1
|
Guo B, Wang H, Zhang Y, Wang C, Qin J. Glycyrrhizin alleviates varicellovirus bovinealpha 1-induced oxidative stress, inflammation, and apoptosis in MDBK cells by inhibiting NF-κB/NLRP3 axis through the Nrf2 signalling pathway. Vet Res Commun 2024; 48:749-759. [PMID: 37889426 DOI: 10.1007/s11259-023-10242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Varicellovirus bovinealpha 1 (BoAHV-1) is one of the crucial pathogens of bovine respiratory diseases, and its pathogenic mechanism involves oxidative stress, inflammation response, and apoptosis. Glycyrrhizin (GLY) possesses powerful antiviral, antioxidant, anti-inflammatory, and anti-apoptotic bioactivities. However, the anti-BoAHV-1 activity of GLY and its role in BoAHV-1-induced oxidative stress, inflammation, and apoptosis remain unclear. Therefore, the current study investigated the anti-BoAHV-1 effect of GLY and its ability to alleviate BoAHV-1-induced oxidative stress, inflammation, and apoptosis using an in vitro model (MDBK cells). Our results showed that BoAHV-1 titers significantly increased in MDBK cells after infection, and GLY reduced the BoAHV-1 titers in MDBK cells exposed to it. Furthermore, Interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)-α, phosphorylated NF-κB p65 (p-NF-κB p65), the NLR pyrin domain containing 3 (NLRP3), Caspase-1, and Cleaved Caspase-3 levels were significantly upregulated when MDBK cells were challenged with BoAHV-1. In BAY 11-7085 (a specific NF-κB inhibitor) treated MDBK cells, IL-1β, IL-8, TNF-α, p-NF-κB p65, NLRP3, Caspase-1, and Cleaved Caspase-3 levels were downregulated. Notably, GLY treatment had the same trend as the BAY 11-7085 treatment. Thus, these results suggested that GLY exerted anti-inflammatory and anti-apoptotic activities by blocking NF-κB/NLRP3 axis. In addition, after BoAHV-1 infection, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and p-NF-κB p65 and apoptosis rate were increased, and catalase (CAT) and glutathione peroxidase (GSH-Px) enzyme activities, as well as NF-E2-related nuclear factor erythroid-2 (Nrf2) protein expression were repressed. Compared with BoAHV-1-infected MDBK cells, GLY treatment significantly downregulated intracellular ROS, MDA, and p-NF-κB p65 levels and apoptotic rates and significantly increased intracellular CAT and GSH-Px enzyme activities and Nrf2 expression. Additionally, ML385 (a specific Nrf2 inhibitor) abolished the enhancing effect of GLY on Nrf2 and the attenuating effect on ROS, p-NF-κB p65, and apoptosis. These results suggested that GLY had an anti-BoAHV-1 effect and could mitigate BoAHV-1-induced oxidative stress, inflammation, and apoptosis by activating the Nrf2 signalling and restraining NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Bing Guo
- Key Laboratory of Healthy Breeding in dairy cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China
- Department of Veterinary Medicine, College of Animal Science and Technology, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Haifeng Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Yue Zhang
- Key Laboratory of Healthy Breeding in dairy cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Chuanwen Wang
- Key Laboratory of Healthy Breeding in dairy cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Jianhua Qin
- Key Laboratory of Healthy Breeding in dairy cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China.
| |
Collapse
|
2
|
Yun CH, Wynn P, Ha JK. Stress, acute phase proteins and immune modulation in calves. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an14441] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute phase and inflammatory responses are triggered by a variety of intrinsic and extrinsic stressors that come at a cost through suppressing the normal function of tissues and organs of domestic animals. Recently, with growing attention placed on global warming and animal welfare, there has been an increased interest in improving our understanding of the relationships between different classes of stress, the expression of acute phase proteins (APPs), the stress-related endocrine system and immunomodulation. Immune function is compromised by all forms of stress including poor nutrition, weaning, extreme thermal conditions, injury and infection in calves. Proinflammatory cytokines, APPs and hormones of the hypothalamic–pituitary adrenal axis as well as the composition of immune cells can all be characterised in culture supernatants and peripheral blood. APPs have been used as biomarkers for the stress status of ruminants both experimentally and in field studies. Therefore detailed studies of the mechanisms of action of these APPs and their interactions in ameliorating different stress responses are warranted. The focus of this review is on the aetiology of the responses in calves under severe stress and its impact on growth and immune status. Possible strategies to alleviate this condition including the role of specific feed additives are presented.
Collapse
|
3
|
Risalde MA, Molina V, Sónchez-Cordón PJ, Pedrera M, Romero-Palomo F, Bautista MJ, Moreno A, Gómez-Villamandos JC. Comparison of pathological changes and viral antigen distribution in tissues of calves with and without preexisting bovine viral diarrhea virus infection following challenge with bovine herpesvirus-1. Am J Vet Res 2013; 74:598-610. [PMID: 23531068 DOI: 10.2460/ajvr.74.4.598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare pathological changes and viral antigen distribution in tissues of calves with and without preexisting subclinical bovine viral diarrhea virus (BVDV) infection following challenge with bovine herpesvirus-1 (BHV-1). ANIMALS 24 Friesian calves. PROCEDURES 12 calves were inoculated intranasally with noncytopathic BVDV-1a; 12 days later, 10 of these calves were challenged intranasally with BHV-1 subtype 1. Two calves were euthanized before and 1, 2, 4, 7, or 14 days after BHV-1 inoculation. Another 10 calves were inoculated intranasally with BHV-1 only and euthanized 1, 2, 4, 7, or 14 days later. Two calves were inoculated intranasally with virus-free tissue culture fluid and euthanized as negative controls. Pathological changes and viral antigen distribution in various tissue samples from calves with and without BVDV infection (all of which had been experimentally inoculated with BHV-1) were compared. RESULTS Following BHV-1 challenge, calves with preexisting subclinical BVDV infection had earlier development of more severe inflammatory processes and, consequently, more severe tissue lesions (limited to lymphoid tissues and respiratory and digestive tracts) and greater dissemination of BHV-1, compared with calves without preexisting BVDV infection. Moreover, coinfected calves had an intense lymphoid depletion in the Peyer patches of the ileum as well as the persistence of BVDV in target organs and the reappearance of digestive tract changes during disease progression. CONCLUSIONS AND CLINICAL RELEVANCE In calves, preexisting infection with BVDV facilitated the establishment of BHV-1 infection, just as the presence of BHV-1 favors BVDV persistence, thereby synergistically potentiating effects of both viruses and increasing the severity of the resultant clinical signs.
Collapse
Affiliation(s)
- María A Risalde
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Edificio Sanidad Animal, Campus de Rabanales, 14014, Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
4
|
N'jai AU, Rivera J, Atapattu DN, Owusu-Ofori K, Czuprynski CJ. Gene expression profiling of bovine bronchial epithelial cells exposed in vitro to bovine herpesvirus 1 and Mannheimia haemolytica. Vet Immunol Immunopathol 2013; 155:182-9. [PMID: 23890750 PMCID: PMC7127263 DOI: 10.1016/j.vetimm.2013.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/04/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022]
Abstract
Bovine respiratory disease (BRD) often occurs when active respiratory virus infections (BHV-1, etc.) impair resistance to Mannheimia haemolytica infection in the lower respiratory tract. The interactions that occur when the respiratory epithelium encounters these viral and bacterial pathogens are poorly understood. We used Agilent bovine gene microarray chips containing 44,000 transcripts to elucidate bovine bronchial epithelial cell (BBEC) responses following in vitro exposure to BHV-1 alone, M. haemolytica alone, or both BHV-1 and M. haemolytica. Microarray analysis revealed differential regulation (>2-fold) of 978 transcripts by BHV-1 alone, 2040 transcripts by M. haemolytica alone, and 2189 genes by BHV-1 and M. haemolytica in combination. M. haemolytica treatment produced significantly greater inductions (>10-fold) of several inflammation associated genes, such as CXCL2, IL-6, IL-1α, e-selectin, and IL-8, than to BHV-1 alone. Functional analysis of the microarray data revealed a significant upregulation of genes involved in important biological processes such as inflammation (TNF-α, IL-8, Tlr-2, IL-1, CXCL2, CSF2), vascular functions (VEGF, EDN2) and leukocyte migration (ICAM1, IL-16) during a co-infection with BHV-1 and M. haemolytica compared to either pathogen alone. This study provides evidence to support that lung epithelial cells are a source of mediators that may promote inflammatory changes observed during bovine respiratory disease.
Collapse
Affiliation(s)
- Alhaji U N'jai
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive-West, WI 52706, United States
| | | | | | | | | |
Collapse
|
5
|
Biswas S, Bandyopadhyay S, Dimri U, H. Patra P. Bovine herpesvirus-1 (BHV-1) – a re-emerging concern in livestock: a revisit to its biology, epidemiology, diagnosis, and prophylaxis. Vet Q 2013; 33:68-81. [DOI: 10.1080/01652176.2013.799301] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Suman Biswas
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | | - Umesh Dimri
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Pabitra H. Patra
- Department of Pharmacology & Toxicology, C.V.Sc. & AH, Tripura, India
| |
Collapse
|
6
|
Hodgson PD, Aich P, Stookey J, Popowych Y, Potter A, Babiuk L, Griebel PJ. Stress significantly increases mortality following a secondary bacterial respiratory infection. Vet Res 2012; 43:21. [PMID: 22435642 PMCID: PMC3348069 DOI: 10.1186/1297-9716-43-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 03/21/2012] [Indexed: 11/26/2022] Open
Abstract
A variety of mechanisms contribute to the viral-bacterial synergy which results in fatal secondary bacterial respiratory infections. Epidemiological investigations have implicated physical and psychological stressors as factors contributing to the incidence and severity of respiratory infections and psychological stress alters host responses to experimental viral respiratory infections. The effect of stress on secondary bacterial respiratory infections has not, however, been investigated. A natural model of secondary bacterial respiratory infection in naive calves was used to determine if weaning and maternal separation (WMS) significantly altered mortality when compared to calves pre-adapted (PA) to this psychological stressor. Following weaning, calves were challenged with Mannheimia haemolytica four days after a primary bovine herpesvirus-1 (BHV-1) respiratory infection. Mortality doubled in WMS calves when compared to calves pre-adapted to weaning for two weeks prior to the viral respiratory infection. Similar results were observed in two independent experiments and fatal viral-bacterial synergy did not extend beyond the time of viral shedding. Virus shedding did not differ significantly between treatment groups but innate immune responses during viral infection, including IFN-γ secretion, the acute-phase inflammatory response, CD14 expression, and LPS-induced TNFα production, were significantly greater in WMS versus PA calves. These observations demonstrate that weaning and maternal separation at the time of a primary BHV-1 respiratory infection increased innate immune responses that correlated significantly with mortality following a secondary bacterial respiratory infection.
Collapse
Affiliation(s)
- Paul D Hodgson
- Vaccine & Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3.
| | | | | | | | | | | | | |
Collapse
|
7
|
Evaluation of potential factors contributing to microbiological treatment failure in Streptococcus pyogenes pharyngitis. Can J Infect Dis 2011; 12:33-9. [PMID: 18159315 DOI: 10.1155/2001/297304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Accepted: 03/15/2000] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A cohort study of children with pharyngitis aged two to 16 years was conducted to assess the role of microbial and host factors in group A beta-hemolytic streptococcus (GABHS) microbiological treatment failure. METHODS GABHS-infected children had pharyngeal swabs repeated two to five days after completing a 10-day course of penicillin V. M and T typing, and pulsed field gel electrophoresis were performed on the isolates, and the isolates were evaluated for tolerance. Patient characteristics and clinical features were noted and nasopharyngeal swabs for respiratory viruses were taken at enrolment. RESULTS AND CONCLUSIONS Of 286 patients enrolled, 248 (87%) could be evaluated. GABHS was cultured from 104 patients (41.9%), of whom 33 (33.7%) had microbiological treatment failures on follow-up. Although there was a trend toward failure for younger children (mean 6.5+/-2.4 years versus 7.3+/-2.4 years, P=0.07) and M type 12 (24% versus 10%, P=0.08), no factors were associated with treatment failure.
Collapse
|
8
|
Hodgson PD, Aich P, Manuja A, Hokamp K, Roche FM, Brinkman FSL, Potter A, Babiuk LA, Griebel PJ. Effect of stress on viral-bacterial synergy in bovine respiratory disease: novel mechanisms to regulate inflammation. Comp Funct Genomics 2010; 6:244-50. [PMID: 18629190 PMCID: PMC2447483 DOI: 10.1002/cfg.474] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 03/14/2005] [Indexed: 11/08/2022] Open
Abstract
The severity of bovine respiratory infections has been linked to a variety of
factors, including environmental and nutritional changes, transportation, and social
reorganization of weaned calves. Fatal respiratory infections, however, usually occur
when a primary viral infection compromises host defences and enhances the severity
of a secondary bacterial infection. This viral–bacterial synergy can occur by a number
of different mechanisms and disease challenge models have been developed to analyse
host responses during these respiratory infections. A primary bovine herpesvirus-1
(BHV-1) respiratory infection followed by a secondary challenge with Mannheimia haemolytica
results in fatal bovine respiratory disease (BRD) and host responses to these
two pathogens have been studied extensively. We used this disease model to
demonstrate that stress significantly altered the viral–bacterial synergy resulting in
fatal BRD. Functional genomic analysis revealed that BHV-1 infection enhanced toll-like
receptors (TLR) expression and increased pro-inflammatory responses which
contribute to the severity of a Mannheimia haemolytica infection. TLRs play a critical
role in detecting bacterial infections and inducing pro-inflammatory responses. It is
difficult to understand, however, how stress-induced corticosteroids could enhance
this form of viral–bacterial synergy. Nuclear translocation of the glucocorticoid
receptor activates cell signalling pathways which inhibit both TLR signalling
and pro-inflammatory responses. The apparent conundrum between stress-induced
corticosteroids and enhanced BRD susceptibility is discussed in terms of present data
and previous investigations of stress and respiratory disease.
Collapse
Affiliation(s)
- P D Hodgson
- Genome Prairie, NW, Calgary AB T2L 2K7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bovine herpesvirus type 1 infection of bovine bronchial epithelial cells increases neutrophil adhesion and activation. Vet Immunol Immunopathol 2009; 131:167-76. [PMID: 19406483 DOI: 10.1016/j.vetimm.2009.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/28/2009] [Accepted: 04/03/2009] [Indexed: 01/13/2023]
Abstract
Respiratory infection of cattle with bovine herpesvirus type 1 (BHV-1) predisposes cattle to secondary pneumonia with Mannheimia haemolytica as part of the bovine respiratory disease complex (BRD). One cell type that has received limited investigation for its role in the inflammation that accompanies BRD is the respiratory epithelial cell. In the present study we investigated mechanisms by which BHV-1 infection of respiratory epithelial cells contributes to the recruitment and activation of bovine polymorphonuclear neutrophils (PMNs) in vitro. Primary cultures of bovine bronchial epithelial (BBE) cells were infected with BHV-1 and assessed for cytokine expression by real-time PCR. We found that BHV-1 infection elicits a rapid IL-1, IL-8 and TNF-alpha mRNA response by BBE cells. Bovine PMNs exhibited greater adherence to BHV-1 infected BBE cells than uninfected cells. The increased adherence was significantly reduced by the addition of an anti-IL-1beta antibody or human soluble TNF-alpha receptor (sTNF-alphaR). Pre-incubation of bovine PMNs with conditioned media from BHV-1 infected BBE cells increased PMN migration, which was inhibited by addition of an anti-IL-1beta antibody, sTNF-alphaR, or an IL-8 peptide inhibitor. Conditioned media from BHV-1 infected BBE cells activated bovine PMNs in vitro as demonstrated by PMN shape change, production of reactive oxygen species and degranulation. PMNs also exhibited increased LFA-1 expression and susceptibility to M. haemolytica LKT following incubation with BHV-1 infected BBE cell conditioned media. Our results suggest that BHV-1 infection of BBE cells triggers cytokine expression that contributes to the recruitment and activation of neutrophils, and amplifies the detrimental effects of M. haemolytica LKT.
Collapse
|
10
|
Baskin CR, Bielefeldt-Ohmann H, García-Sastre A, Tumpey TM, Van Hoeven N, Carter VS, Thomas MJ, Proll S, Solórzano A, Billharz R, Fornek JL, Thomas S, Chen CH, Clark EA, Murali-Krishna K, Katze MG. Functional genomic and serological analysis of the protective immune response resulting from vaccination of macaques with an NS1-truncated influenza virus. J Virol 2007; 81:11817-27. [PMID: 17715226 PMCID: PMC2168783 DOI: 10.1128/jvi.00590-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are still inadequately prepared for an influenza pandemic due to the lack of a vaccine effective for subtypes to which the majority of the human population has no prior immunity and which could be produced rapidly in sufficient quantities. There is therefore an urgent need to investigate novel vaccination approaches. Using a combination of genomic and traditional tools, this study compares the protective efficacy in macaques of an intrarespiratory live influenza virus vaccine produced by truncating NS1 in the human influenza A/Texas/36/91 (H1N1) virus with that of a conventional vaccine based on formalin-killed whole virus. After homologous challenge, animals in the live-vaccine group had greatly reduced viral replication and pathology in lungs and reduced upper respiratory inflammation. They also had lesser induction of innate immune pathways in lungs and of interferon-sensitive genes in bronchial epithelium. This postchallenge response contrasted with that shortly after vaccination, when more expression of interferon-sensitive genes was observed in bronchial cells from the live-vaccine group. This suggested induction of a strong innate immune response shortly after vaccination with the NS1-truncated virus, followed by greater maturity of the postchallenge immune response, as demonstrated with robust influenza virus-specific CD4+ T-cell proliferation, immunoglobulin G production, and transcriptional induction of T- and B-cell pathways in lung tissue. In conclusion, a single respiratory tract inoculation with an NS1-truncated influenza virus was effective in protecting nonhuman primates from homologous challenge. This protection was achieved in the absence of significant or long-lasting adverse effects and through induction of a robust adaptive immune response.
Collapse
Affiliation(s)
- C R Baskin
- Department of Comparative Medicine, University of Washington, Seattle, Washington 981951,USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Leite F, O'Brien S, Sylte MJ, Page T, Atapattu D, Czuprynski CJ. Inflammatory cytokines enhance the interaction of Mannheimia haemolytica leukotoxin with bovine peripheral blood neutrophils in vitro. Infect Immun 2002; 70:4336-43. [PMID: 12117943 PMCID: PMC128205 DOI: 10.1128/iai.70.8.4336-4343.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mannheimia (Pasteurella) haemolytica A1 produces several virulence factors that play an important role in the pathogenesis of bovine pneumonic pasteurellosis. Foremost among these is a leukotoxin (LKT) that specifically kills ruminant leukocytes. Recent evidence suggests that M. haemolytica LKT binding to bovine leukocytes is mediated by the beta(2)-integrin CD11a/CD18 (lymphocyte function-associated antigen 1 [LFA-1]), which subsequently induces activation and cytolysis of these cells. Inflammatory cytokines, which are released during viral and bacterial infection, are reported to increase LFA-1 expression and conformational activation. We investigated the effects of the inflammatory cytokines interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma) on the interaction of M. haemolytica LKT with bovine peripheral blood neutrophils (PMNs). In this study we demonstrated, by flow cytometry, that bovine PMNs increased their binding to an anti-bovine LFA-1 monoclonal antibody (BAT75A) following in vitro incubation with IL-1beta, TNF-alpha, or IFN-gamma. Incubation with cytokines also increased CD18 expression, as assessed by real-time PCR and by Western blotting. Increased LFA-1 expression by PMNs exposed to cytokines was associated with increased LKT binding and cytotoxicity. The latter represented, at least in part, enhanced PMN apoptosis, as assessed by propidium iodine staining and caspase-3 activation. The results of this study suggest that inflammatory cytokines may play an important role in enhancing the biological response of bovine PMNs to M. haemolytica LKT.
Collapse
Affiliation(s)
- F Leite
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | |
Collapse
|
12
|
Leite F, Brown JF, Sylte MJ, Briggs RE, Czuprynski CJ. Recombinant bovine interleukin-1beta amplifies the effects of partially purified Pasteurella haemolytica leukotoxin on bovine neutrophils in a beta(2)-integrin-dependent manner. Infect Immun 2000; 68:5581-6. [PMID: 10992457 PMCID: PMC101509 DOI: 10.1128/iai.68.10.5581-5586.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The influx and death of polymorphonuclear leukocytes within the infected lung are hallmarks of bovine pasteurellosis. Recent reports have shown that the Pasteurella haemolytica leukotoxin (LKT) and other RTX toxins bind beta(2)-integrins on target cells. In this study we demonstrate that exposure of bovine neutrophils to recombinant bovine interleukin-1beta upregulates beta(2)-integrins (CD11a/CD18), which in turn enhance the binding and amplify the biological effects of partially purified LKT on these cells. LKT binding and cytotoxicity were inhibited by addition of an anti-integrin antibody (CD11a/CD18). These findings help to clarify the early events that occur in bovine pasteurellosis and support the hypothesis that inflammatory mediators might increase the severity of pasteurellosis by causing upregulation of beta(2)-integrins that serve as an LKT receptor on bovine neutrophils.
Collapse
Affiliation(s)
- F Leite
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Bielefeldt-Ohmann H, Barclay J. Pathogenesis of Ross River virus-induced diseases: a role for viral quasispecies and persistence. Microb Pathog 1998; 24:373-83. [PMID: 9632541 DOI: 10.1006/mpat.1998.0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Kapil S, Basaraba RJ. Infectious bovine rhinotracheitis, parainfluenza-3, and respiratory coronavirus. Vet Clin North Am Food Anim Pract 1997; 13:455-69. [PMID: 9368989 PMCID: PMC7135389 DOI: 10.1016/s0749-0720(15)30308-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A number of viruses have been proven to be primary respiratory pathogens of cattle. Viruses may play an important role in making cattle susceptible to secondary respiratory bacterial pathogens. Epidemiology, pathogenesis, laboratory diagnosis, and important properties in infectious bovine rhinotracheitis (IBR), parainfluenza-3 (PI-3), and bovine respiratory coronavirus (BRCV) are described in this article.
Collapse
Affiliation(s)
- S Kapil
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| | | |
Collapse
|
16
|
Abstract
Immune responses to bovine herpesvirus 1 (BHV-1) have been studied following exposure of animals to virulent virus, conventional live or killed vaccines, genetically engineered live virus vaccines, subunit vaccines and, more recently, following immunization with plasmids encoding putative protective antigens. In all cases reported to date, exposure to BHV-1 or its glycoproteins induced specific responses to the virus which are capable of neutralizing virus and killing virus infected cells. These studies clearly indicate that the responses to BHV-1 are broad based, including both Th1 and Th2. In addition to inducing neutralizing antibodies, which can prevent virus attachment and penetration, these antibodies can also participate in antibody complement lysis of infected cells or in antibody dependent cell cytotoxicity. The virus also induces a myriad of specific cellular responses including the induction of cytokines, which either directly or indirectly inhibit virus replication by activation of effector cells. These activities have been associated with lymphocytes, NK-like cells, macrophages and polymorphonuclear neutrophils. These effector cells can kill virus infected cells either directly or by interacting with antibody to induce cell death by antibody dependent cell cytotoxicity. Killing of virus infected cells occurs after the expression of viral antigens on the cell surface of infected cells. Since the relationship between the time of cell killing and completion of virus assembly will influence whether the infectious cycle is aborted or results in productive viral replication any enhancement in viral killing will dramatically reduce the virus load. Based on these studies, many people conclude that antibody is critical in preventing infection and spread to susceptible contacts. In contrast, cell mediated immunity is involved in recovery from infection. However, none of these events occur in isolation in a body and a defect in one will dramatically influence the other. Furthermore, the relative importance of each effector mechanism will clearly depend on whether the animal is exposed to the virus for the first time (primary infection) or it is a secondary exposure following vaccination or infection with the field virus. Following a primary infection, where there is no antibody to interfere with the initial virus-cell interaction at the receptor level, the virus initiates an infection. These initial interactions are mediated primarily by the viral glycoproteins. Following the initial infection, viral protein synthesis induces a series of events which stimulate the nonspecific immune responses of the host. Therefore, the nonspecific immune responses (mediated primarily by viral products which induce early cytokines) are amongst the first line of defense in helping clear the infection both directly as well as indirectly by stimulating the specific immune response. The macrophage is instrumental in focusing the specific immune response by producing various cytokines and subsequently responding to cytokines produced by T-cells to kill to virus infected cells. This activity is detectable within 2 days after infection in lung parenchymal cells and 5-7 days in peripheral blood leukocytes. Interactions between various effector functions in limiting virus replication are described.
Collapse
Affiliation(s)
- L A Babiuk
- Veterinary Infectious Disease Organization, Saskatoon, Sask., Canada
| | | | | |
Collapse
|
17
|
Bielefeldt-Ohmann H. The pathologies of bovine viral diarrhea virus infection. A window on the pathogenesis. Vet Clin North Am Food Anim Pract 1995; 11:447-76. [PMID: 8581857 PMCID: PMC7111321 DOI: 10.1016/s0749-0720(15)30461-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pathologic lesions caused by bovine viral diarrhea virus (BVDV) infections comprise a wide spectrum of type, degree, and, by implication, pathogenesis, including congenital defects, necroticerosive lesions in mucosal epithelia and skin, and reactive as well as degenerative changes in lymphoid tissues. At least some of the pathology may not be solely due to BVDV replication per se, but rather caused by a host response to the virus, particularly the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- H Bielefeldt-Ohmann
- Centre for Molecular Biotechnology (Arbovirology Group) School of Life Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
18
|
Sayers NM, Drucker DB, Grencis RK. Cytokines may give insight into mechanisms of death in sudden infant death syndrome. Med Hypotheses 1995; 45:369-74. [PMID: 8577299 DOI: 10.1016/0306-9877(95)90096-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There are a number of postulated causes of sudden infant death syndrome, including bacterial toxins, defects in thermoregulation and hypersensitivity. This paper formulates the hypothesis that analysis of cytokine profiles in suspected sudden infant death syndrome victims may give an insight into mechanisms of death. These cytokine profiles may also help to identify specific causes of sudden infant death syndrome or indicate that different causes act in concert in individual cases.
Collapse
Affiliation(s)
- N M Sayers
- School of Biological Sciences, Turner Dental School, University of Manchester, UK
| | | | | |
Collapse
|
19
|
Tikoo SK, Campos M, Babiuk LA. Bovine herpesvirus 1 (BHV-1): biology, pathogenesis, and control. Adv Virus Res 1995; 45:191-223. [PMID: 7793325 DOI: 10.1016/s0065-3527(08)60061-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S K Tikoo
- Veterinary Infectious Disease Organization, University of Saskatchewan, Canada
| | | | | |
Collapse
|
20
|
|
21
|
Bowen JC, Daniel S, Rouse BT. Virus infections and cytokines: can we manage the interactions? Int Rev Immunol 1992; 8:33-41. [PMID: 1573318 DOI: 10.3109/08830189209056639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J C Bowen
- Department of Microbiology, College of Veterinary Medicine, University of Tennessee, Knoxville 37996-0845
| | | | | |
Collapse
|
22
|
|