1
|
Kunnath AJ, Gifford RH, Wallace MT. Cholinergic modulation of sensory perception and plasticity. Neurosci Biobehav Rev 2023; 152:105323. [PMID: 37467908 PMCID: PMC10424559 DOI: 10.1016/j.neubiorev.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Sensory systems are highly plastic, but the mechanisms of sensory plasticity remain unclear. People with vision or hearing loss demonstrate significant neural network reorganization that promotes adaptive changes in other sensory modalities as well as in their ability to combine information across the different senses (i.e., multisensory integration. Furthermore, sensory network remodeling is necessary for sensory restoration after a period of sensory deprivation. Acetylcholine is a powerful regulator of sensory plasticity, and studies suggest that cholinergic medications may improve visual and auditory abilities by facilitating sensory network plasticity. There are currently no approved therapeutics for sensory loss that target neuroplasticity. This review explores the systems-level effects of cholinergic signaling on human visual and auditory perception, with a focus on functional performance, sensory disorders, and neural activity. Understanding the role of acetylcholine in sensory plasticity will be essential for developing targeted treatments for sensory restoration.
Collapse
Affiliation(s)
- Ansley J Kunnath
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - René H Gifford
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
McArthur RA. Aligning physiology with psychology: Translational neuroscience in neuropsychiatric drug discovery. Neurosci Biobehav Rev 2017; 76:4-21. [DOI: 10.1016/j.neubiorev.2017.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
|
3
|
Day HLL, Reed MM, Stevenson CW. Sex differences in discriminating between cues predicting threat and safety. Neurobiol Learn Mem 2016; 133:196-203. [PMID: 27423522 PMCID: PMC4993817 DOI: 10.1016/j.nlm.2016.07.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/03/2016] [Accepted: 07/12/2016] [Indexed: 01/30/2023]
Abstract
We investigated sex differences in auditory fear discrimination in rats. Males that received extended discrimination training showed fear discrimination. Females discriminated after limited training and generalized after extended training. Generalization with extended training in females involved impaired safety signaling.
Post-traumatic stress disorder (PTSD) is more prevalent in women than men. PTSD is characterized by overgeneralization of fear to innocuous stimuli and involves impaired inhibition of learned fear by cues that predict safety. While evidence indicates that learned fear inhibition through extinction differs in males and females, less is known about sex differences in fear discrimination and safety learning. Here we examined auditory fear discrimination in male and female rats. In Experiment 1A, rats underwent 1–3 days of discrimination training consisting of one tone predicting threat (CS+; presented with footshock) and another tone predicting safety (CS−; presented alone). Females, but not males, discriminated between the CS+ and CS− after one day of training. After 2–3 days of training, however, males discriminated whereas females generalized between the CS+ and CS−. In Experiment 1B, females showed enhanced anxiety-like behaviour and locomotor activity in the open field, although these results were unlikely to explain the sex differences in fear discrimination. In Experiment 2, we found no differences in shock sensitivity between males and females. In Experiment 3, males and females again discriminated and generalized, respectively, after three days of training. Moreover, fear generalization in females resulted from impaired safety learning, as shown by a retardation test. Whereas subsequent fear conditioning to the previous CS− retarded learning in males, females showed no such retardation. These results suggest that, while females show fear discrimination with limited training, they show fear generalization with extended training due to impaired safety learning.
Collapse
Affiliation(s)
- Harriet L L Day
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Molly M Reed
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
4
|
Tsui CKY, Dringenberg HC. Role of cholinergic-muscarinic receptors in visual discrimination performance of rats: importance of stimulus load. Behav Brain Res 2012; 238:23-9. [PMID: 23078949 DOI: 10.1016/j.bbr.2012.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 11/15/2022]
Abstract
Central cholinergic transmission has long been implicated in various cognitive processes, including memory acquisition, consolidation, and attentional processes. Here, we examined the role of muscarinic receptors in visual discrimination performance under conditions of altered visual information availability. Adult rats were trained to discriminate two visual cues (indicating the presence and absence of a hidden escape platform, respectively) in a water maze-based, trapezoidal-shaped apparatus. Following task acquisition, testing continued with two types of trials: regular trials (RTs; both visual cues present, identical to training conditions) and probe trials (PTs; only one of the two cues present). In Experiment 1, removal of one visual cue on PTs impaired discrimination performance. Moreover, scopolamine administration (0.125-1.0 mg/kg, i.p.) tended to further suppress performance in a dose-dependent manner on PTs, while discriminations on RTs were left intact. In Experiment 2, these results were confirmed and extended by showing that PT (one visual cue) performance could improve with training in undrugged, but not in scopolamine-treated rats. Together, these experiments reveal that visual discrimination performance of rats benefits from the concurrent availability of two visual cues that provide complimentary and consistent information. Furthermore, muscarinic receptors are particularly important under conditions of reduced visual information availability, as well as in the adoption of new behavioral strategies, such as switching from two-cue to single-cue guided navigation.
Collapse
Affiliation(s)
- Claudia K Y Tsui
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | | |
Collapse
|
5
|
Robinson L, Platt B, Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res 2011; 221:443-65. [PMID: 21315109 DOI: 10.1016/j.bbr.2011.01.055] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 01/07/2023]
Abstract
The cholinergic systems play a pivotal role in learning and memory, and have been the centre of attention when it comes to diseases containing cognitive deficits. It is therefore not surprising, that the cholinergic transmitter system has experienced detailed examination of its role in numerous behavioural situations not least with the perspective that cognition may be rescued with appropriate cholinergic 'boosters'. Here we reviewed the literature on (i) cholinergic lesions, (ii) pharmacological intervention of muscarinic or nicotinic system, or (iii) genetic deletion of selective receptor subtypes with respect to sensory discrimination and conditioning procedures. We consider visual, auditory, olfactory and somatosensory processing first before discussing more complex tasks such as startle responses, latent inhibition, negative patterning, eye blink and fear conditioning, and passive avoidance paradigms. An overarching reoccurring theme is that lesions of the cholinergic projection neurones of the basal forebrain impact negatively on acquisition learning in these paradigms and blockade of muscarinic (and to a lesser extent nicotinic) receptors in the target structures produce similar behavioural deficits. While these pertain mainly to impairments in acquisition learning, some rare cases extend to memory consolidation. Such single case observations warranted replication and more in-depth studies. Intriguingly, receptor blockade or receptor gene knockout repeatedly produced contradictory results (for example in fear conditioning) and combined studies, in which genetically altered mice are pharmacological manipulated, are so far missing. However, they are desperately needed to clarify underlying reasons for these contradictions. Consistently, stimulation of either muscarinic (mainly M(1)) or nicotinic (predominantly α7) receptors was beneficial for learning and memory formation across all paradigms supporting the notion that research into the development and mechanisms of novel and better cholinomimetics may prove useful in the treatment of neurodegenerative or psychiatric disorders with cognitive endophenotypes.
Collapse
Affiliation(s)
- Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | |
Collapse
|
6
|
Klinkenberg I, Blokland A. A comparison of scopolamine and biperiden as a rodent model for cholinergic cognitive impairment. Psychopharmacology (Berl) 2011; 215:549-66. [PMID: 21336581 PMCID: PMC3090581 DOI: 10.1007/s00213-011-2171-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 01/09/2011] [Indexed: 10/26/2022]
Abstract
RATIONALE The nonselective muscarinic antagonist scopolamine hydrobromide (SCOP) is employed as the gold standard for inducing memory impairments in healthy humans and animals. However, its use remains controversial due to the wide spectrum of behavioral effects of this drug. OBJECTIVE The present study investigated whether biperiden (BIP), a muscarinic m1 receptor antagonist, is to be preferred over SCOP as a pharmacological model for cholinergic memory deficits in rats. This was done by comparing the effects of SCOP and BIP using a battery of operant tasks: fixed ratio (FR5) and progressive ratio (PR10) schedules of reinforcement, an attention paradigm and delayed nonmatching to position task. RESULTS SCOP induced diffuse behavioral disruption, which included sensorimotor responding (FR5, 0.3 and 1 mg/kg), food motivation (PR10, 1 mg/kg), attention (0.3 mg/kg, independent of stimulus duration), and short-term memory (delayed nonmatching to position (DNMTP), 0.1 and 0.3 mg/kg, delay-dependent but also impairment at the zero second delay). BIP induced relatively more selective deficits, as it slowed sensorimotor responding (FR5, 10 mg/kg) and disrupted short-term memory (DNMTP, 3 mg/kg, delay-dependent but no impairment at the zero second delay). BIP had no effect on food motivation (PR10) or attention. CONCLUSION Muscarinic m1 antagonists should be considered an interesting alternative for SCOP as a pharmacological model for cholinergic mnemonic deficits in animals.
Collapse
Affiliation(s)
- Inge Klinkenberg
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands.
| | - Arjan Blokland
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, European Graduate School of Neuroscience (EURON), Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci Biobehav Rev 2010; 34:1307-50. [DOI: 10.1016/j.neubiorev.2010.04.001] [Citation(s) in RCA: 413] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 04/01/2010] [Accepted: 04/08/2010] [Indexed: 01/06/2023]
|
8
|
Miasnikov AA, Chen JC, Weinberger NM. Specific auditory memory induced by nucleus basalis stimulation depends on intrinsic acetylcholine. Neurobiol Learn Mem 2008; 90:443-54. [PMID: 18573347 PMCID: PMC2556567 DOI: 10.1016/j.nlm.2008.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
Although the cholinergic system has long been implicated in the formation of memory, there had been no direct demonstration that activation of this system can actually induce specific behavioral memory. We have evaluated the "cholinergic-memory" hypothesis by pairing a tone with stimulation of the nucleus basalis (NB), which provides acetylcholine to the cerebral cortex. We found that such pairing induces behaviorally-validated auditory memory. NB-induced memory has the key features of natural memory: it is associative, highly-specific and rapidly induced. Moreover, the level of NB stimulation controls the amount of detail in memory about the tonal conditioned stimulus. While consistent with the hypothesis that properly-timed release of acetylcholine (ACh) during natural learning is sufficient to induce memory, pharmacological evidence has been lacking. This study asked whether scopolamine, a muscarinic antagonist, impairs or prevents the formation of NB-induced memory. Adult male rats were first tested for responses (disruption of ongoing respiration) to tones (1-15 kHz), constituting a pre-training behavioral frequency generalization gradient (BFGG). Then, they received a single session of 200 trials of a tone (8.00 kHz, 70 dB, 2 s) paired with electrical stimulation of the NB (100 Hz, 0.2 s). Immediately after training, they received either scopolamine (1.0 mg/kg, i.p.) or saline. Twenty-four hours later, they were tested for specific memory by obtaining post-training BFGGs. The saline group developed CS-specific memory, manifested by maximum increase in response specific to the CS frequency band. In contrast, the scopolamine group exhibited no such memory. These findings indicate that NB-induced specific associative behavioral memory requires the action of intrinsic acetylcholine at muscarinic receptors, and supports the hypothesis that natural memory formation engages the nucleus basalis and muscarinic receptors.
Collapse
Affiliation(s)
- Alexandre A Miasnikov
- Center for the Neurobiology of Learning and Memory, 309 Qureshey Research Laboratory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| | | | | |
Collapse
|
9
|
Lopes Aguiar C, Romcy-Pereira RN, Escorsim Szawka R, Galvis-Alonso OY, Anselmo-Franci JA, Pereira Leite J. Muscarinic acetylcholine neurotransmission enhances the late-phase of long-term potentiation in the hippocampal–prefrontal cortex pathway of rats in vivo: A possible involvement of monoaminergic systems. Neuroscience 2008; 153:1309-19. [DOI: 10.1016/j.neuroscience.2008.02.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 12/30/2022]
|
10
|
Andrews JS. Possible confounding influence of strain, age and gender on cognitive performance in rats. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 1996; 3:251-67. [PMID: 8806027 DOI: 10.1016/0926-6410(96)00011-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There are substantial differences in the performance of various rat strains in tasks of learning, memory and attention. Strain, age and sex differences are not consistent over procedures: poor performance in one paradigm does not predict poor performance in a different paradigm. Some strain differences are not readily apparent until a direct comparison is made between one or more strains. Moreover, large differences in nominally the same strain but obtained from different suppliers have been observed in behavioural, pharmacological and physiological parameters and can have important consequences for interpretation of drug effects. Longevity, and the effects of ageing can differ dramatically from one strain to another; drug effects can alter radically with increasing age and show strain (and individual) differences in their action. Sex can further complicate interpretation of results. Thus, non-cognitive factors may exert a major effect on results in cognitive testing, and strain-dependent effects may account for many conflicting results in the literature concerning mnemonic performance. Strain differences in particular must be identified and used to help identify fundamental effects on memory, rather than continue to be ignored and allowed to obscure interpretation of drug effects on cognitive processes.
Collapse
Affiliation(s)
- J S Andrews
- Scientific Development Group, NV Organon, Oss, The Netherlands
| |
Collapse
|
11
|
Andrews JS, Jansen JH, Linders S, Princen A. Effects of disrupting the cholinergic system on short-term spatial memory in rats. Psychopharmacology (Berl) 1994; 115:485-94. [PMID: 7871093 DOI: 10.1007/bf02245572] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of disrupting the muscarinic or nicotinic systems on short-term spatial memory were investigated using a delayed matching to position (DMTP) procedure. Rats were trained on the DMTP until stability and then divided into two groups: one group was implanted with an indwelling cannula aimed at the lateral ventricle. The cannulated group received injections of selective muscarinic antagonists (pirenzepine, M1; AFDX 116, M2; UH-AH 37, M1/M3) or hemicholinium-3 (a choline uptake inhibitor). The remaining animals were treated with conventional muscarinic antagonists (scopolamine, methyl scopolamine) or nicotinic channel blockers (mecamylamine, hexamethonium). Scopolamine, methyl scopolamine and UH-AH 37 disrupted all performance parameters in a non-specific but dose related manner. Pirenzepine disrupted accuracy in a delay, but not dose dependent manner, and exerted no other negative effects on performance. Hemicholinium-3-induced performance deficits showed some elements of effects seen following pirenzepine and scopolamine (delay dependent effects on accuracy, some negative effects on other motoric aspects of performance). AFDX 116 and hexamethonium had no significant effects on performance with respect to control. Mecamylamine reduced accuracy and increased response latencies at the highest dose tested. These data indicate that muscarinic antagonists are more effective at disrupting mnemonic performance than nicotinic blockers, and moreover, that distinct muscarinic receptors may have differential effects on cognitive performance.
Collapse
Affiliation(s)
- J S Andrews
- Scientific Development Group, Organon International BV, Oss, The Netherlands
| | | | | | | |
Collapse
|
12
|
Cohen RM, Gross M, Semple WE, Nordahl TE, Sunderland T. The metabolic brain pattern of young subjects given scopolamine. Exp Brain Res 1994; 100:133-43. [PMID: 7813641 DOI: 10.1007/bf00227285] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of an intravenous dose of 0.5 mg of scopolamine on the functional brain activity of normal subjects performing auditory discrimination (CPT) was determined in two independent positron emission tomography studies with [18F] 2-fluoro-deoxyglucose. In the first preliminary study, the most significant effect found was a reduction in the functional activity of the thalamus. In the second "hypothesis-testing" study, an equally prominent effect on thalamic functional activity was seen. Because the second study was performed on a high-resolution scanner with improved methodology, we re-examined scopolamine's effects on those brain regions established as determinants of CPT. Of the regions affected, the reduction in cingulate and the increase in basal ganglia metabolic rates were the most notable. We concluded that scopolamine's effects on the functions of thalamic, cingulate and basal ganglia are the likely causes of scopolamine's well-described attention-altering properties. Alterations in these same brain structures could be responsible for scopolamine's effects on other cognitive functions, e.g., memory. Alternatively, scopolamine's effects on other brain structures such as the hippocampus and frontal cortex could underlie scopolamine's effects on these other cognitive functions. Studies of scopolamine's regional metabolic effects in subjects performing these other cognitive tasks at more than a single dose and at more than one post-drug time are needed to discriminate between these two possibilities.
Collapse
Affiliation(s)
- R M Cohen
- Clinical Brain Imaging Section, NIMH, Bethesda, MD 20892-1000
| | | | | | | | | |
Collapse
|
13
|
Andrews JS, Grützner M, Stephens DN. The effects of ibotenic acid lesions of the basal forebrain on visual discrimination performance in rats. Brain Res Bull 1994; 34:407-12. [PMID: 8082033 DOI: 10.1016/0361-9230(94)90037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rats were trained to stable performance in a conditional brightness discrimination task and then received infusions of ibotenic acid or vehicle into the basal forebrain. Following 2 weeks of recovery, animals were retested in the original discrimination. Lesioned rats tended to performed badly on the first day of testing as measured by all parameters (percent correct responding, latency to respond, and missed trials) but thereafter, most rats recovered quickly to prelesion levels. In keeping with previous reports, an approximately 30% reduction in choline acetyltransferase activity was observed in the lesioned animals. Four rats showed no recovery over a period of several months; however, an analysis of the choline acetyltransferase in several brain regions revealed no obvious differences to those animals in which performance recovered. Postlesion testing with the putative nootropic beta-carboline ZK 93426 showed no major differences to the effects observed in control animals. Scopolamine had similar negative effects in both groups tested. These data indicate that deficits induced by lesions of the basal forebrain do not correlate with reductions in cholinergic activity.
Collapse
Affiliation(s)
- J S Andrews
- Department of Neuropsychopharmacology, Research Laboratories of Schering AG, Berlin, Germany
| | | | | |
Collapse
|
14
|
Berz S, Bättig K, Welzl H. The effects of anticholinergic drugs on delayed time discrimination performance in rats. Physiol Behav 1992; 51:493-9. [PMID: 1523226 DOI: 10.1016/0031-9384(92)90170-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To investigate the effects of the muscarinic antagonist scopolamine and the nicotinic antagonist mecamylamine on time discrimination and short-term memory, rats were trained on a delayed conditional time discrimination task until performance stabilized. In a two-lever operant chamber, pressing one lever was correct after the presentation of a stimulus light for 2 seconds (SD short); and pressing the other lever was correct after presentation of a stimulus light for 8 seconds (SD long). Scopolamine (0.06 mg, 0.25 mg, and 1.0 mg/kg) attenuated performance in a dose-dependent manner. Furthermore, the drug decreased nose-pokes (an activity necessary to trigger the presentation of the discriminative stimuli and the presentation of the response levers), and increased response delay (time from opportunity to lever press to actual lever press). Performance attenuating effects of mecamylamine in the time discrimination task did not appear unless high doses (8 mg/kg) of the drug were given. With increasing delays between 0 and 8 seconds, animals injected with saline developed a bias towards reporting the occurrence of the SD long, independent of the actual stimulus presented. A reversal of this bias was seen in animals injected with scopolamine; they more often reported the occurrence of the SD short. Our results support a role for muscarinic receptors in discrimination learning, attention, and time estimation.
Collapse
Affiliation(s)
- S Berz
- Laboratory of Behavioral Biology, Federal Institute of Technology (ETH), Zürich, Switzerland
| | | | | |
Collapse
|
15
|
Dudchenko P, Sarter M. Behavioral microanalysis of spatial delayed alternation performance: rehearsal through overt behavior, and effects of scopolamine and chlordiazepoxide. Psychopharmacology (Berl) 1992; 107:263-70. [PMID: 1615125 DOI: 10.1007/bf02245146] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rats were trained in an operant spatial delayed alternation task utilizing retention intervals from 2 to 32 s. In addition to response accuracy, operations of the levers during the retention intervals were recorded and analyzed. Animals were tested following the administration of the muscarinic antagonists scopolamine hydrobromide and methylbromide, and the benzodiazepine receptor agonist chlordiazepoxide. In vehicle-treated animals, the relative number of correct responses and correct rehearsal operations (operation of the forthcoming correct lever during retention intervals) varied with the length of the retention intervals, and these measures were correlated. The response rate for rehearsal operations increased with the length of the retention intervals. It is speculated that the delay-dependent increase in response rate reflects an effect of delayed reward that was also associated with a delay-dependent increase in the tendency to alternate between levers. The effects of delay on the accuracy of rehearsal operations may have contributed to the delay-dependent correct responding. Scopolamine hydrobromide (0.01, 0.03, 0.1, 0.3 mg/kg) and methylbromide (0.1, 0.3 mg/kg) impaired correct responding, but did not seem to interfere with the relative number of correct rehearsal operations. As only the presentation of the panel light indicated trial onset, it is speculated that the cholinergic receptor blockade resulted in an increase in the probability of a repositioning response that was triggered by light onset. Chlordiazepoxide (1, 3, 5, 10 mg/kg) did not affect behavioral performance. These results suggest that in tasks that allow the development of rehearsal operations, delay-dependent response accuracy does not represent a sufficient condition for conclusions on task demands on memory.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Dudchenko
- Department of Psychology, Ohio State University, Columbus 43210
| | | |
Collapse
|
16
|
Ennaceur A, Meliani K. Effects of physostigmine and scopolamine on rats' performances in object-recognition and radial-maze tests. Psychopharmacology (Berl) 1992; 109:321-30. [PMID: 1365633 DOI: 10.1007/bf02245880] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of physostigmine and scopolamine were evaluated on working memory of rats in object recognition and radial-maze tests. Three doses of physostigmine hemi-sulfate (Phys: 0.05, 0.10 and 0.20 mg/kg), five doses of scopolamine hydrobromide (Scop: 0.125, 0.25, 0.5, 1.0 and 2.0 mg/kg), and one dose of scopolamine methylbromide (Mscop: 2.0 mg/kg) were used. In object recognition test, rats were submitted to three or four intertrial delay conditions (1-min, 15-min and either 60-min or 24-h). The higher doses of Scop (1.0 and 2.0 mg/kg) in 1-min and 15-min delay and of Phys (0.20 mg/kg) in 1-min delay impaired discrimination between new and familiar objects. Mscop impaired discrimination between objects in 60-min but not in 1-min and 15-min delay. This effect may be state dependent. Radial-maze learning was impaired by the lower doses of scopolamine (0.25 and 0.50 mg/kg) which had no effect in object recognition test. These results show that in our conditions, object recognition is less sensitive than radial-maze test to cholinergic drugs.
Collapse
Affiliation(s)
- A Ennaceur
- Laboratoire de Psychophysiologie, Université Paris VII, France
| | | |
Collapse
|
17
|
Andrews JS, Grützner M, Stephens DN. Effects of cholinergic and non-cholinergic drugs on visual discrimination and delayed visual discrimination performance in rats. Psychopharmacology (Berl) 1992; 106:523-30. [PMID: 1579625 DOI: 10.1007/bf02244825] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of several centrally active drugs were investigated using two visual discrimination tasks: a two-lever food-rewarded conditional brightness discrimination, and a similar conditional brightness discrimination where a delay was introduced between the disappearance of the stimulus and the opportunity to respond on the levers for food. The substances tested (amphetamine, scopolamine, methylscopolamine, physostigmine, diazepam and beta-carboline benzodiazepine receptor antagonist, ZK 93426), all produced differing profiles of action on the performance parameters recorded. In the simple conditional visual discrimination, amphetamine increased omissions without significant effects on accuracy or response latency. Physostigmine enhanced response latencies and failures to respond without significant effects on accuracy. ZK 93426 had no consistent effects on accuracy although at higher doses, some increase in response latency was seen in the delayed responding version of the visual discrimination task. Diazepam had negative effects on all parameters in both discrimination procedures. Scopolamine disrupted responding, but not accuracy in the simple discrimination, whereas accuracy was reduced in a dose, but not delay dependent manner in the delayed discrimination. A similar effect to that observed with scopolamine was observed following methylscopolamine in the delayed discrimination procedure. In the simple visual discrimination small increases in accuracy were recorded, accompanied by increased response latencies.
Collapse
Affiliation(s)
- J S Andrews
- Department of Neuropsychopharmacology, Research Laboratories of Schering AG, Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
18
|
van Hest A, Stroet J, van Haaren F, Feenstra M. Scopolamine differentially disrupts the behavior of male and female Wistar rats in a delayed nonmatching to position procedure. Pharmacol Biochem Behav 1990; 35:903-9. [PMID: 2345764 DOI: 10.1016/0091-3057(90)90378-u] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Evidence is available that pharmacological interference with the cholinergic system may disrupt behavior in experimental procedures designed to investigate learning and memory processes. Recently it has been suggested that the cholinergic system may be sexually dimorphic. The present experiment was designed to investigate whether or not manipulation of the cholinergic system differentially affected memory processes in both sexes. Male and female Wistar rats were exposed to a delayed nonmatching to position procedure and were challenged with increasing doses of scopolamine hydrobromide (a central and peripheral muscarinic receptor blocker) and scopolamine methyl bromide (which does not pass the blood-brain barrier). Response accuracy decreased in both sexes as the delay interval duration increased. Behavioral differences between saline-treated males and females were not observed. Response accuracy decreased dose-dependently after subjects were injected with scopolamine hydrobromide. Response accuracy also decreased after treatment with scopolamine methyl bromide, but to a smaller extent. Males showed less accurate responding after treatment with either drug than females. These results provide behavioral evidence for the hypothesis that cholinergic functioning may differ between the sexes.
Collapse
Affiliation(s)
- A van Hest
- Netherlands Institute for Brain Research, Amsterdam
| | | | | | | |
Collapse
|
19
|
van Haaren F, van Hest A, Heinsbroek RP. Behavioral differences between male and female rats: effects of gonadal hormones on learning and memory. Neurosci Biobehav Rev 1990; 14:23-33. [PMID: 2183097 DOI: 10.1016/s0149-7634(05)80157-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The organizational, activational and reorganizational effects of gonadal hormones have been extensively investigated with respect to sexual, aggressive and maternal behavior. It has thus been established that manipulations of gonadal hormones during critical periods in development functionally affect reproductive behavior. The effects of gonadal hormones on nonreproductive behavior are not immediately obvious because of the fact that the behavioral effects of gonadal hormones on learning and memory have been investigated in a large number of unrelated experimental procedures. The present paper provides an organized overview of these different experimental procedures, summarizes the most important findings and discusses some of the variables which determine the effects of manipulations in gonadal hormones on learning and memory in male and female rats.
Collapse
Affiliation(s)
- F van Haaren
- Department of Psychology, University of Florida, Gainesville, 32611
| | | | | |
Collapse
|
20
|
van Haaren F, van Hest A, van Hattum T. Scopolamine and methylscopolamine differentially affect fixed-consecutive-number performance of male and female Wistar rats. Pharmacol Biochem Behav 1989; 33:361-5. [PMID: 2813474 DOI: 10.1016/0091-3057(89)90514-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Male and female Wistar rats were trained on a fixed-consecutive-number schedule in which a response on a food lever was followed by the presentation of reinforcement when at least three, but not more than seven responses had been completed on a work lever. Subjects were treated with different doses of the centrally acting cholinergic antagonist scopolamine hydrobromide or the more peripherally active cholinergic antagonist scopolamine methylbromide (0.08, 0.16 or 0.32 mg/ml/kg) once behavior had stabilized. Scopolamine hydrobromide and scopolamine methylbromide dose-dependently decreased response rates in males and females. Scopolamine methylbromide decreased response rates more than equivalent doses of scopolamine hydrobromide and the rate-suppressant effects of both drugs were more marked in males than in females. Scopolamine hydrobromide dose-dependently decreased response accuracy, but differences between males and females were not observed. Response accuracy also decreased after scopolamine methylbromide, but did not vary as a function of the dose of the drug. The decrease in response accuracy induced by both drugs was attributable to an increase in the percentage of trials with a premature switch from the work lever to the food lever. Both scopolamine hydrobromide and scopolamine methylbromide dose-dependently increased the number of premature switches. Differences between males and females were not observed. Administration of scopolamine hydrobromide and scopolamine methylbromide also decreased the number of obtained reinforcers in a dose-dependent manner. Females obtained significantly fewer reinforcers than males, while scopolamine methylbromide affected the number of obtained reinforcers to a larger extent than scopolamine hydrobromide.
Collapse
Affiliation(s)
- F van Haaren
- Netherlands Institute for Brain Research, Amsterdam
| | | | | |
Collapse
|