecular mechanisms of DNA-dependent processes such as transcription, replication, DNA repair, and mutagenesis. In this report we analyzed the chromatin structure of exons 5-8 of the p53 gene in human fibroblasts. We mapped at the nucleotide level the positions of DNase I and micrococcal nuclease cleavage sites in permeabilized cells. Areas of clear DNase I protection, which would be indicative of the binding of sequence-specific proteins, were not detected. Instead, the micrococcal nuclease and DNase digestion patterns suggested that this region was covered by nucleosomes and that two areas spanning exons 5 and 6 are occupied preferentially. These nucleosomes could influence DNA damage distribution, repair of certain lesions, and other aspects of the mutagenesis process in p53 sequences.
Collapse
Affiliation(s)
- S Tornaletti
- Department of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | |
Collapse
|
23
|
Affiliation(s)
- F Thoma
- Institut für Zellbiologie, Eidgenössische Technische Hochschule, Zurich, Switzerland
| |
Collapse
|
24
|
Tommasi S, Pfeifer GP. In vivo structure of the human cdc2 promoter: release of a p130-E2F-4 complex from sequences immediately upstream of the transcription initiation site coincides with induction of cdc2 expression. Mol Cell Biol 1995; 15:6901-13. [PMID: 8524257 PMCID: PMC230945 DOI: 10.1128/mcb.15.12.6901] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In quiescent cells, cdc2 mRNA is almost undetectable. Stimulation of cells to reenter the cell cycle results in induction of cdc2 expression, beginning at the G1-to-S transition and reaching maximum levels during late S and G2 phases. To investigate cdc2 transcriptional regulation throughout cell cycle progression, we monitored protein-DNA interactions by in vivo footprinting along 800 bp of the human cdc2 promoter in quiescent fibroblasts and at different time points following serum stimulation. We found 11 in vivo protein-binding sites, but no protein binding was observed at a high-affinity E2F site that had previously been implicated in cdc2 regulation. Nine of the identified in vivo binding sites (among them were two inverted CCAAT boxes, two Sp1 sites, and one ets-2 site) bind transcription factors constitutively throughout the cell cycle. However, at two elements located at positions -60 and -20 relative to the transcription start site, the binding pattern changes significantly as the cells are entering S phase. A G0- and G1-specific protein complex disappears at the -20 element at the beginning of S phase. This sequence deviates at one base position from known E2F consensus binding sites. We found that the major E2F activity in human fibroblasts contains E2F-4 and p130. The -20 element of the cdc2 gene specifically interacts with a subset of E2F-4-p130 complexes present in G0 cells but does not interact with S-phase-specific E2F complexes. Transient-transfection experiments with wild-type and mutant cdc2 promoter constructs indicate that the -20 element is involved in suppressing cdc2 activity in quiescent cells. We suggest that the presence of the p130-E2F-4 complex in G0/G1 blocks access of components of the basal transcription machinery or prevents transaction by the constitutively bound upstream activator proteins.
Collapse
Affiliation(s)
- S Tommasi
- Department of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | |
Collapse
|
25
|
Hershkovitz M, Riggs AD. Metaphase chromosome analysis by ligation-mediated PCR: heritable chromatin structure and a comparison of active and inactive X chromosomes. Proc Natl Acad Sci U S A 1995; 92:2379-83. [PMID: 7892275 PMCID: PMC42487 DOI: 10.1073/pnas.92.6.2379] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report that ligation-mediated PCR (LMPCR) can be used for high-resolution study of metaphase chromosomes, and we discuss the role of metaphase chromatin structure in the preservation of differentiated cell states. The X chromosome-linked human PGK1 (phosphoglycerate kinase 1) promoter region was investigated, and euchromatic active X chromosome (Xa) metaphase chromatin was compared with interphase Xa chromatin and to heterochromatic inactive X chromosome (Xi) metaphase and interphase chromatin. We find that (i) good-quality data at single-nucleotide resolution can be obtained by LMPCR analysis of dimethyl sulfate-treated intact metaphase cells; (ii) transcription factors present on the Xa promoter of interphase chromatin are not present on metaphase chromatin, establishing that the transcription complex on the PGK1 promoter must form de novo each cell generation; and (iii) the dimethyl sulfate reactivity pattern of Xa and Xi chromatin at metaphase is very similar to that of naked DNA. These results are discussed in the context of models for heritable chromatin structure and epigenetic mechanisms for cell memory, and they are also relevant to more general aspects of chromatin structure and differences between euchromatin and heterochromatin.
Collapse
Affiliation(s)
- M Hershkovitz
- Biology Department, Beckman Research Institute of the City of the Hope, Duarte, CA 91010
| | | |
Collapse
|
26
|
Rozek D, Pfeifer GP. In vivo protein-DNA interactions at the c-jun promoter in quiescent and serum-stimulated fibroblasts. J Cell Biochem 1995; 57:479-87. [PMID: 7768982 DOI: 10.1002/jcb.240570313] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
c-Jun is an important component in the regulation of cell proliferation. As a member of the early response gene family, c-jun is induced within minutes in the presence of mitogenic agents such as serum growth factors. Using in vivo footprinting, we have analyzed protein-DNA interactions at the c-jun promoter in human fibroblasts subjected to growth arrest and serum stimulation. We located seven footprints upstream of the transcription initiation site. Protein-DNA interactions were detected at two AP-1-like sequences, A CCAAT box, an SP-1 sequence, an NF-jun sequence, a putative RSRF (related to serum response factor) binding site, and a sequence bound by an unknown factor. All of these binding sites were occupied in serum-starved cells, and no additional protein-DNA interactions were detected upon serum stimulation. Evidence from this study supports a model in which expression of the c-jun gene is mediated by phosphorylation events taking place on the transactivation domains of promoter-bound transcriptional activators.
Collapse
Affiliation(s)
- D Rozek
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | |
Collapse
|
27
|
Lee CS, Pfeifer GP, Gibson NW. Mapping of DNA alkylation sites induced by adozelesin and bizelesin in human cells by ligation-mediated polymerase chain reaction. Biochemistry 1994; 33:6024-30. [PMID: 8180230 DOI: 10.1021/bi00185a043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, we have mapped the intracellular alkylation sites of adozelesin and bizelesin, two potent analogs of CC-1065, in individual genes at the single-nucleotide level. Human colon carcinoma cells were treated with adozelesin and bizelesin, and the position of adducts were mapped within the PGK-1 and p53 genes by means of ligation-mediated polymerase chain reaction. The monofunctional alkylating agent adozelesin was found to alkylate genomic DNA predominantly within 5'-(A/T)(A/T)A* sequences. Additional sites of alkylation were observed within 5'-(A/T)(G/C)(A/T)A* sequences; however, these were considered to represent sites of medium to low preference. Bizelesin, a bifunctional analog capable of both DNA monofunctional alkylation and DNA interstrand cross-link formation, was also found to alkylate 5'-(A/T)(A/T)A* sequences. Putative bizelesin DNA interstrand cross-link sites indicated that AT-rich sequences are preferred in the intervening sequence between the two cross-linked adenines. Both six- and seven-nucleotide regions were identified as putative sites of DNA interstrand cross-link formation with 5'-TTTTTTA*, 5'-TTTATCA* and 5'-GTACTAA* sequences being preferred. Non-adenine bases are not observed as potential intracellular sites of either DNA interstrand cross-linking formation or monofunctional alkylation. Thus, the patterns of alkylation induced by adozelesin and bizelesin in genomic DNA are similar but not identical to that observed in purified cell-free DNA.
Collapse
Affiliation(s)
- C S Lee
- School of Pharmacy, University of Southern California, Los Angeles, 90033
| | | | | |
Collapse
|
28
|
Abstract
Ultraviolet light has been linked with the development of human skin cancers. Such cancers often exhibit mutations in the p53 tumor suppressor gene. Ligation-mediated polymerase chain reaction was used to analyze at nucleotide resolution the repair of cyclobutane pyrimidine dimers along the p53 gene in ultraviolet-irradiated human fibroblasts. Repair rates at individual nucleotides were highly variable and sequence-dependent. Slow repair was seen at seven of eight positions frequently mutated in skin cancer, suggesting that repair efficiency may strongly contribute to the mutation spectrum in a cancer-associated gene.
Collapse
Affiliation(s)
- S Tornaletti
- Beckman Rsearch Institute of the City of Hope, Department of Biology, Duarte, CA 91010
| | | |
Collapse
|
29
|
Tommasi S, LeBon JM, Riggs AD, Singer-Sam J. Methylation analysis by genomic sequencing of 5' region of mouse Pgk-1 gene and a cautionary note concerning the method. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:529-41. [PMID: 7510422 DOI: 10.1007/bf01233380] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have used genomic sequencing aided by ligation-mediated PCR (LMPCR) to assay for 5-methylcytosine in the CpG-rich promoter region of the mouse X-linked phosphoglycerate kinase gene (Pgk-1). Earlier studies showed that there was very heavy methylation of CpG dinucleotides in the CpG-rich promoter of the human PGK1 gene on the inactive X chromosome (the Xi), but that these same sites were completely unmethylated on the active X chromosome (the Xa). For mouse Pgk-1, previous restriction enzyme analysis had shown apparently complete methylation of only one cytosine in the promoter region on the Xi, at HpaII site H7, which is located in the untranslated region, 28 nucleotides upstream of the translation start site. We analyzed this potentially critical region by combining the use of HpaII with LMPCR, and find that the CpG dinucleotides near H7 are either unmethylated or only partially methylated on the Xi. LMPCR analysis of male and female DNA over a 490-bp sequence including the promoter and enhancer extend the finding of relative hypomethylation on the mouse Xi to include all CpG dinucleotides in this region. These results are relevant to the role of DNA methylation in stabilizing the inactive state of chromatin. In addition, we find that caution must be exercised in using LMPCR for methylation analysis of some sequences. A DNA concentration-dependent band-suppression artifact can incorrectly suggest methylation of both CpG and nonCpG dinucleotides.
Collapse
Affiliation(s)
- S Tommasi
- Biology Department, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | | | | |
Collapse
|