1
|
Barker J, Murray A, Bell SP. Cell integrity limits ploidy in budding yeast. G3 (BETHESDA, MD.) 2025; 15:jkae286. [PMID: 39804723 PMCID: PMC11797008 DOI: 10.1093/g3journal/jkae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Evidence suggests that increases in ploidy have occurred frequently in the evolutionary history of organisms and can serve adaptive functions to specialized somatic cells in multicellular organisms. However, the sudden multiplication of all chromosome content may present physiological challenges to the cells in which it occurs. Experimental studies have associated increases in ploidy with reduced cell survival and proliferation. To understand the physiological challenges that suddenly increased chromosome content imposes on cells, we used S. cerevisiae to ask how much chromosomal DNA cells may contain and what determines this limit. We generated polyploid cells using 2 distinct methods causing cells to undergo endoreplication and identified the maximum ploidy of these cells, 32-64C. We found that physical determinants that alleviate or exacerbate cell surface stress increase and decrease the limit to ploidy, respectively. We also used these cells to investigate gene expression changes associated with increased ploidy and identified the repression of genes involved in ergosterol biosynthesis. We propose that ploidy is inherently limited by the impacts of growth in size, which accompany whole-genome duplication, to cell surface integrity.
Collapse
Affiliation(s)
- Juliet Barker
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Gadgil P, Ballew O, Sullivan TJ, Lacefield S. Aneuploidy of specific chromosomes is beneficial to cells lacking spindle checkpoint protein Bub3. PLoS Genet 2025; 21:e1011576. [PMID: 39903784 DOI: 10.1371/journal.pgen.1011576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/12/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Aneuploidy typically poses challenges for cell survival and growth. However, recent studies have identified exceptions where aneuploidy is beneficial for cells with mutations in certain regulatory genes. Our research reveals that cells lacking the spindle checkpoint gene BUB3 exhibit aneuploidy of select chromosomes. While the spindle checkpoint is not essential in budding yeast, the loss of BUB3 and BUB1 increases the probability of chromosome missegregation compared to wildtype cells. Contrary to the prevailing assumption that the aneuploid cells would be outcompeted due to growth defects, our findings demonstrate that bub3Δ cells consistently maintained aneuploidy of specific chromosomes over many generations. We investigated whether the persistence of these additional chromosomes in bub3Δ cells resulted from the beneficial elevated expression of certain genes, or mere tolerance. We identified several genes involved in chromosome segregation and cell cycle regulation that confer an advantage to Bub3-depleted cells. Overall, our results suggest that the gain of specific genes through aneuploidy may provide a survival advantage to strains with poor chromosome segregation fidelity.
Collapse
Affiliation(s)
- Pallavi Gadgil
- Department of Biochemistry and Cell Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, United States of America
| | - Olivia Ballew
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Timothy J Sullivan
- Department of Biomedical Data Science, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, United States of America
| | - Soni Lacefield
- Department of Biochemistry and Cell Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, United States of America
| |
Collapse
|
3
|
Najera P, Dratler OA, Mai AB, Elizarraras M, Vanchinathan R, Gonzales CA, Meisel RP. Testis- and ovary-expressed polo-like kinase transcripts and gene duplications affect male fertility when expressed in the Drosophila melanogaster germline. G3 (BETHESDA, MD.) 2025; 15:jkae273. [PMID: 39566185 PMCID: PMC11708218 DOI: 10.1093/g3journal/jkae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Polo-like kinases (Plks) are essential for spindle attachment to the kinetochore during prophase and the subsequent dissociation after anaphase in both mitosis and meiosis. There are structural differences in the spindle apparatus among mitosis, male meiosis, and female meiosis. It is therefore possible that alleles of Plk genes could improve kinetochore attachment or dissociation in spermatogenesis or oogenesis, but not both. These opposing effects could result in sexually antagonistic selection at Plk loci. In addition, Plk genes have been independently duplicated in many different evolutionary lineages within animals. This raises the possibility that Plk gene duplication may resolve sexual conflicts over mitotic and meiotic functions. We investigated this hypothesis by comparing the evolution, gene expression, and functional effects of the single Plk gene in Drosophila melanogaster (polo) and the duplicated Plks in D. pseudoobscura (Dpse-polo and Dpse-polo-dup1). Dpse-polo-dup1 is expressed primarily in testis, while other Drosophila Plk genes have broader expression profiles. We found that the protein-coding sequence of Dpse-polo-dup1 is evolving significantly faster than a canonical polo gene across all functional domains, yet the essential structure of the encoded protein has been retained. We present additional evidence that the faster evolution of Dpse-polo-dup1 is driven by the adaptive fixation of amino acid substitutions. We also found that over or ectopic expression of polo or Dpse-polo in the D. melanogaster male germline resulted in greater male infertility than expression of Dpse-polo-dup1. Last, expression of Dpse-polo or an ovary-derived transcript of polo in the male germline caused males to sire female-biased broods, suggesting that some Plk transcripts can affect the meiotic transmission of the sex chromosomes in the male germline. However, there was no sex bias in the progeny when Dpse-polo-dup1 was ectopically expressed, or a testis-derived transcript of polo was overexpressed in the D. melanogaster male germline. Our results therefore suggest that Dpse-polo-dup1 may have experienced positive selection to improve its regulation of the male meiotic spindle, resolving sexual conflict over meiotic Plk functions. Alternatively, Dpse-polo-dup1 may encode a hypomorphic Plk that has reduced deleterious effects when overexpressed in the male germline. Similarly, testis transcripts of D. melanogaster polo may be optimized for regulating the male meiotic spindle, and we provide evidence that the untranslated regions of the polo transcript may be involved in sex-specific germline functions.
Collapse
Affiliation(s)
- Paola Najera
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Olivia A Dratler
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alexander B Mai
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Miguel Elizarraras
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Rahul Vanchinathan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
4
|
Pain C. Overexpression of GFP Fusions of Regulators of the SAC from Arabidopsis thaliana. Methods Mol Biol 2025; 2874:21-32. [PMID: 39614044 DOI: 10.1007/978-1-0716-4236-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Cell division is a fundamental biological process, essential for sustaining life on Earth. Accurate replication followed by uniform segregation of the genome is required to ensure cell division is sustainable and reduces the likelihood of aneuploidy. The cell cycle has various checkpoints to safeguard proper replication, for example, the spindle assembly checkpoint (SAC) which ensures that all chromosomes are correctly aligned and attached to the spindle, before the transition to anaphase. The precise function of the SAC and SAC components in plants is so far unclear. First, the high level of polyploidy in plants raises concerns about the efficacy of the SAC. Second, many plant SAC components are implicated in other cellular processes, such as MAD1, which has been implicated in the reproductive transition of Arabidopsis thaliana. Overexpression of GFP fusions of core SAC components provides a key route to establish the functions of the different SAC components in plants. Here we describe two methods for agrobacterium-mediated transformation of plants.
Collapse
Affiliation(s)
- Charlotte Pain
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
5
|
Lumbroso G, Cairo G, Lacefield S, Murray AW. The B-type cyclin Clb4 prevents meiosis I sister centromere separation in budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629243. [PMID: 39763826 PMCID: PMC11702657 DOI: 10.1101/2024.12.18.629243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
In meiosis, one round of DNA replication followed by two rounds of chromosome segregation halves the ploidy of the original cell. Accurate chromosome segregation in meiosis I depends on recombination between homologous chromosomes. Sister centromeres attach to the same spindle pole in this division and only segregate in meiosis II. We used budding yeast to select for mutations that produced viable spores in the absence of recombination. The most frequent mutations inactivated CLB4, which encodes one of four B-type cyclins. In two wild yeast isolates, Y55 and SK1, but not the W303 laboratory strain, deleting CLB4 causes premature sister centromere separation and segregation in meiosis I and frequent termination of meiosis after a single division, demonstrating a novel role for Clb4 in meiotic chromosome dynamics and meiotic progression. This role depends on the genetic background since meiosis in W303 is largely independent of CLB4.
Collapse
Affiliation(s)
- Gal Lumbroso
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA
| | - Gisela Cairo
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | - Soni Lacefield
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA
| |
Collapse
|
6
|
Xi Y, Xu R, Chen S, Fang J, Duan X, Zhang Y, Zhong G, He Z, Guo Y, Li X, Tao W, Li Y, Li Y, Fang L, Niikura Y. TSG101 depletion dysregulates mitochondria and PML NBs, triggering MAD2-overexpressing interphase cell death (MOID) through AIFM1-PML-DAXX pathway. Cell Death Dis 2024; 15:838. [PMID: 39551802 PMCID: PMC11570632 DOI: 10.1038/s41419-024-07229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Overexpression of mitotic arrest deficiency 2 (MAD2/MAD2L1), a pivotal component of the spindle assembly checkpoint (SAC), resulted in many types of cancer. Here we show that the depletion of tumor susceptibility gene 101 (TSG101), causes synthetic dosage lethality (SDL) in MAD2-overexpressing cells, and we term this cell death MAD2-overexpressing interphase cell death (MOID). The induction of MOID depends on PML and DAXX mediating mitochondrial AIFM1-release. MAD2, TSG101, and AIF-PML-DAXX axis regulate mitochondria, PML nuclear bodies (NBs), and autophagy with close inter-dependent protein stability in survival cells. Loss of C-terminal phosphorylation(s) of TSG101 and closed (C-)MAD2-overexpression contribute to induce MOID. In survival cells, both MAD2 and TSG101 localize at PML NBs in interphase, and TSG101 Y390 phosphorylation is required for localization of TSG101 to PML NBs. PML release from PML NBs through PML deSUMOylation contributes to induce MOID. The post-transcriptional/translational cell death machinery and the non-canonical transcriptional regulation are intricately linked to MOID, and ER-MAM, may serve as a crucial intersection for MOID signaling.
Collapse
Affiliation(s)
- Yao Xi
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Rui Xu
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Shengnan Chen
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Jiezhu Fang
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Xiang Duan
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Yidan Zhang
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Guoli Zhong
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Zhifei He
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Yan Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Wenzhi Tao
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Yang Li
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Yan Li
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China.
| | - Yohei Niikura
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China.
| |
Collapse
|
7
|
Wu C, Ding Z, Yang C, Ma C, Chen H, Zhou P, Xu Z, Xiang H. Bisphenol AP inhibits mouse oocyte maturation in vitro by disrupting cytoskeleton architecture and cell cycle processes. Toxicol Appl Pharmacol 2024; 492:117118. [PMID: 39362309 DOI: 10.1016/j.taap.2024.117118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Bisphenol A (BPA) is among the extensively researched environmental endocrine-disrupting chemicals (EDCs), and its utilization is restricted owing to the detrimental impacts it has on human health. Bisphenol AP (BPAP) is one of the alternatives to BPA, but the influence of BPAP on human health has not been elucidated. The objective of the current research was to determine the influence of BPAP exposure on the in vitro maturation of mouse oocytes and to explore its potential reproductive toxicity. BPAP exposure was found to inhibit polar body extrusion during mouse oocyte maturation, resulting in an arrest at the metaphase I stage of meiosis. Exposure to BPAP led to sustained activation of BubR1, preventing the degradation of both Securin and Cyclin B1. Mechanistically, BPAP exposure disrupts spindle assembly and chromosome alignment. Levels of acetylated α-tubulin were significantly elevated in BPAP-treated oocytes, reflecting decreased spindle stability. Exposure to BPAP also induced DNA damage and impaired DNA damage repair. In addition, BPAP exposure altered histone modification levels. In summary, this investigation suggests that exposure to BPAP can influence cytoskeletal assembly, interfere with cell cycle progression, induce DNA damage, alter histone modifications, and ultimately impede oocyte meiotic maturation. This investigation enhances understanding of the impact of bisphenol analogs on female gametes, underscoring that BPAP cannot be considered a reliable replacement for BPA.
Collapse
Affiliation(s)
- Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Chen Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Huilei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
8
|
Copeland SE, Snow SM, Wan J, Matkowskyj KA, Halberg RB, Weaver BA. MAD1 upregulation sensitizes to inflammation-mediated tumor formation. PLoS Genet 2024; 20:e1011437. [PMID: 39374311 PMCID: PMC11486420 DOI: 10.1371/journal.pgen.1011437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/17/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Mitotic Arrest Deficient 1 (gene name MAD1L1), an essential component of the mitotic spindle assembly checkpoint, is frequently overexpressed in colon cancer, which correlates with poor disease-free survival. MAD1 upregulation induces two phenotypes associated with tumor promotion in tissue culture cells-low rates of chromosomal instability (CIN) and destabilization of the tumor suppressor p53. Using CRISPR/Cas9 gene editing, we generated a novel mouse model by inserting a doxycycline (dox)-inducible promoter and HA tag into the endogenous mouse Mad1l1 gene, enabling inducible expression of HA-MAD1 following exposure to dox in the presence of the reverse tet transactivator (rtTA). A modest 2-fold overexpression of MAD1 in murine colon resulted in decreased p53 expression and increased mitotic defects consistent with CIN. After exposure to the colon-specific inflammatory agent dextran sulfate sodium (DSS), 31% of mice developed colon lesions, including a mucinous adenocarcinoma, while none formed in control animals. Lesion incidence was particularly high in male mice, 57% of which developed at least one hyperplastic polyp, adenoma or adenocarcinoma in the colon. Notably, mice expressing HA-MAD1 also developed lesions in tissues in which DSS is not expected to induce inflammation. These findings demonstrate that MAD1 upregulation is sufficient to promote colon tumorigenesis in the context of inflammation in immune-competent mice.
Collapse
Affiliation(s)
- Sarah E. Copeland
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Santina M. Snow
- Cancer Biology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristina A. Matkowskyj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard B. Halberg
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Beth A. Weaver
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Gadgil P, Ballew O, Sullivan TJ, Lacefield S. Aneuploidy of Specific Chromosomes is Beneficial to Cells Lacking Spindle Checkpoint Protein Bub3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610809. [PMID: 39282354 PMCID: PMC11398392 DOI: 10.1101/2024.09.02.610809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Aneuploidy typically poses challenges for cell survival and growth. However, recent studies have identified exceptions where aneuploidy is beneficial for cells with mutations in certain regulatory genes. Our research reveals that cells lacking the spindle checkpoint gene BUB3 exhibit aneuploidy of select chromosomes. While the spindle checkpoint is not essential in budding yeast, the loss of BUB3 and BUB1 increases the probability of chromosome missegregation compared to wildtype cells. Contrary to the prevailing assumption that the aneuploid cells would be outcompeted due to growth defects, our findings demonstrate that bub3Δ cells consistently maintained aneuploidy of specific chromosomes over many generations. We investigated whether the persistence of these additional chromosomes in bub3Δ cells resulted from the beneficial elevated expression of certain genes, or mere tolerance. We identified several genes involved in chromosome segregation and cell cycle regulation that confer an advantage to Bub3-depleted cells. Overall, our results suggest that the upregulation of specific genes through aneuploidy may provide a survival and growth advantage to strains with poor chromosome segregation fidelity.
Collapse
Affiliation(s)
- Pallavi Gadgil
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Olivia Ballew
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Timothy J. Sullivan
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Soni Lacefield
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
10
|
Kunchala P, Varberg JM, O'Toole E, Gardner J, Smith SE, McClain M, Jaspersen SL, Hawley RS, Gerton JL. Plasticity of the mitotic spindle in response to karyotype variation. Curr Biol 2024; 34:3416-3428.e4. [PMID: 39043187 PMCID: PMC11333012 DOI: 10.1016/j.cub.2024.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Karyotypes, composed of chromosomes, must be accurately partitioned by the mitotic spindle for optimal cell health. However, it is unknown how underlying characteristics of karyotypes, such as chromosome number and size, govern the scaling of the mitotic spindle to ensure accurate chromosome segregation and cell proliferation. We utilize budding yeast strains engineered with fewer chromosomes, including just two "mega chromosomes," to study how spindle size and function are responsive to, and scaled by, karyotype. We determined that deletion and overexpression of spindle-related genes are detrimental to the growth of strains with two chromosomes, suggesting that mega chromosomes exert altered demands on the spindle. Using confocal microscopy, we demonstrate that cells with fewer but longer chromosomes have smaller spindle pole bodies, fewer microtubules, and longer spindles. Moreover, using electron tomography and confocal imaging, we observe elongated, bent anaphase spindles with fewer core microtubules in strains with mega chromosomes. Cells harboring mega chromosomes grow more slowly, are delayed in mitosis, and a subset struggle to complete chromosome segregation. We propose that the karyotype of the cell dictates the microtubule number, type, spindle pole body size, and spindle length, subsequently influencing the dynamics of mitosis, such as the rate of spindle elongation and the velocity of pole separation. Taken together, our results suggest that mitotic spindles are highly plastic ultrastructures that can accommodate and adjust to a variety of karyotypes, even within a species.
Collapse
Affiliation(s)
- Preethi Kunchala
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Joseph M Varberg
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Eileen O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80302, USA
| | - Jennifer Gardner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
11
|
Anbalagan GK, Agarwal P, Ghosh SK. Evidence of 14-3-3 proteins contributing to kinetochore integrity and chromosome congression during mitosis. J Cell Sci 2024; 137:jcs261928. [PMID: 38988319 PMCID: PMC11698032 DOI: 10.1242/jcs.261928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
The 14-3-3 family of proteins are conserved across eukaryotes and serve myriad important regulatory functions in the cell. Homo- and hetero-dimers of these proteins mainly recognize their ligands via conserved motifs to modulate the localization and functions of those effector ligands. In most of the genetic backgrounds of Saccharomyces cerevisiae, disruption of both 14-3-3 homologs (Bmh1 and Bmh2) are either lethal or cells survive with severe growth defects, including gross chromosomal missegregation and prolonged cell cycle arrest. To elucidate their contributions to chromosome segregation, in this work, we investigated their centromere- and kinetochore-related functions of Bmh1 and Bmh2. Analysis of appropriate deletion mutants shows that Bmh isoforms have cumulative and non-shared isoform-specific contributions in maintaining the proper integrity of the kinetochore ensemble. Consequently, Bmh mutant cells exhibited perturbations in kinetochore-microtubule (KT-MT) dynamics, characterized by kinetochore declustering, mis-localization of kinetochore proteins and Mad2-mediated transient G2/M arrest. These defects also caused an asynchronous chromosome congression in bmh mutants during metaphase. In summary, this report advances the knowledge on contributions of budding yeast 14-3-3 proteins in chromosome segregation by demonstrating their roles in kinetochore integrity and chromosome congression.
Collapse
Affiliation(s)
| | - Prakhar Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, 400 076, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, 400 076, India
| |
Collapse
|
12
|
Chittari SS, Lu Z. Revisiting kinetic Monte Carlo algorithms for time-dependent processes: From open-loop control to feedback control. J Chem Phys 2024; 161:044104. [PMID: 39052082 DOI: 10.1063/5.0217316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Simulating stochastic systems with feedback control is challenging due to the complex interplay between the system's dynamics and the feedback-dependent control protocols. We present a single-step-trajectory probability analysis to time-dependent stochastic systems. Based on this analysis, we revisit several time-dependent kinetic Monte Carlo (KMC) algorithms designed for systems under open-loop-control protocols. Our analysis provides a unified alternative proof to these algorithms, summarized into a pedagogical tutorial. Moreover, with the trajectory probability analysis, we present a novel feedback-controlled KMC algorithm that accurately captures the dynamics systems controlled by an external signal based on the measurements of the system's state. Our method correctly captures the system dynamics and avoids the artificial Zeno effect that arises from incorrectly applying the direct Gillespie algorithm to feedback-controlled systems. This work provides a unified perspective on existing open-loop-control KMC algorithms and also offers a powerful and accurate tool for simulating stochastic systems with feedback control.
Collapse
Affiliation(s)
- Supraja S Chittari
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhiyue Lu
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
13
|
Pleuger R, Cozma C, Hohoff S, Denkhaus C, Dudziak A, Kaschani F, Kaiser M, Musacchio A, Vetter IR, Westermann S. Microtubule end-on attachment maturation regulates Mps1 association with its kinetochore receptor. Curr Biol 2024; 34:2279-2293.e6. [PMID: 38776902 DOI: 10.1016/j.cub.2024.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/23/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Faithful chromosome segregation requires that sister chromatids establish bi-oriented kinetochore-microtubule attachments. The spindle assembly checkpoint (SAC) prevents premature anaphase onset with incomplete attachments. However, how microtubule attachment and checkpoint signaling are coordinated remains unclear. The conserved kinase Mps1 initiates SAC signaling by localizing transiently to kinetochores in prometaphase and is released upon bi-orientation. Using biochemistry, structure predictions, and cellular assays, we shed light on this dynamic behavior in Saccharomyces cerevisiae. A conserved N-terminal segment of Mps1 binds the neck region of Ndc80:Nuf2, the main microtubule receptor of kinetochores. Mutational disruption of this interface, located at the backside of the paired CH domains and opposite the microtubule-binding site, prevents Mps1 localization, eliminates SAC signaling, and impairs growth. The same interface of Ndc80:Nuf2 binds the microtubule-associated Dam1 complex. We demonstrate that the error correction kinase Ipl1/Aurora B controls the competition between Dam1 and Mps1 for the same binding site. Thus, binding of the Dam1 complex to Ndc80:Nuf2 may release Mps1 from the kinetochore to promote anaphase onset.
Collapse
Affiliation(s)
- Richard Pleuger
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Christian Cozma
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Simone Hohoff
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Christian Denkhaus
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Alexander Dudziak
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Stefan Westermann
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany.
| |
Collapse
|
14
|
Ballmer D, Carter W, van Hooff JJE, Tromer EC, Ishii M, Ludzia P, Akiyoshi B. Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins. Open Biol 2024; 14:240025. [PMID: 38862021 PMCID: PMC11286163 DOI: 10.1098/rsob.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024] Open
Abstract
Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - William Carter
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 HB Wageningen, The Netherlands
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| |
Collapse
|
15
|
Aktar K, Davies T, Leontiou I, Clark I, Spanos C, Wallace E, Tuck L, Jeyaprakash AA, Hardwick KG. Conserved signalling functions for Mps1, Mad1 and Mad2 in the Cryptococcus neoformans spindle checkpoint. PLoS Genet 2024; 20:e1011302. [PMID: 38829899 PMCID: PMC11175454 DOI: 10.1371/journal.pgen.1011302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/13/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.
Collapse
Affiliation(s)
- Koly Aktar
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas Davies
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioanna Leontiou
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ivan Clark
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Christos Spanos
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Edward Wallace
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Tuck
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - A. Arockia Jeyaprakash
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universitat, Munich, Germany
| | - Kevin G. Hardwick
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Sandoval R, Dilsavor CN, Grishanina NR, Patel V, Zamudio JR. Mammalian RNAi represses pericentromeric lncRNAs to maintain genome stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593425. [PMID: 38765997 PMCID: PMC11100815 DOI: 10.1101/2024.05.09.593425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mammalian pericentromeric tandem repeats produce long noncoding RNAs (lncRNAs) that are dysregulated in cancer and linked to genomic instability. Identifying the basic molecular characteristics of these lncRNAs and their regulation is important to understanding their biological function. Here, we determine that the Argonaute (Ago) proteins of the RNA interference (RNAi) pathway directly and uniformly repress bidirectional pericentromeric lncRNAs in a Dicer-dependent manner in mouse embryonic and adult stem cells. Ago-dependent and Dicer-dependent autoregulatory small RNAs were identified within pericentromeric lncRNA degradation intermediates. We develop an RNase H cleavage assay to determine the relative proportions and lengths of the pericentromeric lncRNA targets. We find that 5'-phosphate and non-polyadenylated bidirectional pericentromeric lncRNAs are expressed at similar proportions. These lncRNAs can span up to 9 repeats, with transcription from the reverse strand template yielding the longer products. Using pericentromeric repeat RNA reporters, we determine that Ago represses pericentromeric lncRNAs after S phase transcription. Upon loss of Ago, pericentromeric lncRNA dysregulation results in delayed cell cycle progression, a defective mitotic spindle assembly checkpoint (SAC) and genomic instability. These results show that an evolutionarily conserved Ago activity at pericentromeres contributes to mammalian genome stability.
Collapse
|
17
|
Song Y. Liquid-liquid phase separation-inspired design of biomaterials. Biomater Sci 2024; 12:1943-1949. [PMID: 38465963 DOI: 10.1039/d3bm02008h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Liquid-liquid phase separation (LLPS) is a crucial biological process that governs biomolecular condensation, assembly, and functionality within phase-separated aqueous environments. This phenomenon serves as a source of inspiration for the creation of artificial designs in both structured and functional biomaterials, presenting novel strategies for manipulating the structures of functional protein aggregates in a wide range of biomedical applications. This mini review summarizes my past research endeavors, offering a panoramic overview of LLPS-inspired biomaterials utilized in the design of structured materials, the development of cell mimetics, and the advancement of intelligent biomaterials.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science & Engineering, Shanghai Jiao Tong University, China.
| |
Collapse
|
18
|
Wang Y, Zhai Y, Zhang M, Song C, Zhang Y, Zhang G. Escaping from CRISPR-Cas-mediated knockout: the facts, mechanisms, and applications. Cell Mol Biol Lett 2024; 29:48. [PMID: 38589794 PMCID: PMC11003099 DOI: 10.1186/s11658-024-00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats and associated Cas protein (CRISPR-Cas), a powerful genome editing tool, has revolutionized gene function investigation and exhibits huge potential for clinical applications. CRISPR-Cas-mediated gene knockout has already become a routine method in research laboratories. However, in the last few years, accumulating evidences have demonstrated that genes knocked out by CRISPR-Cas may not be truly silenced. Functional residual proteins could be generated in such knockout organisms to compensate the putative loss of function, termed herein knockout escaping. In line with this, several CRISPR-Cas-mediated knockout screenings have discovered much less abnormal phenotypes than expected. How does knockout escaping happen and how often does it happen have not been systematically reviewed yet. Without knowing this, knockout results could easily be misinterpreted. In this review, we summarize these evidences and propose two main mechanisms allowing knockout escaping. To avoid the confusion caused by knockout escaping, several strategies are discussed as well as their advantages and disadvantages. On the other hand, knockout escaping also provides convenient tools for studying essential genes and treating monogenic disorders such as Duchenne muscular dystrophy, which are discussed in the end.
Collapse
Affiliation(s)
- Ying Wang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Yujing Zhai
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Mingzhe Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
19
|
Chen Q, Li Y, Shen T, Wang R, Su M, Luo Q, Shi H, Lu G, Wang Z, Hardwick KG, Wang M. Phosphorylation of Mad1 at serine 18 by Mps1 is required for the full virulence of rice blast fungus, Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13456. [PMID: 38619864 PMCID: PMC11018248 DOI: 10.1111/mpp.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/14/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
The spindle assembly checkpoint (SAC) proteins are conserved among eukaryotes safeguarding chromosome segregation fidelity during mitosis. However, their biological functions in plant-pathogenic fungi remain largely unknown. In this study, we found that the SAC protein MoMad1 in rice blast fungus (Magnaporthe oryzae) localizes on the nuclear envelope and is dispensable for M. oryzae vegetative growth and tolerance to microtubule depolymerizing agent treatment. MoMad1 plays an important role in M. oryzae infection-related development and pathogenicity. The monopolar spindle 1 homologue in M. oryzae (MoMps1) interacts with MoMad1 through its N-terminal domain and phosphorylates MoMad1 at Ser-18, which is conserved within the extended N termini of Mad1s from fungal plant pathogens. This phosphorylation is required for maintaining MoMad1 protein abundance and M. oryzae full virulence. Similar to the deletion of MoMad1, treatment with Mps1-IN-1 (an Mps1 inhibitor) caused compromised appressorium formation and decreased M. oryzae virulence, and these defects were dependent on its attenuating MoMad1 Ser-18 phosphorylation. Therefore, our study indicates the function of Mad1 in rice blast fungal pathogenicity and sheds light on the potential of blocking Mad1 phosphorylation by Mps1 to control crop fungal diseases.
Collapse
Affiliation(s)
- Qiushi Chen
- Fujian University Key Laboratory for Plant–Microbe Interaction, College of Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross‐Strait CropsFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
| | - Ya Li
- Fujian University Key Laboratory for Plant–Microbe Interaction, College of Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross‐Strait CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tianjiao Shen
- Fujian University Key Laboratory for Plant–Microbe Interaction, College of Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross‐Strait CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Rong Wang
- Fujian University Key Laboratory for Plant–Microbe Interaction, College of Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross‐Strait CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Meiling Su
- Fujian University Key Laboratory for Plant–Microbe Interaction, College of Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross‐Strait CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
| | - Hua Shi
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
| | - Guodong Lu
- Fujian University Key Laboratory for Plant–Microbe Interaction, College of Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross‐Strait CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- Institute of OceanographyMinjiang UniversityFuzhouChina
| | - Kevin G. Hardwick
- Institute of Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Mo Wang
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
20
|
Cicirò Y, Ragusa D, Sala A. Expression of the checkpoint kinase BUB1 is a predictor of response to cancer therapies. Sci Rep 2024; 14:4461. [PMID: 38396175 PMCID: PMC10891059 DOI: 10.1038/s41598-024-55080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
The identification of clinically-relevant biomarkers is of upmost importance for the management of cancer, from diagnosis to treatment choices. We performed a pan-cancer analysis of the mitotic checkpoint budding uninhibited by benzimidazole 1 gene BUB1, in the attempt to ascertain its diagnostic and prognostic values, specifically in the context of drug response. BUB1 was found to be overexpressed in the majority of cancers, and particularly elevated in clinically aggressive molecular subtypes. Its expression was correlated with clinico-phenotypic features, notably tumour staging, size, invasion, hypoxia, and stemness. In terms of prognostic value, the expression of BUB1 bore differential clinical outcomes depending on the treatment administered in TCGA cancer cohorts, suggesting sensitivity or resistance, depending on the expression levels. We also integrated in vitro drug sensitivity data from public projects based on correlation between drug efficacy and BUB1 expression to produce a list of candidate compounds with differential responses according to BUB1 levels. Gene Ontology enrichment analyses revealed that BUB1 overexpression in cancer is associated with biological processes related to mitosis and chromosome segregation machinery, reflecting the mechanisms of action of drugs with a differential effect based on BUB1 expression.
Collapse
Affiliation(s)
- Ylenia Cicirò
- Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, UB8 3PH, UK
| | - Denise Ragusa
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Uxbridge, UB8 3PH, UK.
| | - Arturo Sala
- Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
21
|
Horakova A, Konecna M, Anger M. Chromosome Division in Early Embryos-Is Everything under Control? And Is the Cell Size Important? Int J Mol Sci 2024; 25:2101. [PMID: 38396778 PMCID: PMC10889803 DOI: 10.3390/ijms25042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.
Collapse
Affiliation(s)
- Adela Horakova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Marketa Konecna
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Martin Anger
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| |
Collapse
|
22
|
Chen J, Floyd EN, Dawson DS, Rankin S. Cornelia de Lange Syndrome mutations in SMC1A cause cohesion defects in yeast. Genetics 2023; 225:iyad159. [PMID: 37650609 PMCID: PMC10550314 DOI: 10.1093/genetics/iyad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a developmental disorder characterized by limb truncations, craniofacial abnormalities, and cognitive delays. CdLS is caused mainly by mutations in genes encoding subunits or regulators of the cohesin complex. Cohesin plays 2 distinct roles in chromosome dynamics as follows: it promotes looping, organization, and compaction of individual chromosomes, and it holds newly replicated sister chromatids together until cell division. CdLS-associated mutations result in altered gene expression likely by affecting chromosome architecture. Whether CdLS mutations cause phenotypes through impact on sister chromatid cohesion is less clear. Here, we show that CdLS-associated mutations introduced into the SMC1A gene of budding yeast had measurable impacts on sister chromatid cohesion, mitotic progression, and DNA damage sensitivity. These data suggest that sister chromatid cohesion-related defects may contribute to phenotypes seen in CdLS affected individuals.
Collapse
Affiliation(s)
- Jingrong Chen
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
| | - Erin N Floyd
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
23
|
Jiang W, Yu Y, Bhandari A, Hirachan S, Dong X, Huang X, Qu J, Chen C. Budding uninhibited by benzimidazoles 1 might be a poor prognosis biomarker promoting the progression of papillary thyroid cancer. ENVIRONMENTAL TOXICOLOGY 2023; 38:2047-2056. [PMID: 37163344 DOI: 10.1002/tox.23812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 04/16/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is one of the most widespread malignant tumors of the endocrine system, with a high incidence. Budding uninhibited by benzimidazoles 1 (BUB1), one of the spindle assembly checkpoint (SAC) genes, is a multitask protein kinase required for eukaryotic chromosome segregation. Although BUB1 has been explored in several types of cancer, its biological role and molecular mechanisms in PTC remain unclear. METHODS In this study, we performed an examination of four public datasets along with local PTC cohorts and discovered that BUB1 was elevated in PTC compared to non-cancer tissues. High BUB1 expression was linked with the status of BRAFV600E , RAS, and TERT after statistical analysis. RESULTS Clinically, BUB1 is associated with a variety of clinicopathological features in PTC patients. Interestingly, analysis of the TCGA database showed that BUB1 was closely associated with poor prognosis of PTC and significantly correlated with PFS. As determined by regression analysis, BUB1, and T stage were independent predictors of PTC and were related to BRAFV600E and lymph node metastatic status. By RT-qPCR, BUB1 was considerably overexpressed in PTC cell lines in comparison with normal thyroid epithelial cells. CONCLUSION We confirmed that the knockdown of BUB1 in BCPAP and TPC1 cell lines significantly inhibited cell proliferation, cloning, and migration in vitro experiments. These results imply that BUB1 may be a significant oncogenic gene that is directly associated with the prognosis of PTC and may represent a future target for therapeutic intervention.
Collapse
Affiliation(s)
- Wenjie Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Yan Yu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
- Department of General Surgery, Breast and Thyroid Unit, Primera Hospital, Kathmandu, Nepal
| | - Suzita Hirachan
- Department of General Surgery, Breast and Thyroid Unit, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Xubin Dong
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Xiaoli Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Jinmiao Qu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Chengze Chen
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| |
Collapse
|
24
|
Sherwin D, Gutierrez-Morton E, Bokros M, Haluska C, Wang Y. A new layer of regulation of chromosomal passenger complex (CPC) translocation in budding yeast. Mol Biol Cell 2023; 34:ar97. [PMID: 37405742 PMCID: PMC10551702 DOI: 10.1091/mbc.e23-02-0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
The conserved chromosomal passenger complex (CPC) consists of Ipl1Aurora-B, Sli15INCENP, Bir1Survivin, and Nbl1Borealin, and localizes at the kinetochore/centromere to correct kinetochore attachment errors and to prevent checkpoint silencing. After anaphase entry, the CPC moves from the kinetochore/centromere to the spindle. In budding yeast, CPC subunit Sli15 is phosphorylated by both cyclin-dependent kinase (CDK) and Ipl1 kinase. Following anaphase onset, activated Cdc14 phosphatase reverses Sli15 phosphorylation imposed by CDK to promote CPC translocation. Although abolished Sli15 phosphorylation imposed by Ipl1 also causes CPC translocation, the regulation of Ipl1-imposed Sli15 phosphorylation remains unclear. In addition to Sli15, Cdc14 also dephosphorylates Fin1, a regulatory subunit of protein phosphatase 1 (PP1), to enable kinetochore localization of Fin1-PP1. Here, we present evidence supporting the notion that kinetochore-localized Fin1-PP1 likely reverses Ipl1-imposed Sli15 phosphorylation to promote CPC translocation from the kinetochore/centromere to the spindle. Importantly, premature Fin1 kinetochore localization or phospho-deficient sli15 mutation causes checkpoint defects in response to tensionless attachments, resulting in chromosome missegregation. In addition, our data indicate that reversion of CDK- and Ipl1-imposed Sli15 phosphorylation shows an additive effect on CPC translocation. Together, these results reveal a previously unidentified pathway to regulate CPC translocation, which is important for accurate chromosome segregation.
Collapse
Affiliation(s)
- Delaney Sherwin
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| | - Emily Gutierrez-Morton
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| | - Michael Bokros
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| | - Cory Haluska
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| |
Collapse
|
25
|
Liu Q, Pillus L, Petty EL. Functional tug of war between kinases, phosphatases, and the Gcn5 acetyltransferase in chromatin and cell cycle checkpoint controls. G3 (BETHESDA, MD.) 2023; 13:jkad021. [PMID: 36772957 PMCID: PMC10085806 DOI: 10.1093/g3journal/jkad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Covalent modifications of chromatin regulate genomic structure and accessibility in diverse biological processes such as transcriptional regulation, cell cycle progression, and DNA damage repair. Many histone modifications have been characterized, yet understanding the interactions between these and their combinatorial effects remains an active area of investigation, including dissecting functional interactions between enzymes mediating these modifications. In budding yeast, the histone acetyltransferase Gcn5 interacts with Rts1, a regulatory subunit of protein phosphatase 2A (PP2A). Implicated in the interaction is the potential for the dynamic phosphorylation of conserved residues on histone H2B and the Cse4 centromere-specific histone H3 variant. To probe these dynamics, we sought to identify kinases which contribute to the phosphorylated state. In a directed screen beginning with in silico analysis of the 127 members of yeast kinome, we have now identified 16 kinases with genetic interactions with GCN5 and specifically found distinct roles for the Hog1 stress-activated protein kinase. Deletion of HOG1 (hog1Δ) rescues gcn5Δ sensitivity to the microtubule poison nocodazole and the lethality of the gcn5Δ rts1Δ double mutant. The Hog1-Gcn5 interaction requires the conserved H2B-T91 residue, which is phosphorylated in vertebrate species. Furthermore, deletion of HOG1 decreases aneuploidy and apoptotic populations in gcn5Δ cells. Together, these results introduce Hog1 as a kinase that functionally opposes Gcn5 and Rts1 in the context of the spindle assembly checkpoint and suggest further kinases may also influence GCN5's functions.
Collapse
Affiliation(s)
- Qihao Liu
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-034, USA
| | - Lorraine Pillus
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-034, USA
| | - Emily L Petty
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-034, USA
| |
Collapse
|
26
|
McAinsh AD, Kops GJPL. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00593-z. [PMID: 36964313 DOI: 10.1038/s41580-023-00593-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/26/2023]
Abstract
The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
27
|
Kwan EX, Alvino GM, Lynch KL, Levan PF, Amemiya HM, Wang XS, Johnson SA, Sanchez JC, Miller MA, Croy M, Lee SB, Naushab M, Bedalov A, Cuperus JT, Brewer BJ, Queitsch C, Raghuraman MK. Ribosomal DNA replication time coordinates completion of genome replication and anaphase in yeast. Cell Rep 2023; 42:112161. [PMID: 36842087 PMCID: PMC10142053 DOI: 10.1016/j.celrep.2023.112161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Timely completion of genome replication is a prerequisite for mitosis, genome integrity, and cell survival. A challenge to this timely completion comes from the need to replicate the hundreds of untranscribed copies of rDNA that organisms maintain in addition to the copies required for ribosome biogenesis. Replication of these rDNA arrays is relegated to late S phase despite their large size, repetitive nature, and essentiality. Here, we show that, in Saccharomyces cerevisiae, reducing the number of rDNA repeats leads to early rDNA replication, which results in delaying replication elsewhere in the genome. Moreover, cells with early-replicating rDNA arrays and delayed genome-wide replication aberrantly release the mitotic phosphatase Cdc14 from the nucleolus and enter anaphase prematurely. We propose that rDNA copy number determines the replication time of the rDNA locus and that the release of Cdc14 upon completion of rDNA replication is a signal for cell cycle progression.
Collapse
Affiliation(s)
- Elizabeth X Kwan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Gina M Alvino
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kelsey L Lynch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Paula F Levan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Haley M Amemiya
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xiaobin S Wang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sarah A Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joseph C Sanchez
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Madison A Miller
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Mackenzie Croy
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Seung-Been Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maria Naushab
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Bonita J Brewer
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - M K Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
28
|
Loss of RanGAP1 drives chromosome instability and rapid tumorigenesis of osteosarcoma. Dev Cell 2023; 58:192-210.e11. [PMID: 36696903 DOI: 10.1016/j.devcel.2022.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/27/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
Chromothripsis is a catastrophic event of chromosomal instability that involves intensive fragmentation and rearrangements within localized chromosomal regions. However, its cause remains unclear. Here, we show that reduction and inactivation of Ran GTPase-activating protein 1 (RanGAP1) commonly occur in human osteosarcoma, which is associated with a high rate of chromothripsis. In rapidly expanding mouse osteoprogenitors, RanGAP1 deficiency causes chromothripsis in chr1q, instant inactivation of Rb1 and degradation of p53, consequent failure in DNA damage repair, and ultrafast osteosarcoma tumorigenesis. During mitosis, RanGAP1 anchors to the kinetochore, where it recruits PP1-γ to counteract the activity of the spindle-assembly checkpoint (SAC) and prevents TOP2A degradation, thus safeguarding chromatid decatenation. Loss of RanGAP1 causes SAC hyperactivation and chromatid decatenation failure. These findings demonstrate that RanGAP1 maintains mitotic chromosome integrity and that RanGAP1 loss drives tumorigenesis through its direct effects on SAC and decatenation and secondary effects on DNA damage surveillance.
Collapse
|
29
|
Fischer ES. Kinetochore‐catalyzed MCC
formation: A structural perspective. IUBMB Life 2022; 75:289-310. [PMID: 36518060 DOI: 10.1002/iub.2697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that functions to ensure accurate chromosome segregation during mitosis. Macromolecular complexes known as kinetochores, act as the interface of sister chromatid attachment to spindle microtubules. In response to unattached kinetochores, the SAC activates its effector, the mitotic checkpoint complex (MCC), which delays mitotic exit until all sister chromatid pairs have achieved successful attachment to the bipolar mitotic spindle. Formation of the MCC (composed of Mad2, BubR1, Bub3 and Cdc20) is regulated by an Mps1 kinase-dependent phosphorylation signaling cascade which assembles and repositions components of the MCC onto a catalytic scaffold. This scaffold functions to catalyze the conversion of the HORMA-domain protein Mad2 from an "inactive" open-state (O-Mad2) into an "active" closed-Mad2 (C-Mad2), and simultaneous Cdc20 binding. Here, our current understanding of the molecular mechanisms underlying the kinetic barrier to C-Mad2:Cdc20 formation will be reviewed. Recent progress in elucidating the precise molecular choreography orchestrated by the catalytic scaffold to rapidly assemble the MCC will be examined, and unresolved questions will be highlighted. Ultimately, understanding how the SAC rapidly activates the checkpoint not only provides insights into how cells maintain genomic integrity during mitosis, but also provides a paradigm for how cells can utilize molecular switches, including other HORMA domain-containing proteins, to make rapid changes to a cell's physiological state.
Collapse
Affiliation(s)
- Elyse S. Fischer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Cambridge UK
| |
Collapse
|
30
|
Villarroya-Beltri C, Osorio A, Torres-Ruiz R, Gómez-Sánchez D, Trakala M, Sánchez-Belmonte A, Mercadillo F, Hurtado B, Pitarch B, Hernández-Núñez A, Gómez-Caturla A, Rueda D, Perea J, Rodríguez-Perales S, Malumbres M, Urioste M. Biallelic germline mutations in MAD1L1 induce a syndrome of aneuploidy with high tumor susceptibility. SCIENCE ADVANCES 2022; 8:eabq5914. [PMID: 36322655 PMCID: PMC9629740 DOI: 10.1126/sciadv.abq5914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Germline mutations leading to aneuploidy are rare, and their tumor-promoting properties are mostly unknown at the molecular level. We report here novel germline biallelic mutations in MAD1L1, encoding the spindle assembly checkpoint (SAC) protein MAD1, in a 36-year-old female with a dozen of neoplasias. Functional studies demonstrated lack of full-length protein and deficient SAC response, resulting in ~30 to 40% of aneuploid blood cells. Single-cell RNA analysis identified mitochondrial stress accompanied by systemic inflammation with enhanced interferon and NFκB signaling both in aneuploid and euploid cells, suggesting a non-cell autonomous response. MAD1L1 mutations resulted in specific clonal expansions of γδ T cells with chromosome 18 gains and enhanced cytotoxic profile as well as intermediate B cells with chromosome 12 gains and transcriptomic signatures characteristic of leukemia cells. These data point to MAD1L1 mutations as the cause of a new variant of mosaic variegated aneuploidy with systemic inflammation and unprecedented tumor susceptibility.
Collapse
Affiliation(s)
| | - Ana Osorio
- Familial Cancer Clinical Unit, CNIO, Madrid E-28029, Spain
| | - Raúl Torres-Ruiz
- Cytogenetic Unit, CNIO, Madrid E-28029, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Advanced Therapies Unit, Hematopoietic Innovative Therapies Division, Instituto de Investigación Sanitaria Fundacion Jimenez Díaz (IIS-FJD, UAM), Madrid E-28040, Spain
| | - David Gómez-Sánchez
- Hereditary Cancer Laboratory, Doce de Octubre University Hospital, i+12 Research Institute, Madrid, Spain
- Clinical and Translational Lung Cancer Research Unit, i+12 Research Institute and Biomedical Research Networking Center in Oncology (CIBERONC), Madrid, Spain
| | - Marianna Trakala
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Agustin Sánchez-Belmonte
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | | | - Begoña Hurtado
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Borja Pitarch
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | | | | | - Daniel Rueda
- Hereditary Cancer Laboratory, Doce de Octubre University Hospital, i+12 Research Institute, Madrid, Spain
| | - José Perea
- Molecular Medicine Unit, Department of Medicine, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Surgery Department, Vithas Madrid Arturo Soria Hospital, Madrid, Spain
| | | | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, CNIO, Madrid E-28029, Spain
| |
Collapse
|
31
|
Sharma P, Sharma N, Sharma D. A Narrative Review on Fanconi Anemia: Genetic and Diagnostic Considerations. Glob Med Genet 2022; 9:237-241. [PMID: 36071913 PMCID: PMC9444348 DOI: 10.1055/s-0042-1751303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Fanconi anemia (FA) is an autosomal recessive disorder, both genetically and phenotypically. It is characterized by chromosomal instability, progressive bone marrow failure, susceptibility to cancer, and various other congenital abnormalities. It involves all the three cell lines of blood. So far, biallelic mutations in 21 genes and one x-linked gene have been detected and found to be associated with FA phenotype. Signs and symptoms start setting in by the age of 4 to 7 years, mainly hematological symptoms. This includes pancytopenia, that is, a reduction in the number of white blood cells (WBCs), red blood cells (RBCs), and platelets. Therefore, the main criteria for diagnosis of FA include skeletal malformations, pancytopenia, hyperpigmentation, short stature, urogenital abnormalities, central nervous system, auditory, renal, ocular, and familial occurrence. Patients showing signs and symptoms of FA should be thoroughly evaluated. A complete blood count will reveal a reduced number of RBC, WBC, and platelets, that is, pancytopenia. Chromosomal breakage study/stress cytogenetics should be done in patients with severe pancytopenia. Momentousness timely diagnosis of current disease, prenatal diagnosis, and genetic counseling should be emphasized.
Collapse
Affiliation(s)
- Preksha Sharma
- Department of Anatomy, SMS Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| | - Neha Sharma
- Department of Pharmacology, SMS Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| | - Dhruva Sharma
- Department of Cardiothoracic and Vascular Surgery, SMS Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| |
Collapse
|
32
|
Yeast Kinesin-5 Motor Protein CIN8 Promotes Accurate Chromosome Segregation. Cells 2022; 11:cells11142144. [PMID: 35883587 PMCID: PMC9316075 DOI: 10.3390/cells11142144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Accurate chromosome segregation depends on bipolar chromosome–microtubule attachment and tension generation on chromosomes. Incorrect chromosome attachment results in chromosome missegregation, which contributes to genome instability. The kinetochore is a protein complex that localizes at the centromere region of a chromosome and mediates chromosome–microtubule interaction. Incorrect chromosome attachment leads to checkpoint activation to prevent anaphase onset. Kinetochore detachment activates the spindle assembly checkpoint (SAC), while tensionless kinetochore attachment relies on both the SAC and tension checkpoint. In budding yeast Saccharomyces cerevisiae, kinesin-5 motor proteins Cin8 and Kip1 are needed to separate spindle pole bodies for spindle assembly, and deletion of CIN8 causes lethality in the absence of SAC. To study the function of Cin8 and Kip1 in chromosome segregation, we constructed an auxin-inducible degron (AID) mutant, cin8-AID. With this conditional mutant, we first confirmed that cin8-AID kip1∆ double mutants were lethal when Cin8 is depleted in the presence of auxin. These cells arrested in metaphase with unseparated spindle pole bodies and kinetochores. We further showed that the absence of either the SAC or tension checkpoint was sufficient to abolish the cell-cycle delay in cin8-AID mutants, causing chromosome missegregation and viability loss. The tension checkpoint-dependent phenotype in cells with depleted Cin8 suggests the presence of tensionless chromosome attachment. We speculate that the failed spindle pole body separation in cin8 mutants could increase the chance of tensionless syntelic chromosome attachments, which depends on functional tension checkpoint for survival.
Collapse
|
33
|
Raina VB, Schoot Uiterkamp M, Vader G. Checkpoint control in meiotic prophase: Idiosyncratic demands require unique characteristics. Curr Top Dev Biol 2022; 151:281-315. [PMID: 36681474 DOI: 10.1016/bs.ctdb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomal transactions such as replication, recombination and segregation are monitored by cell cycle checkpoint cascades. These checkpoints ensure the proper execution of processes that are needed for faithful genome inheritance from one cell to the next, and across generations. In meiotic prophase, a specialized checkpoint monitors defining events of meiosis: programmed DNA break formation, followed by dedicated repair through recombination based on interhomolog (IH) crossovers. This checkpoint shares molecular characteristics with canonical DNA damage checkpoints active during somatic cell cycles. However, idiosyncratic requirements of meiotic prophase have introduced unique features in this signaling cascade. In this review, we discuss the unique features of the meiotic prophase checkpoint. While being related to canonical DNA damage checkpoint cascades, the meiotic prophase checkpoint also shows similarities with the spindle assembly checkpoint (SAC) that guards chromosome segregation. We highlight these emerging similarities in the signaling logic of the checkpoints that govern meiotic prophase and chromosome segregation, and how thinking of these similarities can help us better understand meiotic prophase control. We also discuss work showing that, when aberrantly expressed, components of the meiotic prophase checkpoint might alter DNA repair fidelity and chromosome segregation in cancer cells. Considering checkpoint function in light of demands imposed by the special characteristics of meiotic prophase helps us understand checkpoint integration into the meiotic cell cycle machinery.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY, United States
| | - Maud Schoot Uiterkamp
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Zhou Y, Shen S, Du C, Wang Y, Liu Y, He Q. A role for the mitotic proteins Bub3 and BuGZ in transcriptional regulation of catalase-3 expression. PLoS Genet 2022; 18:e1010254. [PMID: 35666721 PMCID: PMC9203020 DOI: 10.1371/journal.pgen.1010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/16/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
The spindle assembly checkpoint factors Bub3 and BuGZ play critical roles in mitotic process, but little is known about their roles in other cellular processes in eukaryotes. In aerobic organisms, transcriptional regulation of catalase genes in response to developmental or environmental stimuli is necessary for redox homeostasis. Here, we demonstrate that Bub3 and BuGZ negatively regulate cat-3 transcription in the model filamentous fungus Neurospora crassa. The absence of Bub3 caused a significant decrease in BuGZ protein levels. Our data indicate that BuGZ and Bub3 interact directly via the GLEBS domain of BuGZ. Despite loss of the interaction, the amount of BuGZ mutant protein negatively correlated with the cat-3 expression level, indicating that BuGZ amount rather than Bub3-BuGZ interaction determines cat-3 transcription level. Further experiments demonstrated that BuGZ binds directly to the cat-3 gene and responses to cat-3 overexpression induced by oxidative stresses. However, the zinc finger domains of BuGZ have no effects on DNA binding, although mutations of these highly conserved domains lead to loss of cat-3 repression. The deposition of BuGZ along cat-3 chromatin hindered the recruitment of transcription activators GCN4/CPC1 and NC2 complex, thereby preventing the assembly of the transcriptional machinery. Taken together, our results establish a mechanism for how mitotic proteins Bub3 and BuGZ functions in transcriptional regulation in a eukaryotic organism.
Collapse
Affiliation(s)
- Yike Zhou
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuangjie Shen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chengcheng Du
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (QH)
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (QH)
| |
Collapse
|
35
|
Silva PMA, Bousbaa H. BUB3, beyond the Simple Role of Partner. Pharmaceutics 2022; 14:pharmaceutics14051084. [PMID: 35631670 PMCID: PMC9147866 DOI: 10.3390/pharmaceutics14051084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/07/2022] Open
Abstract
The BUB3 protein plays a key role in the activation of the spindle assembly checkpoint (SAC), a ubiquitous surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis and, consequently, prevents chromosome mis-segregation and aneuploidy. Besides its role in SAC signaling, BUB3 regulates chromosome attachment to the spindle microtubules. It is also involved in telomere replication and maintenance. Deficiency of the BUB3 gene has been closely linked to premature aging. Upregulation of the BUB3 gene has been found in a variety of human cancers and is associated with poor prognoses. Here, we review the structure and functions of BUB3 in mitosis, its expression in cancer and association with survival prognoses, and its potential as an anticancer target.
Collapse
Affiliation(s)
- Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal;
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal;
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence:
| |
Collapse
|
36
|
Zhang Y, Song C, Wang L, Jiang H, Zhai Y, Wang Y, Fang J, Zhang G. Zombies Never Die: The Double Life Bub1 Lives in Mitosis. Front Cell Dev Biol 2022; 10:870745. [PMID: 35646932 PMCID: PMC9136299 DOI: 10.3389/fcell.2022.870745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
When eukaryotic cells enter mitosis, dispersed chromosomes move to the cell center along microtubules to form a metaphase plate which facilitates the accurate chromosome segregation. Meanwhile, kinetochores not stably attached by microtubules activate the spindle assembly checkpoint and generate a wait signal to delay the initiation of anaphase. These events are highly coordinated. Disruption of the coordination will cause severe problems like chromosome gain or loss. Bub1, a conserved serine/threonine kinase, plays important roles in mitosis. After extensive studies in the last three decades, the role of Bub1 on checkpoint has achieved a comprehensive understanding; its role on chromosome alignment also starts to emerge. In this review, we summarize the latest development of Bub1 on supporting the two mitotic events. The essentiality of Bub1 in higher eukaryotic cells is also discussed. At the end, some undissolved questions are raised for future study.
Collapse
Affiliation(s)
- Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Wang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujing Zhai
- School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Fang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| |
Collapse
|
37
|
Habib EB, Mathavarajah S, Dellaire G. Tinker, Tailor, Tumour Suppressor: The Many Functions of PRP4K. Front Genet 2022; 13:839963. [PMID: 35281802 PMCID: PMC8912934 DOI: 10.3389/fgene.2022.839963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pre-mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential kinase first identified in the fission yeast Schizosaccharomyces pombe that is evolutionarily conserved from amoebae to animals. During spliceosomal assembly, PRP4K interacts with and phosphorylates PRPF6 and PRPF31 to facilitate the formation of the spliceosome B complex. However, over the past decade additional evidence has emerged that PRP4K has many diverse cellular roles beyond splicing that contribute to tumour suppression and chemotherapeutic responses in mammals. For example, PRP4K appears to play roles in regulating transcription and the spindle assembly checkpoint (SAC), a key pathway in maintaining chromosomes stability and the response of cancer cells to taxane-based chemotherapy. In addition, PRP4K has been revealed to be a haploinsufficient tumour suppressor that promotes aggressive cancer phenotypes when partially depleted. PRP4K is regulated by both the HER2 and estrogen receptor, and its partial loss increases resistance to the taxanes in multiple malignancies including cervical, breast and ovarian cancer. Moreover, ovarian and triple negative breast cancer patients harboring tumours with low PRP4K expression exhibit worse overall survival. The depletion of PRP4K also enhances both Yap and epidermal growth factor receptor (EGFR) signaling, the latter promoting anoikis resistance in breast and ovarian cancer. Finally, PRP4K is negatively regulated during epithelial-to-mesenchymal transition (EMT), a process that promotes increased cell motility, drug resistance and cancer metastasis. Thus, as we discuss in this review, PRP4K likely plays evolutionarily conserved roles not only in splicing but in a number of cellular pathways that together contribute to tumour suppression.
Collapse
Affiliation(s)
- Elias B. Habib
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
| | | | - Graham Dellaire
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- *Correspondence: Graham Dellaire,
| |
Collapse
|
38
|
Verma V, Maresca TJ. A celebration of the 25th anniversary of chromatin-mediated spindle assembly. Mol Biol Cell 2022; 33:rt1. [PMID: 35076260 PMCID: PMC9236140 DOI: 10.1091/mbc.e21-08-0400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Formation of a bipolar spindle is required for the faithful segregation of chromosomes during cell division. Twenty-five years ago, a transformative insight into how bipolarity is achieved was provided by Rebecca Heald, Eric Karsenti, and colleagues in their landmark publication characterizing a chromatin-mediated spindle assembly pathway in which centrosomes and kinetochores were dispensable. The discovery revealed that bipolar spindle assembly is a self-organizing process where microtubules, which possess an intrinsic polarity, polymerize around chromatin and become sorted by mitotic motors into a bipolar structure. On the 25th anniversary of this seminal paper, we discuss what was known before, what we have learned since, and what may lie ahead in understanding the bipolar spindle.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, Amherst, MA 01003.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst, MA 01003
| |
Collapse
|
39
|
Xu S, Huynh TV, Snyman M. The transcriptomic signature of obligate parthenogenesis. Heredity (Edinb) 2022; 128:132-138. [PMID: 35039663 PMCID: PMC8814003 DOI: 10.1038/s41437-022-00498-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 02/03/2023] Open
Abstract
Investigating the origin of parthenogenesis through interspecific hybridization can provide insight into how meiosis may be altered by genetic incompatibilities, which is fundamental for our understanding of the formation of reproductive barriers. Yet the genetic mechanisms giving rise to obligate parthenogenesis in eukaryotes remain understudied. In the microcrustacean Daphnia pulex species complex, obligately parthenogenetic (OP) isolates emerged as backcrosses of two cyclically parthenogenetic (CP) parental species, D. pulex and D. pulicaria, two closely related but ecologically distinct species. We examine the genome-wide expression in OP females at the early resting egg production stage, a life-history stage distinguishing OP and CP reproductive strategies, in comparison to CP females of the same stage from the two parental species. Our analyses of the expression data reveal that underdominant and overdominant genes are abundant in OP isolates, suggesting widespread regulatory incompatibilities between the parental species. More importantly, underdominant genes (i.e., genes with expression lower than both parentals) in the OP isolates are enriched in meiosis and cell-cycle pathways, indicating an important role of underdominance in the origin of obligate parthenogenesis. Furthermore, metabolic and biosynthesis pathways enriched with overdominant genes (i.e., expression higher than both parentals) are another genomic signature of OP isolates.
Collapse
Affiliation(s)
- Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA.
| | - Trung V Huynh
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Marelize Snyman
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
40
|
Abstract
Aneuploidy, a genomic alternation characterized by deviations in the copy number of chromosomes, affects organisms from early development through to aging. Although it is a main cause of human pregnancy loss and a hallmark of cancer, how aneuploidy affects cellular function has been elusive. The last two decades have seen rapid advances in the understanding of the causes and consequences of aneuploidy at the molecular and cellular levels. These studies have uncovered effects of aneuploidy that can be beneficial or detrimental to cells and organisms in an environmental context-dependent and karyotype-dependent manner. Aneuploidy also imposes general stress on cells that stems from an imbalanced genome and, consequently, also an imbalanced proteome. These insights provide the fundamental framework for understanding the impact of aneuploidy in genome evolution, human pathogenesis and drug resistance.
Collapse
|
41
|
Abstract
The cell cycle is a series of events leading to cell replication. When plated at low cell densities in serum-containing medium, cultured cells start to proliferate, moving through the four phases of the cell cycle: G1, S, G2, and M. Mitosis is the most dynamic period of the cell cycle, involving a major reorganization of virtually all cell components. Mitosis is further divided into prophase, prometaphase, metaphase, anaphase, and telophase, which can be easily distinguished from one another by protein markers and/or comparing their chromosome morphology under fluorescence microscope. The progression of the cell cycle through these mitotic subphases is tightly regulated by complicated molecular mechanisms. Synchronization of cells to the mitotic subphases is important for understanding these molecular mechanisms. Here, we describe a protocol to synchronize Hela cells to prometaphase, metaphase, and anaphase/telophase. In this protocol, Hela cells are first synchronized to the early S phase by a double thymidine block. Following the release of the block, the cells are treated with nocodazole, MG132, and blebbistatin to arrest them at prometaphase, metaphase, and anaphase/telophase, respectively. Successful synchronization is assessed using Western blot and fluorescence microscopy.
Collapse
Affiliation(s)
- Ping Wee
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | | | - Zhixiang Wang
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
42
|
Abstract
The cell cycle is the series of events that take place in a cell that drives it to divide and produce two new daughter cells. Through more than 100 years of efforts by scientists, we now have a much clearer picture of cell cycle progression and its regulation. The typical cell cycle in eukaryotes is composed of the G1, S, G2, and M phases. The M phase is further divided into prophase, prometaphase, metaphase, anaphase, telophase, and cytokinesis. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that controls the activity of various Cdk-cyclin complexes. Most cellular events, including DNA duplication, gene transcription, protein translation, and post-translational modification of proteins, occur in a cell-cycle-dependent manner. To understand these cellular events and their underlying molecular mechanisms, it is desirable to have a population of cells that are traversing the cell cycle synchronously. This can be achieved through a process called cell synchronization. Many methods have been developed to synchronize cells to the various phases of the cell cycle. These methods could be classified into two groups: synchronization methods using chemical inhibitors and synchronization methods without using chemical inhibitors. All these methods have their own merits and shortcomings.
Collapse
Affiliation(s)
- Zhixiang Wang
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
43
|
Luna-Maldonado F, Andonegui-Elguera MA, Díaz-Chávez J, Herrera LA. Mitotic and DNA Damage Response Proteins: Maintaining the Genome Stability and Working for the Common Good. Front Cell Dev Biol 2021; 9:700162. [PMID: 34966733 PMCID: PMC8710681 DOI: 10.3389/fcell.2021.700162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular function is highly dependent on genomic stability, which is mainly ensured by two cellular mechanisms: the DNA damage response (DDR) and the Spindle Assembly Checkpoint (SAC). The former provides the repair of damaged DNA, and the latter ensures correct chromosome segregation. This review focuses on recently emerging data indicating that the SAC and the DDR proteins function together throughout the cell cycle, suggesting crosstalk between both checkpoints to maintain genome stability.
Collapse
Affiliation(s)
- Fernando Luna-Maldonado
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - Marco A. Andonegui-Elguera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
44
|
O'Meara CP, Guerri L, Lawir DF, Mateos F, Iconomou M, Iwanami N, Soza-Ried C, Sikora K, Siamishi I, Giorgetti O, Peter S, Schorpp M, Boehm T. Genetic landscape of T cells identifies synthetic lethality for T-ALL. Commun Biol 2021; 4:1201. [PMID: 34671088 PMCID: PMC8528931 DOI: 10.1038/s42003-021-02694-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
To capture the global gene network regulating the differentiation of immature T cells in an unbiased manner, large-scale forward genetic screens in zebrafish were conducted and combined with genetic interaction analysis. After ENU mutagenesis, genetic lesions associated with failure of T cell development were identified by meiotic recombination mapping, positional cloning, and whole genome sequencing. Recessive genetic variants in 33 genes were identified and confirmed as causative by additional experiments. The mutations affected T cell development but did not perturb the development of an unrelated cell type, growth hormone-expressing somatotrophs, providing an important measure of cell-type specificity of the genetic variants. The structure of the genetic network encompassing the identified components was established by a subsequent genetic interaction analysis, which identified many instances of positive (alleviating) and negative (synthetic) genetic interactions. Several examples of synthetic lethality were subsequently phenocopied using combinations of small molecule inhibitors. These drugs not only interfered with normal T cell development, but also elicited remission in a model of T cell acute lymphoblastic leukaemia. Our findings illustrate how genetic interaction data obtained in the context of entire organisms can be exploited for targeted interference with specific cell types and their malignant derivatives.
Collapse
Affiliation(s)
- Connor P O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Lucia Guerri
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Divine-Fondzenyuy Lawir
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Fernando Mateos
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Mary Iconomou
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Cristian Soza-Ried
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Fundacion Oncoloop & Center for Nuclear Medicine, Santiago, Chile
| | - Katarzyna Sikora
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Iliana Siamishi
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Orlando Giorgetti
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Sarah Peter
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
45
|
Trainor BM, Ciccaglione K, Czymek M, Law MJ. Distinct requirements for the COMPASS core subunits Set1, Swd1, and Swd3 during meiosis in the budding yeast Saccharomyces cerevisiae. G3 GENES|GENOMES|GENETICS 2021; 11:6342418. [PMID: 34849786 PMCID: PMC8527496 DOI: 10.1093/g3journal/jkab283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022]
Abstract
Meiosis-specific chromatin structures, guided by histone modifications, are critical mediators of a meiotic transient transcription program and progression through prophase I. Histone H3K4 can be methylated up to three times by the Set1-containing COMPASS complex and each methylation mark corresponds to a different chromatin conformation. The level of H3K4 modification is directed by the activity of additional COMPASS components. In this study, we characterized the role of the COMPASS subunits during meiosis in Saccharomyces cerevisiae. In vegetative cells, previous studies revealed a role for subunits Swd2, Sdc1, and Bre2 for H3K4me2 while Spp1 supported trimethylation. However, we found that Bre2 and Sdc1 are required for H3K4me3 as yeast prepare to enter meiosis while Spp1 is not. Interestingly, we identified distinct meiotic functions for the core COMPASS complex members that required for all H3K4me, Set1, Swd1, and Swd3. While Set1 and Swd1 are required for progression through early meiosis, Swd3 is critical for late meiosis and spore morphogenesis. Furthermore, the meiotic requirement for Set1 is independent of H3K4 methylation, suggesting the presence of nonhistone substrates. Finally, checkpoint suppression analyses indicate that Set1 and Swd1 are required for both homologous recombination and chromosome segregation. These data suggest that COMPASS has important new roles for meiosis that are independent of its well-characterized functions during mitotic divisions.
Collapse
Affiliation(s)
- Brandon M Trainor
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Kerri Ciccaglione
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Miranda Czymek
- Biochemistry and Molecular Biology Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205, USA
| | - Michael J Law
- Biochemistry and Molecular Biology Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205, USA
- Biology Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205, USA
| |
Collapse
|
46
|
Lara-Gonzalez P, Pines J, Desai A. Spindle assembly checkpoint activation and silencing at kinetochores. Semin Cell Dev Biol 2021; 117:86-98. [PMID: 34210579 PMCID: PMC8406419 DOI: 10.1016/j.semcdb.2021.06.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that promotes accurate chromosome segregation in mitosis. The checkpoint senses the attachment state of kinetochores, the proteinaceous structures that assemble onto chromosomes in mitosis in order to mediate their interaction with spindle microtubules. When unattached, kinetochores generate a diffusible inhibitor that blocks the activity of the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase required for sister chromatid separation and exit from mitosis. Work from the past decade has greatly illuminated our understanding of the mechanisms by which the diffusible inhibitor is assembled and how it inhibits the APC/C. However, less is understood about how SAC proteins are recruited to kinetochores in the absence of microtubule attachment, how the kinetochore catalyzes formation of the diffusible inhibitor, and how attachments silence the SAC at the kinetochore. Here, we summarize current understanding of the mechanisms that activate and silence the SAC at kinetochores and highlight open questions for future investigation.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | | | - Arshad Desai
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
47
|
Aurora B Tension Sensing Mechanisms in the Kinetochore Ensure Accurate Chromosome Segregation. Int J Mol Sci 2021; 22:ijms22168818. [PMID: 34445523 PMCID: PMC8396173 DOI: 10.3390/ijms22168818] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
The accurate segregation of chromosomes is essential for the survival of organisms and cells. Mistakes can lead to aneuploidy, tumorigenesis and congenital birth defects. The spindle assembly checkpoint ensures that chromosomes properly align on the spindle, with sister chromatids attached to microtubules from opposite poles. Here, we review how tension is used to identify and selectively destabilize incorrect attachments, and thus serves as a trigger of the spindle assembly checkpoint to ensure fidelity in chromosome segregation. Tension is generated on properly attached chromosomes as sister chromatids are pulled in opposing directions but resisted by centromeric cohesin. We discuss the role of the Aurora B kinase in tension-sensing and explore the current models for translating mechanical force into Aurora B-mediated biochemical signals that regulate correction of chromosome attachments to the spindle.
Collapse
|
48
|
Kops GJPL, Snel B, Tromer EC. Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes. Curr Biol 2021; 30:R589-R602. [PMID: 32428500 DOI: 10.1016/j.cub.2020.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous diversity in eukaryotic life forms can ultimately be traced back to evolutionary modifications at the level of molecular networks. Deep understanding of these modifications will not only explain cellular diversity, but will also uncover different ways to execute similar processes and expose the evolutionary 'rules' that shape the molecular networks. Here, we review the evolutionary dynamics of the spindle assembly checkpoint (SAC), a signaling network that guards fidelity of chromosome segregation. We illustrate how the interpretation of divergent SAC systems in eukaryotic species is facilitated by combining detailed molecular knowledge of the SAC and extensive comparative genome analyses. Ultimately, expanding this to other core cellular systems and experimentally interrogating such systems in organisms from all major lineages may start outlining the routes to and eventual manifestation of the cellular diversity of eukaryotic life.
Collapse
Affiliation(s)
- Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
49
|
Maiato H. Mitosis under the macroscope. Semin Cell Dev Biol 2021; 117:1-5. [PMID: 34172396 DOI: 10.1016/j.semcdb.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
50
|
Bodrug T, Welsh KA, Hinkle M, Emanuele MJ, Brown NG. Intricate Regulatory Mechanisms of the Anaphase-Promoting Complex/Cyclosome and Its Role in Chromatin Regulation. Front Cell Dev Biol 2021; 9:687515. [PMID: 34109183 PMCID: PMC8182066 DOI: 10.3389/fcell.2021.687515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin (Ub)-proteasome system is vital to nearly every biological process in eukaryotes. Specifically, the conjugation of Ub to target proteins by Ub ligases, such as the Anaphase-Promoting Complex/Cyclosome (APC/C), is paramount for cell cycle transitions as it leads to the irreversible destruction of cell cycle regulators by the proteasome. Through this activity, the RING Ub ligase APC/C governs mitosis, G1, and numerous aspects of neurobiology. Pioneering cryo-EM, biochemical reconstitution, and cell-based studies have illuminated many aspects of the conformational dynamics of this large, multi-subunit complex and the sophisticated regulation of APC/C function. More recent studies have revealed new mechanisms that selectively dictate APC/C activity and explore additional pathways that are controlled by APC/C-mediated ubiquitination, including an intimate relationship with chromatin regulation. These tasks go beyond the traditional cell cycle role historically ascribed to the APC/C. Here, we review these novel findings, examine the mechanistic implications of APC/C regulation, and discuss the role of the APC/C in previously unappreciated signaling pathways.
Collapse
Affiliation(s)
- Tatyana Bodrug
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kaeli A Welsh
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Megan Hinkle
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Michael J Emanuele
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Nicholas G Brown
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|