1
|
Peng L, Zhu D, Feng X, Dong H, Yue Q, Zhang J, Gao Q, Hao J, Zhang X, Liu Z, Sun J. Paliperidone protects prefrontal cortical neurons from damages caused by MK-801 via Akt1/GSK3β signaling pathway. Schizophr Res 2013; 147:14-23. [PMID: 23583326 DOI: 10.1016/j.schres.2013.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/14/2013] [Accepted: 03/01/2013] [Indexed: 01/26/2023]
Abstract
Recent studies have suggested that neurodegeneration is involved in the pathogenesis of schizophrenia, and some atypical antipsychotics appear to prevent or retard progressive morphological brain changes. However, the underlying molecular mechanisms are largely unknown. Whether changes in intracellular signaling pathways are related to their neuroprotective effects remains undefined. In the present study, we used mouse embryonic prefrontal cortical neurons to examine the neuroprotection of paliperidone against the neuronal damage induced by exposure to the NMDA receptor antagonist, MK-801. Paliperidone inhibited MK-801 induced neurotoxicity both in MTT metabolism assay (p<0.01) and in lactate dehydrogenase (LDH) activity assay (p<0.01). Time course studies revealed that paliperidone effectively attenuated the elevation of intracellular free calcium concentration ([Ca(2+)]i) induced by exposure to MK-801 (p<0.01). Moreover, paliperidone could significantly retard MK-801-mediated inhibition of neurite outgrowth (p<0.01) and reverse MK-801-induced decreases of gene expression and phosphorylation of Akt1 and GSK3β (both p<0.01). Furthermore, these protective effects of paliperidone were blocked by pretreatment with a PI3K inhibitor LY294002. Taking together, our results demonstrated that paliperidone could protect prefrontal cortical neurons from MK-801-induced damages via Akt1/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Lei Peng
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Dexiao Zhu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xiaowen Feng
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Haiman Dong
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Qingwei Yue
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jing Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Qing Gao
- Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jing Hao
- Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xingzhen Zhang
- Department of Pharmacy, Shandong University School of Pharmacy, Jinan, Shandong 250012, China
| | - Zengxun Liu
- Department of Psychiatry, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jinhao Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Feinstein I, Kritzer MF. Acute N-methyl-D-aspartate receptor hypofunction induced by MK801 evokes sex-specific changes in behaviors observed in open-field testing in adult male and proestrus female rats. Neuroscience 2012; 228:200-14. [PMID: 23085219 DOI: 10.1016/j.neuroscience.2012.10.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/02/2012] [Accepted: 10/10/2012] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a complex constellation of positive, negative and cognitive symptoms. Acute administration of the non-competitive antagonist of the N-methyl-d-aspartate receptor (NMDAR) dizocilpine (MK801) in rats is one of few preclinical animal models of this disorder that has both face and/or construct validity for these multiple at-risk behavioral domains and predictive power for the efficacy of therapeutic drugs in treating them. This study asked whether and to what extent the rat NMDAR hypofunction model also embodies the sex differences that distinguish the symptoms of schizophrenia and their treatment. Thus, we compared the effects of acute MK801, with and without pretreatment with haloperidol or clozapine, on seven discrete spontaneous open-field activities in adult male and female rats. These analyses revealed that MK801 was more effective in stimulating ataxia and locomotion and inhibiting stationary behavior in females while more potently stimulating stereotypy and thigmotaxis and inhibiting rearing and grooming in males. Haloperidol and clozapine pretreatments had markedly different efficacies in terms of behaviors but strong similarities in their effectiveness in male and female subjects. These results bear intriguing relationships with the complex male/female differences that characterize the symptoms of schizophrenia and suggest possible applications for acute NMDAR hypofunction as a preclinical model for investigating the neurobiology that underlies them.
Collapse
Affiliation(s)
- I Feinstein
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
3
|
Nakato Y, Abekawa T, Inoue T, Ito K, Koyama T. Lamotrigine blocks repeated high-dose methamphetamine-induced behavioral sensitization to dizocilpine (MK-801), but not methamphetamine in rats. Neurosci Lett 2011; 504:131-134. [DOI: 10.1016/j.neulet.2011.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
|
4
|
Ampullosporin A, a peptaibol from Sepedonium ampullosporum HKI-0053 with neuroleptic-like activity. Behav Brain Res 2009; 203:232-9. [DOI: 10.1016/j.bbr.2009.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 05/08/2009] [Indexed: 11/18/2022]
|
5
|
Manahan-Vaughan D, Wildförster V, Thomsen C. Rescue of hippocampal LTP and learning deficits in a rat model of psychosis by inhibition of glycine transporter-1 (GlyT1). Eur J Neurosci 2008; 28:1342-50. [DOI: 10.1111/j.1460-9568.2008.06433.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Manahan-Vaughan D, von Haebler D, Winter C, Juckel G, Heinemann U. A single application of MK801 causes symptoms of acute psychosis, deficits in spatial memory, and impairment of synaptic plasticity in rats. Hippocampus 2008; 18:125-34. [PMID: 17924525 DOI: 10.1002/hipo.20367] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Schizophrenia is mostly a progressive psychiatric illness. Although cognitive changes in chronic schizophrenia have been investigated, little is known about the consequences of a single psychotic episode on memory mechanisms and formation. We investigated changes in hippocampal long-term potentiation (LTP) and spatial memory in a rat model of an acute psychotic episode. Application of NMDA receptor antagonists, such as MK801 (dizolcilpine) in rats, have been shown to give rise to an acute and short-lasting behavioral state, which mirrors many symptoms of schizophrenia. Furthermore, NMDA antagonist-intake in humans elicits symptoms of schizophrenia such as hallucinations, delusions, and affective blunting. We therefore treated animals with a single systemic injection of MK801 (5 mg/kg). Increased stereotypy, locomotion, and ataxia were evident immediately after MK801-treatment, with effects disappearing within 24 h. MK801-treatment caused a disruption of prepulse inhibition of the acoustic startle reflex, 1 day but not 7 or 28 days after treatment. These effects were consistent with the occurrence of an acute psychotic episode. LTP was profoundly impaired in freely moving rats 7 days after MK801 application. Four weeks after treatment, a slight recovery of LTP was seen, however marked deficits in long-term spatial memory were evident. These data suggest that treatment with MK801 to generate an acute psychotic episode in rats, gives rise to grave disturbances in synaptic plasticity and is associated with lasting impairments with the ability to form spatial memory.
Collapse
|
7
|
Paulson L, Martin P, Ljung E, Blennow K, Davidsson P. Proteome analysis after co-administration of clozapine or haloperidol to MK-801-treated rats. J Neural Transm (Vienna) 2007; 114:885-91. [PMID: 17318307 DOI: 10.1007/s00702-007-0626-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 01/11/2007] [Indexed: 11/29/2022]
Abstract
MK-801, a glutamergic, N-methyl-D-aspartate (NMDA)-receptor antagonist that mediates neurotransmission and has psychotomimetic properties, giving schizophrenia-like symptom. The objective of this study was to investigate the effects on the thalamic and cortical proteome of one typical (haloperidol) and one atypical (clozapine) antipsychotic drug in interaction with MK-801 in rats. Rats received subcutaneous injections of MK-801 or vehicle (controls) or MK-801 together with concurrent administration of haloperdol or clozapine for eight days. Protein samples from thalamus and cortex were analyzed with two-dimensional gel electrophoresis in combination with mass spectrometry. MK-801 induced alterations in the levels of three proteins in both cortex and thalamus. Clozapine reversed all the protein changes. Haloperidol reversed two. Both antipsychotics induced new protein changes in both cortex and thalamus not seen after MK-801-treatment by alone. In conclusion, the MK-801 animal model shows potential for investigation of different antipsychotic drugs and biochemical treatment effects in schizophrenia.
Collapse
Affiliation(s)
- L Paulson
- Institute of Neuroscience and Physiology, Göteborg University, Mölndal, Sweden.
| | | | | | | | | |
Collapse
|
8
|
Murray JE, Bevins RA. Behavioral and neuropharmacological characterization of nicotine as a conditional stimulus. Eur J Pharmacol 2007; 561:91-104. [PMID: 17343849 PMCID: PMC1950748 DOI: 10.1016/j.ejphar.2007.01.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/09/2007] [Accepted: 01/11/2007] [Indexed: 11/17/2022]
Abstract
In rats, the pharmacological (interoceptive) effects of 0.4 mg/kg nicotine can serve as a conditional stimulus in a Pavlovian conditioning task. Nicotine administration is paired with intermittent access to a liquid sucrose unconditional stimulus; sucrose is withheld on saline sessions. An increase in sucrose receptacle entries (goal tracking) on nicotine sessions indicates conditioning. Rats were trained on a nicotine dose ((-)-1-Methyl-2-(3-pyridyl)pyrrolidine; 0.1, 0.2, or 0.4 mg base/kg, s.c.). Generalization was examined using 0.025, 0.05, 0.1, 0.2, and 0.4 mg/kg nicotine and saline. Some behavioral effects of nicotine have been attributed to dopamine and glutamate. Accordingly, potential blockade of the nicotine cue via the dopamine system was examined by administering (R)-(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390; 0.005, 0.01, and 0.03 mg/kg), 3-Chloro-5-ethyl-N-[[(2S)-1-ethyl-2-pyrrolidinyl)methyl]-6-hydroxy-2-methoxy-benzamide hydrochloride (eticlopride; 0.01, 0.03, 0.1, and 0.3 mg/kg), or N-[(1-Butyl-2-pyrrolidinyl)methyl]-4-cyano-1-methoxy-2-naphthalenecarboxamide (nafadotride; 0.03, 0.1, 0.3, 1, and 3 mg/kg) before nicotine. 2-Methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP; 0.3, 1, and 3 mg/kg) and (5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801; 0.01, 0.03, 0.1, and 0.2 mg/kg; dizocilpine) were used to examine possible glutamatergic components. Substitution tests were conducted with MPEP and nafadotride. Differential conditioned responding was acquired in the 3 groups. Conditioned responding generally decreased as the nicotine test dose moved away from the training dose; responding increased when 0.4 mg/kg trained rats were tested with 0.2 mg/kg. SCH-23390, eticlopride, nafadotride, and MPEP decreased conditioned responding on nicotine at doses that also decreased chamber activity. In contrast, MK-801 decreased goal tracking on nicotine without decreasing chamber activity, indicating a role for N-methyl-D-aspartate receptors in expression of nicotine-evoked conditioned responding.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Conditioning, Classical/drug effects
- Cues
- Discrimination Learning/drug effects
- Dopamine/metabolism
- Dose-Response Relationship, Drug
- Generalization, Stimulus/drug effects
- Male
- Nicotine/administration & dosage
- Nicotine/pharmacology
- Nicotinic Agonists/administration & dosage
- Nicotinic Agonists/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine/drug effects
- Receptors, Glutamate/drug effects
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Nicotinic/drug effects
- Sucrose
Collapse
Affiliation(s)
- Jennifer E Murray
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| | | |
Collapse
|
9
|
Lane HY, Huang CL, Wu PL, Liu YC, Chang YC, Lin PY, Chen PW, Tsai G. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry 2006; 60:645-649. [PMID: 16780811 DOI: 10.1016/j.biopsych.2006.04.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 03/13/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Agonists at the N-methyl-D-aspartate (NMDA)-glycine site (D-serine, glycine, D-alanine and D-cycloserine) and glycine transporter-1 (GlyT-1) inhibitor (N-methylglycine, or called sarcosine) both improve the symptoms of stable chronic schizophrenia patients receiving concurrent antipsychotics. Previous studies, however, found no advantage of D-serine, glycine, or D-cycloserine added to clozapine. The present study aims to determine the effects of sarcosine adjuvant therapy for schizophrenic patients receiving clozapine treatment. METHODS Twenty schizophrenic inpatients enrolled in a 6-week double-blind, placebo-controlled trial of sarcosine (2 g/day) which was added to their stable doses of clozapine. Measures of clinical efficacy and side-effects were determined every other week. RESULTS Sarcosine produced no greater improvement when co-administered with clozapine than placebo plus clozapine at weeks 2, 4, and 6. Sarcosine was well tolerated and no significant side-effect was noted. CONCLUSIONS Unlike patients treated with other antipsychotics, patients who received clozapine treatment exhibit no improvement by adding sarcosine or agonists at the NMDA-glycine site. Clozapine possesses particular efficacy, possibly related to potentiation of NMDA-mediated neurotransmission. This may contribute to the clozapine's unique clinical efficacy and refractoriness to the addition of NMDA-enhancing agents.
Collapse
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry, China Medical University and Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Javitt DC, Duncan L, Balla A, Sershen H. Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry 2005; 10:275-87. [PMID: 15278098 DOI: 10.1038/sj.mp.4001552] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clozapine is an atypical antipsychotic with particular efficacy in schizophrenia, possibly related to potentiation of brain N-methyl-D-aspartate receptor (NMDAR) -mediated neurotransmission. NMDARs are regulated in vivo by glycine, which is regulated in turn by glycine transporters. The present study investigates transport processes regulating glycine uptake into rat brain synaptosomes, along with effects of clozapine on synaptosomal glycine transport. Amino-acid uptake of amino acids was assessed in rat brain P2 synaptosomal preparations using a radiotransport assay. Synaptosomal glycine transport was inhibited by a series of amino acids and by the selective System A antagonist MeAIB (2-methyl-aminoisobutyric acid). Clozapine inhibited transport of both glycine and MeAIB, but not other amino acids, at concentrations associated with preferential clinical response (0.5-1 microg/ml). By contrast, other antipsychotics studied were ineffective. The novel glycine transport inhibitor N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS) produced biphasic inhibition of [(3)H]glycine transport, with IC(50) values of approximately 25 nM and 25 microM, respectively. NFPS inhibition of [(3)H]MeAIB was monophasic with a single IC(50) value of 31 microM. Clozapine significantly inhibited [(3)H]glycine binding even in the presence of 100 nM NFPS. In conclusion, this study suggests first that System A transporters, or a subset thereof, may play a critical role in regulation of synaptic glycine levels and by extension of NMDA receptor regulation, and second that System A antagonism may contribute to the differential clinical efficacy of clozapine compared with other typical or atypical antipsychotics.
Collapse
Affiliation(s)
- D C Javitt
- Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute for Psychiatric Research/New York University School of Medicine, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | | | | | |
Collapse
|
11
|
Lahti AC, Holcomb HH, Weiler MA, Medoff DR, Frey KN, Hardin M, Tamminga CA. Clozapine but not haloperidol Re-establishes normal task-activated rCBF patterns in schizophrenia within the anterior cingulate cortex. Neuropsychopharmacology 2004; 29:171-8. [PMID: 14520337 DOI: 10.1038/sj.npp.1300312] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous work has identified that unmedicated volunteers with schizophrenia have regional cerebral blood flow (rCBF) activation patterns inappropriately related to the cognitive demand of a task in anterior cingulate cortex (ACC). Using positron emission tomography (PET) with (15)O water, we compared task-induced rCBF patterns induced by haloperidol or clozapine in individuals with schizophrenia. We hypothesized that clozapine, given its superior clinical action, would tend to normalize the abnormal task-activated response in ACC more than haloperidol. Schizophrenia volunteers (SVs) (n=6) and normal volunteers (NVs) (n=12) were trained to perform a tone discrimination task with 70-80% accuracy. They were then scanned during three task conditions: (1). Rest, (2). sensory motor control (SMC) task, and (3). decision task (DEC). SVs were initially scanned after withdrawal of all psychotropic medication and again after treatment with therapeutic doses of haloperidol (n=5) and/or clozapine (n=5). rCBF values, sampled in the grown maxima of the task-activated ACC cluster, were analyzed between groups and task conditions. Task performance was similar across the unmedicated, haloperidol- and clozapine-medicated SV groups. There was a reduction in accuracy in the haloperidol SV group compared to the NVs. Group and task conditions affected rCBF in the ACC. Clozapine, but not haloperidol, reversed the abnormal ACC rCBF pattern in unmedicated SV to normal. The clozapine-treated SV group showed a rCBF pattern similar to the NV group in that ACC activation was not observed during the control task but occurred during the decision condition. The pattern seen in the haloperidol-treated SV group was similar to the unmedicated SV group in that ACC activation was seen during the control task and no further activation was seen during the DEC. We report that clozapine, but not haloperidol, normalizes anterior cingulate rCBF patterns in schizophrenia during a cognitive task. Based on these preliminary data, we propose that this pattern may account for the superior therapeutic effect of clozapine and represents a surrogate marker of this action.
Collapse
Affiliation(s)
- Adrienne C Lahti
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Breese GR, Knapp DJ, Moy SS. Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness. Neurosci Biobehav Rev 2002; 26:441-55. [PMID: 12204191 DOI: 10.1016/s0149-7634(02)00011-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
NMDA receptor antagonists worsen symptoms in schizophrenia and induce schizophrenic-like symptoms in normal individuals. In animals, NMDA antagonist-induced behavioral responses include increased activity, head weaving, deficits in paired pulse inhibition and social interaction, and increased forced swim immobility. Repeated exposure to NMDA antagonists in animals results in behavioral sensitization-a phenomenon accentuated in rats with dopaminergic neurons lesioned during development. In keeping with an involvement of serotonin and glutamate release in NMDA antagonist action, selected behaviors induced by NMDA antagonists are minimized by 5-HT(2A) receptor antagonists and mGLU2 receptor agonists. These observations provide promising new approaches for treating acute NMDA antagonist-induced psychosis. Further, acute atypical antipsychotic drugs also minimize NMDA antagonist actions to a greater degree than typical antipsychotics. However, because knowledge concerning acute versus chronic effectiveness of various antipsychotic drugs against NMDA antagonist neuropathology is limited, future studies to define more fully the basis of their differences in efficacy after chronic treatment could provide an understanding of their actions on neural mechanisms responsible for the core pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- George R Breese
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, 3007 Thurston-Bowles Bldg, Chapel Hill, NC 27599-7178, USA.
| | | | | |
Collapse
|
13
|
Compton AD, Slemmer JE, Drew MR, Hyman JM, Golden KM, Balster RL, Wiley JL. Combinations of clozapine and phencyclidine: effects on drug discrimination and behavioral inhibition in rats. Neuropharmacology 2001; 40:289-97. [PMID: 11114408 DOI: 10.1016/s0028-3908(00)00126-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phencyclidine (PCP) produces psychotomimetic effects in humans that resemble schizophrenia symptoms. In an effort to screen compounds for antipsychotic activity, preclinical researchers have investigated whether these compounds block PCP-induced behaviors in animals. In the present study, the atypical antipsychotic clozapine was tested in combination with an active dose of PCP in two-lever drug discrimination and mixed signalled-unsignalled differential-reinforcement-of-low-rates (DRL) procedures. PCP produced distinctive effects in each task: it substituted for the training dose in PCP discrimination and it increased the number of responses with short (<3 s) interresponse times as well as increasing overall response rates in the DRL schedule. Acute dosing with clozapine failed to alter the behavioral effects of PCP in either procedure even when tested up to doses that produced pharmacological effects alone. These results suggest that acute dosing with clozapine would not affect behaviors most closely associated with PCP intoxication. Further, they bring into question the utility of using PCP combination procedures in animals to screen for antipsychotic potential. Since chronic dosing is required for therapeutic efficacy of antipsychotics, future studies should focus on investigation of chronic dosing effects of these drugs in combination with PCP.
Collapse
Affiliation(s)
- A D Compton
- Department of Psychology, Virginia Commonwealth University, Richmond, VA 23284-2018, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Liu W, Wu CF, Liu J, Huang M, Xiao K. Differential effects of acute administration of haloperidol and clozapine on ethanol-induced ascorbic acid release in rat striatum. Eur J Pharmacol 2000; 398:333-9. [PMID: 10862822 DOI: 10.1016/s0014-2999(00)00306-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Antipsychotic drugs were initially considered to act predominantly through their antagonism at dopamine D(2)-like receptors. However, reports have demonstrated that the typical neuroleptic drug haloperidol and the atypical neuroleptic drug clozapine showed differential actions in clinical, behavioral and biochemical studies. Since ascorbic acid has a potential usefulness in psychological therapeutics, the present study investigates the actions of these two drugs on ethanol-induced ascorbic acid release in the striatum in order to help explain the different mechanisms of these drugs. The results showed that clozapine, at the doses of 15 and 30 mg/kg, i.p., had no effect on basal ascorbic acid release. However, a synergistic tendency at a dose of 15 mg/kg and a significant synergism at a dose of 30 mg/kg were observed on ascorbic acid release when clozapine was used with ethanol. In contrast, haloperidol, at the doses of 0.5, 1.0 and 2.0 mg/kg, i.p., administered alone did not affect the basal release of striatal ascorbic acid, and when used together with ethanol had neither a potentiating nor an antagonizing effect on ethanol-induced ascorbic acid release. Chlorpromazine, a nonselective dopamine receptor antagonist, at the dose of 5 mg/kg, i.p., affected neither the basal nor the ethanol-induced ascorbic acid release. Ritanserin, a 5-HT(2) receptor antagonist, at the dose of 1 mg/kg, s.c., significantly antagonized ethanol-induced ascorbic acid release. These results demonstrate that clozapine dose-dependently potentiates the stimulatory effect of ethanol on striatal ascorbic acid release and this effect of clozapine may not be related to its dopamine D(2) receptor antagonism.
Collapse
Affiliation(s)
- W Liu
- Department of Pharmacology of Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, 110015, Shenyang, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Millan MJ, Brocco M, Gobert A, Joly F, Bervoets K, Rivet J, Newman-Tancredi A, Audinot V, Maurel S. Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sites for PCP-induced locomotion in the rat. Eur J Neurosci 1999; 11:4419-32. [PMID: 10594669 DOI: 10.1046/j.1460-9568.1999.00858.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, the comparative mechanisms of action of phencyclidine (PCP) and amphetamine were addressed employing the parameter of locomotion in rats. PCP-induced locomotion (PLOC) was potently blocked by the selective serotonin (5-HT)2A vs. D2 antagonists, SR46349, MDL100,907, ritanserin and fananserin, which barely affected amphetamine-induced locomotion (ALOC). In contrast, the selective D2 vs. 5-HT2A antagonists, eticlopride, raclopride and amisulpride, preferentially inhibited ALOC vs. PLOC. The potency of these drugs and 12 multireceptorial antipsychotics in inhibiting PLOC vs. ALOC correlated significantly with affinities at 5-HT2A vs. D2 receptors, respectively. Amphetamine and PCP both dose dependently increased dialysate levels of dopamine (DA) and 5-HT in the nucleus accumbens, striatum and frontal cortex (FCX) of freely moving rats, but PCP was proportionally more effective than amphetamine in elevating levels of 5-HT vs. DA in the accumbens. Further, whereas microinjection of PCP into the accumbens elicited locomotion, its introduction into the striatum or FCX was ineffective. The action of intra-accumbens PCP, but not intra-accumbens amphetamine, was abolished by SR46349 and clozapine. Parachloroamphetamine, which depleted accumbens pools of 5-HT but not DA, likewise abolished PLOC without affecting ALOC. In contrast, intra-accumbens 6-hydroxydopamine (6-OHDA), which depleted DA but not 5-HT, abolished ALOC but only partially attenuated PLOC. In conclusion, PLOC involves (indirect) activation of accumbens-localized 5-HT2A receptors by 5-HT. PLOC is, correspondingly, more potently blocked than ALOC by antipsychotics displaying marked affinity at 5-HT2A receptors.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Centre de Recherches de Croisy, Psychopharmacology Department, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Drug discrimination methodology has been used in a number of ways to analyze the actions of novel and putative novel antipsychotics in vivo. Recent studies suggest (a) in contrast to earlier theorizing, antagonism of the low-dose d-amphetamine stimulus in rats may not be an effective screen for novel antipsychotics; (b) dopamine D2-like agonists and antagonists, some of which are putative antipsychotics, can be studied in vivo as discriminative cues, although there is a pressing need for more selective drugs that differentiate the various members of the D2 family. (c) antagonism of the cue induced by the noncompetitive NMDA antagonist MK-801, which has been proposed as a possible screen for clozapine-like compounds, may be an unreliable assay; and (d) the clozapine stimulus is probably a compound cue (a drug "mixture"), which can be used to screen for novel clozapine-like antipsychotics, although the precise receptor mechanisms involved in mediating the clozapine stimulus, and its direct relevance to the antipsychotic action of clozapine remains to be proven conclusively.
Collapse
Affiliation(s)
- A J Goudie
- Psychology Department, Liverpool University, UK
| | | |
Collapse
|
17
|
Abstract
Excitatory amino acids (EAA), such as glutamate, are thought to be involved in various disorders (e.g., ischemic brain damage, epilepsy, Parkinson's disease), and EAA antagonists have been suggested as potential treatments for these disorders. Phencyclidine (PCP), with produces psychotomimetic effects in humans, has antagonist properties at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors that have been suggested to underlie some of its actions. This suggestion, and concern about possible psychotomimetic activity, has stimulated research aimed at examining to what extent the behavioral profile of other NMDA antagonists resembles that of PCP. Drug discrimination (DD) is prominent among the procedures used to carry out such comparisons. The results of clinical studies with NMDA antagonists provide feedback about the predictive validity of the DD procedures used to characterize their preclinical behavioral profile. Further, DD is used also to examine the ability of compounds to attenuate the discriminative stimulus (DS) effects of PCP-type drugs, and results of such studies have been suggested to provide evidence of antipsychotic potential. Finally, although many instances of intermediate responding in DD can be explained by low efficacy at the receptors that mediate the DS effects of the training drug, certain outcomes produced by PCP-type drugs do not offer valid measures of efficacy, and require more detailed behavioral analyzes.
Collapse
Affiliation(s)
- W Koek
- Centre de Recherche Pierre Fabre, Castres, France
| |
Collapse
|
18
|
Smith JA, Boyer-Millar C, Goudie AJ. Does MK-801 discrimination constitute an animal model of schizophrenia useful for detecting atypical antipsychotics? Pharmacol Biochem Behav 1999; 64:429-33. [PMID: 10515325 DOI: 10.1016/s0091-3057(99)00077-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two groups of female Wistar rats were trained to discriminate two doses (0.075 and 0.0375 mg/kg) of the noncompetitive NMDA antagonist MK-801 (dizocilpine) in a food-rewarded operant FR30 drug discrimination task. The atypical neuroleptic clozapine (2-6 mg/kg) produced only minimal antagonism (max. 32%) of the MK-801 cue at either training dose, and the "antagonist" effects were not clearly dose related. Furthermore, in the 0.075 mg/kg trained animals clozapine at 3 mg/kg failed to shift the MK-801 dose-response curve to the right. The alpha1-adrenoceptor antagonist prazosin (1-8 mg/kg) was also tested for antagonism of the 0.0375 mg/kg MK-801 cue, and again, only partial antagonism was seen (maximum 36%). Recently, it was suggested [4] that as the discriminative stimulus produced by MK-801 (0.075 mg/kg) was fully antagonized by clozapine at 3 mg/kg, but not by the typical neuroleptic haloperidol, this assay may be a useful screen for detecting atypical neuroleptics. It would seem, however, that this is not necessarily the case, and that the MK-801 discriminative cue may not be psychotomimetic. However, as this was a food rewarded rather than an avoidance paradigm that was used in the prior study [4], it may be that the drug discrimination procedure itself is a critical factor, although this hypothesis requires empirical testing.
Collapse
Affiliation(s)
- J A Smith
- Psychology Department, Liverpool University, UK
| | | | | |
Collapse
|
19
|
Sukhotina IA, Dravolina OA, Medvedev IO, Bespalov AY. Effects of calcium channel blockers on behaviors induced by the N-methyl-D-aspartate receptor antagonist, dizocilpine, in rats. Pharmacol Biochem Behav 1999; 63:569-80. [PMID: 10462185 DOI: 10.1016/s0091-3057(99)00002-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study assessed the ability of voltage-sensitive calcium channel (VSCC) blockers to affect the behavioral effects of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, dizocilpine, in male Wistar rats. Dizocilpine produced dose-dependent increases in locomotor activity. Nimodipine, verapamil, and flunarizine suppressed dizocilpine-facilitated vertical activity, while horizontal activity was attenuated by verapamil and nimodipine but not flunarizine. Repeated dizocilpine injections resulted in the development of sensitization to its locomotor stimulating properties. Development of sensitization was not context specific, and was observed following repeated exposures to 0.1 but not 0.056 or 0.3 mg/kg of dizocilpine. Nimodipine retarded the development of sensitization to dizocilpine's stimulating effects on horizontal activity, while verapamil suppressed sensitization to the vertical stimulating effects of dizocilpine. Flunarizine had no significant effects on sensitization to dizocilpine's locomotor stimulating properties. In rats trained to discriminate between injections of 0.056 mg/kg of dizocilpine and vehicle, none of the tested VSCC blockers was able to completely antagonize the discriminative stimulus properties of dizocilpine. Nimodipine, when administered in combination with the training dose of dizocilpine, modestly decreased the dizocilpine-lever selection. Dizocilpine dose dependently decreased the self-determined stimulation threshold implanted in rats with electrodes into the ventral tegmental area. Nimodipine exhibited some tendency to block the facilitating effects of dizocilpine, while verapamil and flunarizine had no effects. In summary, in the present experiments VSCC blockers exerted only modest interactions with the behavioral effects of dizocilpine, and it is unlikely that VSCC blockers have remarkable potential as adjunct treatment aimed at correcting the negative side effects of NMDA receptor antagonists (e.g., dizocilpine).
Collapse
Affiliation(s)
- I A Sukhotina
- Laboratory of Behavioral Pharmacology, Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | | | | | | |
Collapse
|
20
|
Sams-Dodd F. Phencyclidine in the social interaction test: an animal model of schizophrenia with face and predictive validity. Rev Neurosci 1999; 10:59-90. [PMID: 10356992 DOI: 10.1515/revneuro.1999.10.1.59] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phencyclidine (PCP) is a hallucinogenic drug that can mimic several aspects of the schizophrenic symptomatology in healthy volunteers. In a series of studies PCP was administered to rats to determine whether it was possible to develop an animal model of the positive and negative symptoms of schizophrenia. The rats were tested in the social interaction test and it was found that PCP dose-dependently induces stereotyped behaviour and social withdrawal, which may correspond to certain aspects of the positive and negative symptoms, respectively. The effects of PCP could be reduced selectively by antipsychotic drug treatment, whereas drugs lacking antipsychotic effects did not alleviate the PCP-induced behaviours. Together these findings indicate that PCP effects in the rat social interaction test may be a model of the positive and negative symptoms of schizophrenia with face and predictive validity and that it may be useful for the evaluation of novel antipsychotic compounds.
Collapse
Affiliation(s)
- F Sams-Dodd
- Pharmacological Research, H. Lundbeck A/S, Valby, Denmark
| |
Collapse
|
21
|
Carey R, Damianopoulos E, DePalma G. Issues in the pharmacological modification of cocaine conditioning: evidence that the stimulus properties of drugs can interact with contextual cues to activate or inactivate cocaine conditioned stimuli. Behav Brain Res 1999; 101:189-206. [PMID: 10372574 DOI: 10.1016/s0166-4328(98)00149-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cocaine conditioned stimuli are capable of eliciting cocaine craving in individuals with a history of cocaine use. As a consequence, there have been a number of attempts using animal models to identify pharmacological treatments which can attenuate cocaine conditioned effects. The emphasis in these studies has been to employ drug doses which do not have response effects that could directly alter the conditioned drug response. A drug treatment may not have a response effect but still have drug stimulus effects which could interact with and modify the cocaine conditioned stimulus. In order to experimentally investigate this important issue, two experiments are reported. In one experiment, rats were co-administered 0.1 mg/kg MK-801 either with cocaine (10 mg/kg) or with saline; in the other experiment 3.0 mg/kg buspirone was co-administered with either cocaine (10 mg/kg) or with saline. The MK-801 and buspirone treatments did not affect spontaneous activity levels or alter the unconditioned cocaine stimulant effect. In tests for conditioning, however, the effects of buspirone and MK-801 depended upon their association with cocaine. If MK-801 and buspirone had no association with cocaine then these drugs inactivated the cocaine conditioned stimulant response. If MK-801 and buspirone had been co-administered with cocaine, then, in saline conditioning tests, no cocaine conditioning was observed. If the conditioning tests were conducted following MK-801 or buspirone treatment, however, cocaine conditioning was elicited. Altogether, these studies demonstrate that the stimulus properties of drugs can interact with contextual stimuli to inactivate or activate cocaine conditioned stimuli. In the search for drugs which may prevent cocaine craving, therefore, the stimulus properties of drugs provide an important mechanism for the modification of cocaine conditioned stimuli.
Collapse
Affiliation(s)
- R Carey
- Research & Development (151), VA Medical Center and SUNY Health Science Center, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
22
|
Minabe Y, Watanabe K, Nishimura T, Ashby CR. Acute and chronic administration of clozapine produces greater proconvulsant actions than haloperidol on focal hippocampal seizures in freely moving rats. Synapse 1998; 29:272-8. [PMID: 9635898 DOI: 10.1002/(sici)1098-2396(199807)29:3<272::aid-syn10>3.0.co;2-v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we assessed the effects of the acute (a single injection) and repeated (once daily injections for 21 days) administration of the atypical antipsychotic drug clozapine (1.5, 5, or 15 mg/kg i.p.) and the typical antipsychotic drug haloperidol (0.15, 0.5, and 1.5 mg/kg, i.p.) on hippocampal partial seizures generated by low-frequency electrical stimulation in male Wistar rats. The seizure threshold and severity were determined by measuring the pulse number threshold (PNT) and the primary afterdischarge duration (ADD), respectively. A single injection of either 5 or 15 mg/kg of clozapine significantly decreased the PNT and significantly increased the primary ADD, indicating a proconvulsant action. The repeated administration of clozapine (1.5, 5, or 15 mg/kg, i.p.) produced dose-dependent, proconvulsant effects by significantly decreasing the PNT and by significantly increasing the primary ADD. In contrast to clozapine, the acute administration of haloperidol did not significantly alter the PNT or the primary ADD. The repeated administration of haloperidol (0.5 and 1.5 mg/kg, i.p.), unlike clozapine, significantly decreased the primary ADD, but did not alter the PNT. Overall, clozapine produces a greater proconvulsant action than haloperidol in an animal model of hippocampal seizures.
Collapse
Affiliation(s)
- Y Minabe
- Division of Cortical Function Disorder, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Malhotra AK, Adler CM, Kennison SD, Elman I, Pickar D, Breier A. Clozapine blunts N-methyl-D-aspartate antagonist-induced psychosis: a study with ketamine. Biol Psychiatry 1997; 42:664-8. [PMID: 9325559 DOI: 10.1016/s0006-3223(96)00546-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several lines of evidence suggest that the glutamatergic N-methyl-D-aspartate (NMDA) receptor is involved in the antipsychotic efficacy of the atypical antipsychotic agent clozapine. Clinical data on the interaction between clozapine's mechanism of action and NMDA receptor function have been lacking secondary to a paucity of pharmacologic probes of the NMDA system. We have utilized a double-blind, placebo-controlled infusion paradigm with subanesthetic doses of the NMDA antagonist ketamine to test the hypothesis that clozapine would blunt ketamine-induced psychotic symptoms in schizophrenic patients. Ten schizophrenic patients underwent ketamine infusions while antipsychotic drug free and also during treatment with clozapine. Antipsychotic drug-free patients experienced increases in ratings of positive and negative symptoms. Clozapine treatment significantly blunted the ketamine-induced increase in positive symptoms. These data suggest that NMDA receptor function may be involved in the unique antipsychotic efficacy of clozapine.
Collapse
Affiliation(s)
- A K Malhotra
- Experimental Therapeutics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1380, USA
| | | | | | | | | | | |
Collapse
|
24
|
Giardino L, Bortolotti F, Orazzo C, Pozza M, Monteleone P, Calzà L, Maj M. Effect of chronic clozapine administration on [3H]MK801-binding sites in the rat brain: a side-preference action in cortical areas. Brain Res 1997; 762:216-8. [PMID: 9262176 DOI: 10.1016/s0006-8993(97)00478-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We studied modifications in [3H]MK801-binding sites in the rat brain after chronic clozapine. We found a 20-30% reduction of [3H]MK801-binding sites in the anterior cingulate, frontoparietal motor and frontoparietal somatosensory cortices on the left side but none on the right. We also demonstrated a 20% bilateral increase of N-methyl-D-aspartate (NMDA) receptors in the dentate gyrus of the hippocampus. No changes were found in the prefrontal cortex, caudate-putamen, nucleus accumbens, hippocampus or olfactory tubercle.
Collapse
Affiliation(s)
- L Giardino
- Institute of Otolaryngology II, University of Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Corbett R, Griffiths L, Shipley JE, Shukla U, Strupczewski JT, Szczepanik AM, Szewczak MR, Turk DJ, Vargas HM, Kongsamut S. Iloperidone: Preclinical Profile and Early Clinical Evaluation. CNS DRUG REVIEWS 1997. [DOI: 10.1111/j.1527-3458.1997.tb00320.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Corr PJ, Kumari V. Sociability/impulsivity and attenuated dopaminergic arousal: critical flicker/fusion frequency and procedural learning. PERSONALITY AND INDIVIDUAL DIFFERENCES 1997. [DOI: 10.1016/s0191-8869(96)00279-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|