1
|
Koulousakis P, Andrade P, Visser-Vandewalle V, Sesia T. The Nucleus Basalis of Meynert and Its Role in Deep Brain Stimulation for Cognitive Disorders: A Historical Perspective. J Alzheimers Dis 2020; 69:905-919. [PMID: 31104014 DOI: 10.3233/jad-180133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nucleus basalis of Meynert (nbM) was first described at the end of the 19th century and named after its discoverer, Theodor Meynert. The nbM contains a large population of cholinergic neurons that project their axons to the entire cortical mantle, the olfactory tubercle, and the amygdala. It has been functionally associated with the control of attention and maintenance of arousal, both key functions for appropriate learning and memory formation. This structure is well-conserved across vertebrates, although its degree of organization varies between species. Since early in the investigation of its functional and pathological significance, its degeneration has been linked to various major neuropsychiatric disorders. For instance, Lewy bodies, a hallmark in the diagnosis of Parkinson's disease, were originally described in the nbM. Since then, its involvement in other Lewy body and dementia-related disorders has been recognized. In the context of recent positive outcomes following nbM deep brain stimulation in subjects with dementia-associated disorders, we review the literature from an historical perspective focusing on how the nbM came into focus as a promising therapeutic option for patients with Alzheimer's disease. Moreover, we will discuss what is needed to further develop and widely implement this approach as well as examine novel medical indications for which nbM deep brain stimulation may prove beneficial.
Collapse
Affiliation(s)
- Philippos Koulousakis
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Germany.,European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Pablo Andrade
- Department of Neurosurgery, University Hospital of Cologne, Germany.,European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Germany.,European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Thibaut Sesia
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Germany.,European Graduate School of Neuroscience, Maastricht, The Netherlands
| |
Collapse
|
2
|
Friedman JR, Richbart SD, Merritt JC, Brown KC, Nolan NA, Akers AT, Lau JK, Robateau ZR, Miles SL, Dasgupta P. Acetylcholine signaling system in progression of lung cancers. Pharmacol Ther 2019; 194:222-254. [PMID: 30291908 PMCID: PMC6348061 DOI: 10.1016/j.pharmthera.2018.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyltransferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetylcholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic cigarettes considered by many as a "safe" alternative to smoking. There are a small number of articles which review the contribution of the other cholinergic proteins in the pathophysiology of lung cancer. The primary objective of this review article is to discuss the function of the acetylcholine-signaling proteins in the progression of lung cancer. The investigation of the role of cholinergic network in lung cancer will pave the way to novel molecular targets and drugs in this lethal malignancy.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Jamie K Lau
- Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142
| | - Zachary R Robateau
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755.
| |
Collapse
|
3
|
Kwakowsky A, Milne MR, Waldvogel HJ, Faull RL. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease. Int J Mol Sci 2016; 17:E2122. [PMID: 27999310 PMCID: PMC5187922 DOI: 10.3390/ijms17122122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Michael R Milne
- School of Biomedical Sciences, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Richard L Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Kimani S, Sinei K, Bukachi F, Tshala-Katumbay D, Maitai C. Memory deficits associated with sublethal cyanide poisoning relative to cyanate toxicity in rodents. Metab Brain Dis 2014; 29:105-12. [PMID: 24293006 PMCID: PMC3944471 DOI: 10.1007/s11011-013-9459-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/21/2013] [Indexed: 01/17/2023]
Abstract
Food (cassava) linamarin is metabolized into neurotoxicants cyanide and cyanate, metabolites of which we sought to elucidate the differential toxicity effects on memory. Young 6-8 weeks old male rats were treated intraperitoneally with either 2.5 mg/kg body weight (bw) cyanide (NaCN), or 50 mg/kg bw cyanate (NaOCN), or 1 μl/g bw saline, daily for 6 weeks. Short-term and long-term memories were assessed using a radial arm maze (RAM) testing paradigm. Toxic exposures had an influence on short-term working memory with fewer correct arm entries (F(2, 19) = 4.57 p < 0.05), higher working memory errors (WME) (F(2, 19) = 5.09, p < 0.05) and longer RAM navigation time (F(2, 19) = 3.91, p < 0.05) for NaOCN relative to NaCN and saline treatments. The long-term working memory was significantly impaired by cyanide with fewer correct arm entries (F(2, 19) = 7.45, p < 0.01) and increased working memory errors (F(2, 19) = 9.35 p < 0.05) in NaCN relative to NaOCN or vehicle treated animals. Reference memory was not affected by either cyanide or cyanate. Our study findings provide an experimental evidence for the biological plausibility that cassava cyanogens may induce cognition deficits. Differential patterns of memory deficits may reflect the differences in toxicity mechanisms of NaOCN relative to NaCN. Cognition deficits associated with cassava cyanogenesis may reflect a dual toxicity effect of cyanide and cyanate.
Collapse
Affiliation(s)
- S Kimani
- Department of Pharmacology and Pharmacognosy & School of Nursing Sciences, University of Nairobi, Kenyatta National Hospital, P.O. Box 19676, Nairobi, Kenya,
| | | | | | | | | |
Collapse
|
5
|
Overexpression of the vesicular acetylcholine transporter increased acetylcholine release in the hippocampus. Neuroscience 2012; 218:1-11. [PMID: 22641085 DOI: 10.1016/j.neuroscience.2012.05.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/18/2012] [Accepted: 05/17/2012] [Indexed: 11/20/2022]
Abstract
Cholinergic neurotransmission in the hippocampus is involved in cognitive functions, including learning and memory. Strategies to enhance septohippocampal cholinergic neurotransmission may therefore be of therapeutic value to limit cognitive decline during cholinergic dysfunction. In addition to current strategies being developed, such as the use of acetylcholinesterase inhibitors, enhancing acetylcholine (ACh) release may be critical for optimal cholinergic neurotransmission. Vesicular acetylcholine transporter (VAChT) activity limits the rate of formation of the readily releasable ACh pool. As such, we sought to determine the influence of increased VAChT expression on the septohippocampal cholinergic system. To do this, we used the B6.eGFPChAT congenic mouse, which we show contains multiple gene copies of VAChT. In this transgenic mouse, the increased VAChT gene copy number led to an increase in VAChT gene expression in the septum and a corresponding enhancement of VAChT protein in the hippocampal formation. VAChT overexpression enhanced the release of ACh from ex vivo hippocampal slices. From these findings, we conclude that VAChT overexpression is sufficient to enhance ACh release in the hippocampal formation. It remains to be established whether, in cases of cholinergic deficits, increasing VAChT expression would re-establish adequate levels of cholinergic neurotransmission, thereby providing a valid therapeutic target.
Collapse
|
6
|
Zakharova EI, Storozheva ZI, Dudchenko AM, Kubatiev AA. Chronic cerebral ischaemia forms new cholinergic mechanisms of learning and memory. Int J Alzheimers Dis 2010; 2010:954589. [PMID: 21197444 PMCID: PMC3010649 DOI: 10.4061/2010/954589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/10/2010] [Accepted: 11/02/2010] [Indexed: 11/25/2022] Open
Abstract
The purpose of this research was a comparative analysis of cholinergic synaptic organization following learning and memory in normal and chronic cerebral ischaemic rats in the Morris water maze model. Choline acetyltransferase and protein content were determined in subpopulations of presynapses of “light” and “heavy” synaptosomal fractions of the cortex and the hippocampus, and the cholinergic projective and intrinsic systems of the brain structures were taken into consideration. We found a strong involvement of cholinergic systems, both projective and intrinsic, in all forms of cognition. Each form of cognition had an individual cholinergic molecular profile and the cholinergic synaptic compositions in the ischaemic rat brains differed significantly from normal ones. Our data demonstrated that under ischaemic conditions, instead of damaged connections new key synaptic relationships, which were stable against pathological influences and able to restore damaged cognitive functions, arose. The plasticity of neurochemical links in the individual organization of certain types of cognition gave a new input into brain pathology and can be used in the future for alternative corrections of vascular and other degenerative dementias.
Collapse
Affiliation(s)
- E I Zakharova
- Institute of General Pathology and Pathophysiology, RAMS, Baltic street 8, Moscow 125315, Russia
| | | | | | | |
Collapse
|
7
|
Wenk GL. Assessment of spatial memory using the radial arm maze and Morris water maze. ACTA ACUST UNITED AC 2008; Chapter 8:Unit 8.5A. [PMID: 18428607 DOI: 10.1002/0471142301.ns0805as26] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Behavioral tasks must be evaluated in terms of the cognitive functions they require in order to be performed. All of the tasks described in this chapter can be used with each of four experimental manipulations: stimulation of a single brain region by drugs or small electrical current, impairment of normal function by production of a lesion or administration of appropriate pharmacological agents, recording of brain activity during the performance of a specific behavioral task, or behavioral phenotyping of transgenic and knockout mice for genes expressed in specific brain regions. This unit describes protocols for the radial arm maze task and the water maze task, both of which require intact spatial memory abilities.
Collapse
|
8
|
Meck WH. Temporal memory in mature and aged rats is sensitive to choline acetyltransferase inhibition. Brain Res 2006; 1108:168-75. [PMID: 16854393 DOI: 10.1016/j.brainres.2006.06.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 06/09/2006] [Accepted: 06/09/2006] [Indexed: 11/24/2022]
Abstract
The effects of a potent inhibitor of choline acetyltransferase (ChAT), BW813U, on timing behavior in mature (6-10 months) and aged (26-30 months) male rats were assessed. Twenty rats were trained on a discrete trial 20-s peak-interval (PI) procedure. During baseline (non-drug) training, the time of the maximum response rate (peak time) for mature rats was approximately at the time of scheduled reinforcement, but peak time for aged rats was reliably later. A single administration of BW813U (100 mg/kg, ip) produced a long-lasting increase in peak time for both mature and aged rats that occurred gradually and was synergistic with age. These horizontal shifts in peak time indicate a change in the content of reference memory for the remembered time of reinforcement that is similar for both aging processes and BW813U administration. When a 5-s gap was imposed in the signal, PI-GAP procedure, control rats of both ages summed the signal durations before and after the gap, whereas rats given BW813U showed no retention of the signal duration prior to the gap. This loss of trial-specific temporal information suggests a drug-induced working memory dysfunction. Taken together, these results demonstrate that both working and reference memory for temporal information are sensitive to choline acetyltransferase inhibition in rats.
Collapse
Affiliation(s)
- Warren H Meck
- Department of Psychology and Neuroscience, Duke University, 572 Research Drive, Genome Sciences Research Building II-Box 91050, Durham, NC 27708, USA.
| |
Collapse
|
9
|
Brandon EP, Mellott T, Pizzo DP, Coufal N, D'Amour KA, Gobeske K, Lortie M, López-Coviella I, Berse B, Thal LJ, Gage FH, Blusztajn JK. Choline transporter 1 maintains cholinergic function in choline acetyltransferase haploinsufficiency. J Neurosci 2004; 24:5459-66. [PMID: 15201317 PMCID: PMC6729318 DOI: 10.1523/jneurosci.1106-04.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Choline acetyltransferase (ChAT), the enzyme that synthesizes the neurotransmitter acetylcholine (ACh), is thought to be present in kinetic excess in cholinergic neurons. The rate-limiting factor in ACh production is the provision of choline to ChAT. Cholinergic neurons are relatively unique in their expression of the choline transporter 1 (CHT1), which exhibits high-affinity for choline and catalyzes its uptake from the extracellular space to the neuron. Multiple lines of evidence indicate that the activity of CHT1 is a key determinant of choline supply for ACh synthesis. We examined the interaction of ChAT and ChT activity using mice heterozygous for a null mutation in the Chat gene (Chat+/-). In these mice, brain ChAT activity was reduced by 40-50% relative to the wild type, but brain ACh levels as well as ACh content and depolarization-evoked ACh release in hippocampal slices were normal. However, the amount of choline taken up by CHT1 and ACh synthesized de novo from choline transported by CHT1 in hippocampal slices, as well as levels of CHT1 mRNA in the septum and CHT1 protein in several regions of the CNS, were 50-100% higher in Chat+/- than in Chat+/+ mice. Thus, haploinsufficiency of ChAT leads to an increased expression of CHT1. Increased ChT activity may compensate for the reduced ChAT activity in Chat+/- mice, contributing to the maintenance of apparently normal cholinergic function as reflected by normal performance of these mice in several behavioral assays.
Collapse
Affiliation(s)
- Eugene P Brandon
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mukhin EL, Zakharova EI, Kikteva EA. Comparison of the cholinergic system in neocortical field Ep in cats with strong and weak cognitive abilities. ACTA ACUST UNITED AC 2003; 32:379-87. [PMID: 12243259 DOI: 10.1023/a:1015828227115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Comparative analysis of the cholinergic system of the neocortex, consisting of the terminals of neurons from the magnocellular basal nuclei and intracortical neurons, in cats with strong and weak abilities to solve abstraction and generalization tasks was performed by isolating subfractions of synaptic membranes and synaptoplasm from "light" (C) and "heavy" (D) synaptosomes from associative field Ep and measuring choline acetyltransferase and acetylcholinesterase activities, protein content, and sulfhydryl group concentrations. These experiments showed that all measures were significantly lower in subfractions from C synaptosomes from cats with strong cognitive abilities. This leads to the conclusion that relatively small numbers of cholinergic synapses form in field Ep of the brains of cats with strong cognitive abilities, while their location in the C fraction demonstrates that they correspond to neurons of the magnocellular basal nuclei. The possible physiological significance of the "deficiency" of cholinergic inputs in field Ep from these nuclei as a correlate of the animal's cognitive ability is discussed. The D subfractions from able cats had significantly higher acetylcholinesterase activity, while choline acetyltransferase activity was not different; this identifies differences between groups of animals in the organization of non-cholinergic acetylcholinesterase-containing synapses in field Ep.
Collapse
Affiliation(s)
- E L Mukhin
- Science Research Institute of the Brain, Russian Academy of Medical Sciences, Moscow
| | | | | |
Collapse
|
11
|
|
12
|
Gustilo MC, Markowska AL, Breckler SJ, Fleischman CA, Price DL, Koliatsos VE. Evidence that nerve growth factor influences recent memory through structural changes in septohippocampal cholinergic neurons. J Comp Neurol 1999; 405:491-507. [PMID: 10098941 DOI: 10.1002/(sici)1096-9861(19990322)405:4<491::aid-cne4>3.0.co;2-n] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We compared, in 4- and 23-month-old Fischer-344 rats, the effects of nerve growth factor (NGF) on basal forebrain cholinergic neurons with behavioral performance in acetylcholine-dependent memory tasks (recent and reference memory). Noncholinergic monoamine markers in target fields of cholinergic neurons were also investigated. We found that NGF has contrasting effects on recent memory in the two age groups in causing improvement in aged rats and deterioration in young rats. In addition, NGF caused significant increase in the size of cholinergic perikarya in all sectors of the basal nucleus complex (BNC). Higher doses of NGF were required to produce hypertrophy in aged animals, a pattern consistent with a lower sensitivity to NGF of aged cholinergic neurons. Analysis of covariance showed that the behavioral effects of NGF were eliminated after covarying out the hypertrophy of cholinergic perikarya. Therefore, NGF causes hypertrophy of cholinergic perikarya regardless of age, and this neurobiological measure correlates with the effects of NGF on recent memory. Reference memory improved moderately only in old rats. This mild effect covaried with an increase in choline acetyltransferase activity in neocortex. Cortical terminal fields of noradrenergic and serotoninergic pathways were not affected by NGF. Taken together, our results indicate that NGF influences recent memory in an age- and transmitter-specific fashion. We postulate that the direct cause of the effects of NGF on memory is not perikaryal hypertrophy per se but rather an increased density of terminals, which always accompanies perikaryal hypertrophy. Although these results continue to support the use of NGF for the treatment of Alzheimer's disease, they raise questions regarding the therapeutic role of NGF for degeneration of BNC neurons occurring in young age.
Collapse
Affiliation(s)
- M C Gustilo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
13
|
Bartolomeo AC, Morris H, Boast CA. Arecoline via miniosmotic pump improves AF64A-impaired radial maze performance in rats: a possible model of Alzheimer's disease. Neurobiol Learn Mem 1997; 68:333-42. [PMID: 9398593 DOI: 10.1006/nlme.1997.3786] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Male Sprague-Dawley rats, preoperatively trained in a 1-h delay non-match-to-position radial maze task, received bilateral stereotaxic injections of a selective cholinotoxin, ethylcholine aziridinium ion (AF64A: 3 nmol/3 microliters/lateral ventricle). Animals treated with AF64A made significantly more total postdelay errors than vehicle controls. Sustained delivery, via miniosmotic pumps, of arecoline (0.1, 0.3, 1, 3, 10, or 30 mg/kg/day sc for 14 days) attenuated the AF64A-induced cognitive impairment in a dose-dependent manner, producing an inverted U-shaped dose-response function which was optimal at 1.0 mg/kg/day. Following these studies, choline acetyltransferase activity was significantly reduced in hippocampi extracted from the AF64A-treated rats, indicating successful cholinotoxicity. This paradigm may be useful as a possible screen for potential Alzheimer's disease therapeutic agents. This conclusion is supported by published reports of beneficial arecoline effects observed following 2-week intravenous infusions in patients with Alzheimer's disease (Soncrant, Raffaele, Asthana, Berardi, Morris, & Haxby, 1993).
Collapse
Affiliation(s)
- A C Bartolomeo
- CNS Disorders Division, Wyeth-Ayerst Research, Princeton, New Jersey 08543-8000, USA
| | | | | |
Collapse
|
14
|
Crawley JN, Paylor R. A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav 1997; 31:197-211. [PMID: 9213134 DOI: 10.1006/hbeh.1997.1382] [Citation(s) in RCA: 400] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Behavioral phenotyping of transgenic and knockout mice requires rigorous, formal analyses. Well-characterized paradigms can be chosen from the established behavioral neuroscience literature. This review describes (1) a series of neurological and neuropsychological tests which are effectively used as a first screen for behavioral abnormalities in mutant mice, and (2) a series of specific behavioral paradigms, clustered by category. Included are multiple paradigms for each category, including learning and memory, feeding, analgesia, aggression, anxiety, depression, schizophrenia, and drug abuse models. Examples are given from the experiences of the authors, in applying these experimental designs to transgenic and knockout mice. Extensive references for each behavioral paradigm are provided, to allow new investigators to access the relevant literature on behavioral methodology.
Collapse
Affiliation(s)
- J N Crawley
- Section on Behavioral Neuropharmacology, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
15
|
Wenk GL. The nucleus basalis magnocellularis cholinergic system: one hundred years of progress. Neurobiol Learn Mem 1997; 67:85-95. [PMID: 9075237 DOI: 10.1006/nlme.1996.3757] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nucleus basalis magnocellularis (NBM) contains a population of large cholinergic (Ch) neurons that send their axons to the entire cortical mantle, the olfactory bulbs, and the amygdala. This is the centennial anniversary of the first exact description of this nucleus by Von Kölliker, who named it in honor of its discoverer. This review will focus upon recent attempts to understand the role of the NBM Ch neurons in higher cognitive function by the use of selective lesion analyses and electrophysiological recording techniques. Behavioral deficits associated with NBM lesions produced by injections of excitatory amino acid agonists have been demonstrated in a variety of tasks. Performance decrements produced by these lesions were initially interpreted as being the result of impairments in learning and memory abilities. However, the precise role of the Ch NBM neurons in these performance deficits could not be more thoroughly investigated until it became possible to produce selective and discrete lesions by injection of the immunotoxin, IgG-192 saporin. The results of investigations using this immunotoxin supported a role for NBM Ch neurons in the performance of tasks that require selected attentional abilities rather than learning and memory per se. These lesion analysis studies suggested that the corticopetal NBM Ch system may be involved in the control of shifting attention to potentially relevant, and brief, sensory stimuli that predict a biologically relevant event, such as a food reward. Electrophysiological evidence has implicated NBM Ch cells in the control of attentional processes, as well as a role in the control and maintenance of arousal and sleep states. Electrophysiological studies also suggest that NBM Ch neurons might influence cortical EEG activity in two ways, by its direct excitatory inputs and by an indirect inhibitory projection to the thalamic reticular nucleus. Taken together with the results of histological and anatomical studies of the basal forebrain, NBM Ch cells appear to be ideally located within the basal forebrain for evaluating sensory stimuli for their level of significance, via inputs from the midbrain and limbic system, and also to modulate intrinsic cortical responsiveness appropriately in order to attend to brief, highly salient sensory stimuli.
Collapse
Affiliation(s)
- G L Wenk
- Division of Neural Systems, Memory and Aging, Arizona Research Laboratories, University of Arizona, Tucson 85724, USA.
| |
Collapse
|
16
|
Alonso JR, Amaral DG. Cholinergic innervation of the primate hippocampal formation. I. Distribution of choline acetyltransferase immunoreactivity in the Macaca fascicularis and Macaca mulatta monkeys. J Comp Neurol 1995; 355:135-70. [PMID: 7608341 DOI: 10.1002/cne.903550202] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cholinergic innervation of the hippocampal formation of Macaca fascicularis (cynomolgus) and Macaca mulatta (rhesus) monkeys was investigated by immunohistochemical procedures using a monoclonal antibody directed against choline acetyltransferase. The distribution of choline acetyltransferase in the monkey demonstrated both similarities and differences with the staining patterns observed in the rat or with acetylcholinesterase in the monkey. While both of these latter preparations demonstrated labeled cells, for example, no choline acetyltransferase labeled neurons were observed in the monkey hippocampal formation. Choline acetyltransferase activity was restricted to fibers which varied in thickness and number of varicosities and in their regional and laminar distribution. The highest densities of labeled fibers were observed in the uncal portion of the hippocampus, in the parasubiculum, and in the entorhinal cortex; the lowest densities of labeled fibers were observed in CA1 and in midrostrocaudal levels of the dentate gyrus. In the dentate gyrus, immunoreactive fibers were densely distributed in the molecular layer and in an infragranular plexus. One of the few striking noticeable interspecies differences was observed in the dentate gyrus. In the rhesus monkey, labeled fibers in the molecular layer were divided into a superficial denser and an inner lighter lamina, whereas in M. fascicularis, the cholinergic fibers were distributed more homogeneously throughout the molecular layer. In the hippocampus proper, there was a progressive decrease in the density of ChAT-immunoreactive fibers from CA3/CA2 into CA1. The subiculum also demonstrated modest labeling which was nonetheless higher than in CA1; the border of these fields demonstrated increased fiber labeling. The density of choline acetyltransferase staining was high in the presubiculum and parasubiculum. In the entorhinal cortex, a relatively clear boundary was observed between the more heavily stained superficial layers (I, II, and III) and the more weakly labeled deep layers (V and VI), especially in the intermediate and caudal fields. A transverse decreasing gradient was observed with the densest plexus of cholinergic fibers found in the medially situated olfactory field of the entorhinal cortex and the lowest density in the laterally located caudal and lateral fields.
Collapse
Affiliation(s)
- J R Alonso
- Universidad de Salamanca, Departamento de Biología Celular y Patología, Spain
| | | |
Collapse
|
17
|
Fraser KA, Poucet B, Partlow G, Herrmann T. Role of the medial and lateral septum in a variable goal spatial problem solving task. Physiol Behav 1991; 50:739-44. [PMID: 1775548 DOI: 10.1016/0031-9384(91)90011-c] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rats with lesions to the medial (MS) or lateral septal (LS) nuclei were compared to normal controls (CNT) in the acquisition of a spatial working memory task. In this task, animals were first allowed to explore the unbaited three-table apparatus before being fed on one of the two possible goal tables. Animals were then tested on their ability to return to the table where they just had been fed. Only rats with medial septal damage were clearly impaired on this problem, an impairment that dissipated over days. In contrast, the performance of LS rats was not significantly different from controls. During the second phase of the experiment, the same animals received either atropine sulphate (50 mg/kg, IP), atropine methylnitrate (50 mg/kg, IP), or an equivalent volume of saline. Atropine sulphate produced a sharp decrease in performance by all subjects. Meanwhile, atropine methylnitrate produced a mild temporary deficit only in LS rats. Overall, these results confirm that the medial septum plays a crucial role in the acquisition of problem solving. In addition, these results also suggest that the lateral septum may play a possible role in some form of spatial behavior easily disrupted by atropine methylnitrate.
Collapse
Affiliation(s)
- K A Fraser
- Department of Psychology, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Willig F, M'Harzi M, Bardelay C, Viet D, Delacour J. Roman strains as a psychogenetic model for the study of working memory: behavioral and biochemical data. Pharmacol Biochem Behav 1991; 40:7-16. [PMID: 1780348 DOI: 10.1016/0091-3057(91)90313-q] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Performances of male rats of the Roman High- (RHA), Roman Control- (RCA) and Roman Low- (RLA) Avoidance strains were compared in two working memory tests, a spatial one, the radial maze, and a nonspatial one, an object recognition test. The same rats were subjected to measures of emotional reactivity and of different forms of motor activity and finally to measures of cholinergic and aminergic activities in the hippocampus, frontal cortex and striatum. Compared to RHA, RLA performed better in the two working memory tests, displayed "anxiety" and had also lower levels of exploratory locomotor activity. Hippocampal ChAT activity was higher in RLA than in RHA. Levels of DA and DOPAC in the striatum were higher in RLA compared to RHA, whereas in the frontal cortex they were lower. For most of these measures, RCA were intermediate between RLA and RHA. These results confirm and extend the finding that the Roman strains are not only a genetic model for two-way avoidance conditioning but also for working memory.
Collapse
Affiliation(s)
- F Willig
- Laboratoire de Psychophysiologie, Université Paris, France
| | | | | | | | | |
Collapse
|
19
|
Page KJ, Everitt BJ, Robbins TW, Marston HM, Wilkinson LS. Dissociable effects on spatial maze and passive avoidance acquisition and retention following AMPA- and ibotenic acid-induced excitotoxic lesions of the basal forebrain in rats: differential dependence on cholinergic neuronal loss. Neuroscience 1991; 43:457-72. [PMID: 1922778 DOI: 10.1016/0306-4522(91)90308-b] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Excitotoxic lesions of the basal forebrain were made by infusing either alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) or ibotenic acid. Acquisition and performance of spatial learning in the Morris water maze, over a ten day, two trials per day, training regimen were unaffected by the AMPA-induced lesions which reduced cortical choline acetyltransferase activity by 70%. However, acquisition was significantly impaired in rats with ibotenic acid-induced lesions that reduced cortical choline acetyltransferase by 50%. Additionally, ibotenic acid-lesioned rats swam further than either sham or AMPA-lesioned rats, in the "training" quadrant during a probe trial, in which the escape platform was removed, suggesting a perseverative search strategy. Lesions induced with AMPA, but not ibotenate, significantly impaired the acquisition of "step-through" passive avoidance. Both AMPA- and ibotenate-induced lesions significantly impaired the 96 h retention of passive avoidance, but the effect of AMPA was greater on latency measures. Histological analysis revealed that AMPA infusions destroyed more choline acetyltransferase-immunoreactive neurons than did ibotenate infusions but, unlike ibotenate, spared the overlying dorsal pallidum and also parvocellular, non-choline acetyltransferase-immunoreactive neurons in the ventral pallidal/substantia innominata region of the basal forebrain. The impairment in acquisition of the water maze following ibotenate-induced basal forebrain lesions therefore appears unrelated to damage to cholinergic neurons of the nucleus basalis of Meynert and to depend instead on damage to pallidal and other neurons in this area. The AMPA- and perhaps also the ibotenate-induced impairment in the retention of passive avoidance appears to be more directly related to destruction of cholinergic neurons of the nucleus basalis. These data are discussed in the context of cortical cholinergic involvement in mnemonic processes.
Collapse
Affiliation(s)
- K J Page
- Department of Anatomy, University of Cambridge, U.K
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- W H Moos
- Department of Chemistry, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Co., Ann Arbor, Michigan 48105
| | | | | | | |
Collapse
|
21
|
Russell RW. Behavioral correlates of presynaptic events in the cholinergic neurotransmitter system. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1988; 32:43-130. [PMID: 2905821 DOI: 10.1007/978-3-0348-9154-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Everitt BJ, Robbins TW, Evenden JL, Marston HM, Jones GH, Sirkiä TE. The effects of excitotoxic lesions of the substantia innominata, ventral and dorsal globus pallidus on the acquisition and retention of a conditional visual discrimination: implications for cholinergic hypotheses of learning and memory. Neuroscience 1987; 22:441-69. [PMID: 3670594 DOI: 10.1016/0306-4522(87)90346-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of ibotenic acid-induced lesions of the ventral pallidum/substantia innominata region, the dorsal pallidum or both on the acquisition and retention of a conditional visual discrimination have been studied in the rat. Lesions of the ventral pallidum and large lesions of the dorsal and ventral pallidum severely impaired both the acquisition and retention of the conditional discrimination. Dorsal pallidal lesions had similar, but less marked effects. The same lesions also impaired the retention of a passive avoidance task, but had no effect on a conditioned taste aversion. Neurobiological investigations revealed that the lesions destroyed cholinergic neurons in the magnocellular nucleus basalis and caused reductions in cortical choline acetyltransferase activity of about 30-40%. Tract-tracing experiments indicated that the lesions destroyed, in particular, cholinergic neurons projecting to the frontal dorsolateral cortex and also those projecting to more posterior cortex, but not the occipital lobes. Contingency analysis of the behavioural, neurochemical and neuroanatomical data indicated that those animals with the largest decreases in choline acetyltransferase activity, or the largest areas of neuronal loss in the ventral and dorsal globus pallidus, were most impaired in the retention of the conditional discrimination. The results do not, therefore, indicate a simple relationship between cholinergic neuronal loss and the retention of response rules essential for performance of the task ("reference memory"). The relevance of the results to cholinergic hypotheses of learning and memory is discussed.
Collapse
Affiliation(s)
- B J Everitt
- Department of Anatomy, University of Cambridge, U.K
| | | | | | | | | | | |
Collapse
|