1
|
Quiñones PM, Pei M, Srivastava H, Cobo-Cuan A, Morán MA, Kim BJ, Walker CB, Serafino MJ, Macias-Escriva F, Wang J, Dewey JB, Applegate BE, McGinley MJ, Oghalai JS. The Medial Olivocochlear Efferent Pathway Potentiates Cochlear Amplification in Response to Hearing Loss. J Neurosci 2025; 45:e2103242025. [PMID: 39984203 PMCID: PMC11984096 DOI: 10.1523/jneurosci.2103-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
The mammalian cochlea receives efferent feedback from the brain. Many functions for this feedback have been hypothesized, including on short timescales, such as mediating attentional states, and long timescales, such as buffering acoustic trauma. Testing these hypotheses has been impeded by an inability to make direct measurements of efferent effects in awake animals. Here, we assessed the role of the medial olivocochlear (MOC) efferent nerve fibers on cochlear amplification by measuring organ of Corti vibratory responses to sound in both sexes of awake and anesthetized mice. We studied long-term effects by genetically ablating the efferents and/or afferents. Cochlear amplification increased with deafferentation using VGLUT3-/- mice, but only when the efferents were intact, associated with increased activity within OHCs and supporting cells. Removing both the afferents and the efferents using VGLUT3-/- Alpha9-/- mice did not cause this effect. To test for short-term effects, we recorded sound-evoked vibrations while using pupillometry to measure neuromodulatory brain state. We found no state dependence of cochlear amplification or of the auditory brainstem response. However, state dependence was apparent in the downstream inferior colliculus. Thus, MOC efferents upregulate cochlear amplification chronically with hearing loss, but not acutely with brain state fluctuations. This pathway may partially compensate for hearing loss while mediating associated symptoms, such as tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Patricia M Quiñones
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, California 90033
| | - Michelle Pei
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, California 90033
| | - Hemant Srivastava
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Duncan Neurological Research Institute, Texas Children's Hospital, Texas 77030
| | - Ariadna Cobo-Cuan
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, California 90033
| | - Marcela A Morán
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, California 90033
| | - Bong Jik Kim
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, California 90033
- Department of Otolaryngology - Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Clayton B Walker
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, California 90033
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843
| | - Michael J Serafino
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, California 90033
| | - Frank Macias-Escriva
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, California 90033
| | - Juemei Wang
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, California 90033
| | - James B Dewey
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, California 90033
| | - Brian E Applegate
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, California 90033
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089
| | - Matthew J McGinley
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Duncan Neurological Research Institute, Texas Children's Hospital, Texas 77030
| | - John S Oghalai
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, California 90033
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
2
|
Terreros G, Cifuentes-Cabello C, D'Espessailles A, Munoz F. Impact of pesticide exposure on auditory health: Mechanisms, efferent system disruption, and public health implications. Toxicology 2025; 512:154071. [PMID: 39921025 DOI: 10.1016/j.tox.2025.154071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Pesticide exposure has been linked to adverse effects on auditory health, impacting both peripheral and central auditory systems. Studies suggest that organophosphate, carbamate, organochlorine, and pyrethroid pesticides disrupt auditory processing through oxidative stress, neuroinflammation, and interference with cholinergic signaling. These disruptions may compromise sensory hair cells, spiral ganglion neurons, and auditory pathways, impairing precise signal transmission. The auditory efferent system, responsible for cochlear protection and auditory signal modulation, appears particularly susceptible to pesticide-induced alterations. This system relies on cholinergic transmission to regulate cochlear amplification and selective attention, functions that may be disrupted by pesticide exposure. Evidence from epidemiological and experimental studies highlights the potential for long-term auditory dysfunction in populations exposed to pesticides, with agricultural workers and their families facing elevated risks due to prolonged contact with agrochemicals. This review integrates findings on pesticide exposure and its implications for auditory health, discussing potential peripheral and central ototoxicity pathways. The cumulative effects of chronic exposure are emphasized, including the gradual degradation of auditory processing capabilities. Additionally, the need for targeted interventions, such as audiological monitoring and enhanced safety protocols, is addressed. Further research is critical to elucidate the mechanisms underlying pesticide-induced auditory damage and identify protective strategies. Such investigations can inform evidence-based policies to mitigate the public health impact of pesticide exposure while maintaining agricultural productivity. A multidisciplinary approach is essential to safeguard auditory health in vulnerable populations exposed to these environmental hazards.
Collapse
Affiliation(s)
- Gonzalo Terreros
- Laboratorio de Neurociencia Sensorial, Perceptual y Cognitiva, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | | | - Amanda D'Espessailles
- Laboratorio de Neurociencia Sensorial, Perceptual y Cognitiva, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Felipe Munoz
- Laboratorio de Neurociencia Sensorial, Perceptual y Cognitiva, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile; Programa de Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
3
|
Avstrikova M, Milán Rodríguez P, Burke SM, Hibbs RE, Changeux JP, Cecchini M. Hidden complexity of α7 nicotinic acetylcholine receptor desensitization revealed by MD simulations and Markov state modeling. Proc Natl Acad Sci U S A 2025; 122:e2420993122. [PMID: 39946538 PMCID: PMC11848294 DOI: 10.1073/pnas.2420993122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in neuronal signaling throughout the nervous system. Its implication in neurological disorders and inflammation has spurred the development of numerous compounds that enhance channel activation. However, the therapeutic potential of these compounds has been limited by the characteristically fast desensitization of the α7 receptor. Using recent high-resolution structures from cryo-EM, and all-atom molecular dynamic simulations augmented by Markov state modeling, here we explore the mechanism of α7 receptor desensitization and its implication on allosteric modulation. The results provide a precise characterization of the desensitization gate and illuminate the mechanism of ion-pore opening/closing with an agonist bound. In addition, the simulations reveal the existence of a short-lived, open-channel intermediate between the activated and desensitized states that rationalizes the paradoxical pharmacology of the L247T mutant and may be relevant to type-II allosteric modulation. This analysis provides an interpretation of the signal transduction mechanism and its regulation in α7 receptors.
Collapse
Affiliation(s)
- Mariia Avstrikova
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg CedexF-67083, France
| | - Paula Milán Rodríguez
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg CedexF-67083, France
| | - Sean M. Burke
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Neurobiology, University of California, San Diego, La Jolla, CA92093
| | - Ryan E. Hibbs
- Department of Neurobiology, University of California, San Diego, La Jolla, CA92093
| | - Jean-Pierre Changeux
- Neuroscience Department, Institut Pasteur, Collège de France, ParisF-75005, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg CedexF-67083, France
| |
Collapse
|
4
|
Tekarli B, Azam L, Hone AJ, McIntosh JM. Human α10 nicotinic acetylcholine receptor subunits assemble to form functional receptors. J Biol Chem 2025; 301:108182. [PMID: 39798871 PMCID: PMC11850127 DOI: 10.1016/j.jbc.2025.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. In mammals, there are 16 individual nAChR subunits allowing for numerous possible heteromeric compositions. nAChRs assembled from α7 or α9 subunits will form homopentamers. In contrast, the structurally related α10 nAChR subunit has historically been thought to require α9 subunits for function. Recently, however, strychnine was shown to enable the expression of human α10 nAChRs in Xenopus laevis oocytes or mammalian cells, prompting a re-examination of whether the human α10 subunit can self-assemble in the absence of strychnine. In the present study, acetylcholine-evoked ionic currents were obtained by co-expression of human α10 nAChR subunits with the transmembrane protein resistance to inhibitors of cholinesterase-3 (RIC-3) in Xenopus oocytes. Furthermore, the creation of a gain-of-function reporter mutation, V13'T, in the second transmembrane domain demonstrated that α10 subunits can self-assemble in the presence or absence of RIC-3. The antagonist sensitivity of the homomeric α10 nAChR is distinct from that of the closely related α7 and α9α10 subtypes. α10 homomers were blocked by α-bungarotoxin but were insensitive to α-conotoxin [V11L;V16D]ArIB and RgIA-5474, which potently block α7 nAChRs and α9α10 nAChRs, respectively. These studies yield insight into the assembly of functional human α10 homomers and provide tools for the development of α10 -nAChR-selective ligands.
Collapse
Affiliation(s)
- Bassel Tekarli
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Layla Azam
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Arik J Hone
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA; MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - J Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA; Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
| |
Collapse
|
5
|
Barrantes FJ. Nicotinic acetylcholine receptors in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:37-54. [PMID: 40340066 DOI: 10.1016/b978-0-443-19088-9.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The nicotinic acetylcholine receptor (nAChR) is the archetypal neurotransmitter receptor within the superfamily of pentameric ligand-gated ion channels (pLGICs). Typically, it mediates fast synaptic transmission in response to its endogenous ligand, acetylcholine, and can also intervene in slower signaling mechanisms via intracellular metabolic cascades in association with G-protein-coupled receptors. This review covers the structural and functional aspects of the different neuronal nAChR subtypes and their cellular and anatomic distribution in the brain. The significant progress in our knowledge on the topic derives from the successful combination of biochemical, neuroanatomic, pharmacologic, and cell biology approaches, complemented by site-directed mutagenesis, single-channel electrophysiology, and structural biophysical studies. This multipronged approach provides a comprehensive description of nAChR in health and disease, offering improved chances of success in tackling neurologic and neuropsychiatric diseases involving phenotypic alterations of nAChRs, particularly in neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina; National Scientific & Technological Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Azam L, Christensen SB, Riaz Z, Kendell A, Cull J, Hone AJ, McIntosh JM. α9-Containing Nicotinic Acetylcholine Receptors Are Required for RgIA-5474 Attenuation of Chemotherapy-Induced Neuropathic Pain. ACS Pharmacol Transl Sci 2024; 7:3935-3944. [PMID: 39698293 PMCID: PMC11651205 DOI: 10.1021/acsptsci.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Nicotinic acetylcholine receptors containing the α9 subunit have been mechanistically implicated in alleviating chemotherapy-induced neuropathic pain. However, the cell types that underlie these effects are currently unknown. RgIA-5474 is a recently developed, synthetic α-conotoxin analog that is a potent antagonist of human α9α10 nAChRs. We used germline α9 subunit knockout mice, CD3+ T-cell depletion, and conditional knockdown of the α9 subunit in immune cells to examine the role of α9-containing nAChRs that mediate RgIA-5474 alleviation of oxaliplatin-induced neuropathic pain. RgIA-5474 potently and selectively blocked mouse α9α10 nAChRs. A one-time oxaliplatin injection resulted in cold allodynia that was reversed by RgIA-5474 administration in the wild type but not in α9 germline knockout mice. RgIA-5474 also failed to produce analgesia in CD3+ T-cell-depleted male and female animals. Conditional knockdown of the α9 subunit in immune cells of mice by the CreloxP system also eliminated the therapeutic effects of RgIA-5474 in both male and female mice. These results indicate that the α9 nAChR subunit is necessary for the analgesic effects of RgIA-5474 and implicate α9-containing nAChRs in immune cells as a nonopioid target for treating neuropathic pain.
Collapse
Affiliation(s)
- Layla Azam
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sean B. Christensen
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zoha Riaz
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Anne Kendell
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jennison Cull
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Arik J. Hone
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
- MIRECC,
George E. Whalen Veterans Affair Medical Center, Salt Lake City, Utah 84148, United States
| | - J. Michael McIntosh
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
- Psychiatry, University of Utah, Salt Lake City, Utah 84108, United States
- George
E. Whalen Veterans Affair Medical Center, Salt Lake City, Utah 84148, United States
| |
Collapse
|
7
|
Kennedy HJ, Evans MG. Conductance properties of the α9α10 nicotinic acetylcholine receptor of neonatal mouse inner and outer hair cells. Hear Res 2024; 453:109126. [PMID: 39383639 DOI: 10.1016/j.heares.2024.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
In the developing cochlea, just before the onset of hearing on postnatal day 12, the medial olivocochlear efferent axons in synaptic contact with the inner hair cells (IHCs) start withdrawing and new efferent synaptic connections are formed on the outer hair cells (OHCs), thereby progressing towards the adult pattern of medial olivocochlear efferent innervation. The synapses are inhibitory, calcium influx through the α9α10 nicotinic acetylcholine receptors (nAChRs) driving opening of calcium-dependent potassium channels. The nAChRs appear to function similarly in IHCs and OHCs, although with probable kinetic differences. Our aim was to assess their functional similarity in the neonatal mouse cochlea by making whole-cell recordings from both hair cell types between postnatal day 7 and 10 when nAChRs are expressed. ACh was applied to voltage-clamped hair cells by pressure-ejection from a pipette. The cells were dialysed with a Cs+-based solution designed to eliminate calcium-dependent potassium currents. There were differences in amplitude, voltage-sensitivity and reversal potential of the nAChR currents between IHCs and OHCs. There was also some indication that IHC nAChRs have slower activation and desensitization kinetics, although the relatively slow ACh application limited interpretation of this result. These differences, particularly concerning the reversal potential, might indicate the presence of different auxiliary protein subunits of the α9α10 receptor in neonatal IHCs and OHCs.
Collapse
Affiliation(s)
- Helen J Kennedy
- School of Physiology, Pharmacology & Neuroscience, Bristol Neuroscience, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
8
|
Giffen KP, Liu H, Yamane KL, Li Y, Chen L, Kramer KL, Zallocchi M, He DZ. Molecular specializations underlying phenotypic differences in inner ear hair cells of zebrafish and mice. Front Neurol 2024; 15:1437558. [PMID: 39484049 PMCID: PMC11524865 DOI: 10.3389/fneur.2024.1437558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Hair cells (HCs) are the sensory receptors of the auditory and vestibular systems in the inner ears of vertebrates that selectively transduce mechanical stimuli into electrical activity. Although all HCs have the hallmark stereocilia bundle for mechanotransduction, HCs in non-mammals and mammals differ in their molecular specialization in the apical, basolateral, and synaptic membranes. HCs of non-mammals, such as zebrafish (zHCs), are electrically tuned to specific frequencies and possess an active process in the stereocilia bundle to amplify sound signals. Mammalian HCs, in contrast, are not electrically tuned and achieve amplification by somatic motility of outer HCs (OHCs). Methods To understand the genetic mechanisms underlying differences between adult zebrafish and mammalian HCs, we compared their RNA-seq-characterized transcriptomes, focusing on protein-coding orthologous genes related to HC specialization. Results There was considerable shared expression of gene orthologs among the HCs, including those genes associated with mechanotransduction, ion transport/channels, and synaptic signaling. However, there were some notable differences in expression among zHCs, OHCs, and inner HCs (IHCs), which likely underlie the distinctive physiological properties of each cell type. For example, OHCs highly express Slc26a5 which encodes the motor protein prestin that contributes to OHC electromotility. However, zHCs have only weak expression of slc26a5, and subsequently showed no voltage-dependent electromotility when measured. Notably, the zHCs expressed more paralogous genes including those associated with HC-specific functions and transcriptional activity, though it is unknown whether they have functions similar to their mammalian counterparts. There was overlap in the expressed genes associated with a known hearing phenotype. Discussion Our analyses unveil substantial differences in gene expression patterns that may explain phenotypic specialization of zebrafish and mouse HCs. This dataset also includes several protein-coding genes to further the functional characterization of HCs and study of HC evolution from non-mammals to mammals.
Collapse
Affiliation(s)
- Kimberlee P. Giffen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Basic Sciences, Augusta University/University of Georgia Medical Partnership, Athens, GA, United States
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Kacey L. Yamane
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Yi Li
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
- Department of Otorhinolaryngology, Beijing Tongren Hospital, Beijing Capital Medical University, Beijing, China
| | - Lei Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Kenneth L. Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Marisa Zallocchi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - David Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|
9
|
Braunscheidel KM, Voren G, Fowler CD, Lu Q, Kuryatov A, Cameron MD, Ibañez-Tallon I, Lindstrom JM, Kamenecka TM, Kenny PJ. SR9883 is a novel small-molecule enhancer of α4β2* nicotinic acetylcholine receptor signaling that decreases intravenous nicotine self-administration in rats. Front Mol Neurosci 2024; 17:1459098. [PMID: 39346680 PMCID: PMC11428108 DOI: 10.3389/fnmol.2024.1459098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024] Open
Abstract
Background Most smokers attempting to quit will quickly relapse to tobacco use even when treated with the most efficacious smoking cessation agents currently available. This highlights the need to develop effective new smoking cessation medications. Evidence suggests that positive allosteric modulators (PAM) and other enhancers of nicotinic acetylcholine receptor (nAChR) signaling could have therapeutic utility as smoking cessation agents. Methods 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283) was used as a starting point for medical chemistry efforts to develop novel small molecule enhancers of α4β2* nAChR stoichiometries containing a low-affinity agonist binding site at the interface of α4/α4 and α4/α5 subunits. Results The NS9283 derivative SR9883 enhanced the effect of nicotine on α4β2* nAChR stoichiometries containing low-affinity agonist binding sites, with EC50 values from 0.2-0.4 μM. SR9883 had no effect on α3β2* or α3β4* nAChRs. SR9883 was bioavailable after intravenous (1 mg kg-1) and oral (10-20 mg kg-1) administration and penetrated into the brain. When administered alone, SR9883 (5-10 mg kg-1) had no effect on locomotor activity or intracranial self-stimulation (ICSS) thresholds in mice. When co-administered with nicotine, SR9883 enhanced locomotor suppression and elevations of ICSS thresholds induced by nicotine. SR9883 (5 and 10 mg kg-1) decreased responding for intravenous nicotine infusions (0.03 mg kg-1 per infusion) but had no effect on responding for food rewards in rats. Conclusions These data suggest that SR9883 is useful for investigating behavioral processes regulated by certain α4β2* nAChR stoichiometries. SR9883 and related compounds with favorable drug-like physiochemical and pharmacological properties hold promise as novel treatments of tobacco use disorder.
Collapse
Affiliation(s)
- Kevin M. Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George Voren
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christie D. Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Qun Lu
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Alexander Kuryatov
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Michael D. Cameron
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Ines Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, United States
| | - Jon M. Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Theodore M. Kamenecka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Paul J. Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Castagnola T, Castagna VC, Kitcher SR, Torres Cadenas L, Di Guilmi MN, Gomez Casati ME, Buonfiglio PI, Dalamón V, Katz E, Elgoyhen AB, Weisz CJ, Goutman JD, Wedemeyer C. Co-release of GABA and ACh from medial olivocochlear neurons fine tunes cochlear efferent inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607644. [PMID: 39185230 PMCID: PMC11343139 DOI: 10.1101/2024.08.12.607644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
During development, inner hair cells (IHCs) in the mammalian cochlea are unresponsive to acoustic stimuli but instead exhibit spontaneous activity. During this same period, neurons originating from the medial olivocochlear complex (MOC) transiently innervate IHCs, regulating their firing pattern which is crucial for the correct development of the auditory pathway. Although the MOC-IHC is a cholinergic synapse, previous evidence indicates the widespread presence of gamma-aminobutyric acid (GABA) signaling markers, including presynaptic GABAB receptors (GABABR). In this study, we explore the source of GABA by optogenetically activating either cholinergic or GABAergic fibers. The optogenetic stimulation of MOC terminals from GAD;ChR2-eYFP and ChAT;ChR2-eYFP mice evoked synaptic currents in IHCs that were blocked by α-bungarotoxin. This suggests that GABAergic fibers release ACh and activate α9α10 nicotinic acetylcholine receptors (nAChRs). Additionally, MOC cholinergic fibers release not only ACh but also GABA, as the effect of GABA on ACh response amplitude was prevented by applying the GABAB-R blocker (CGP 36216). Using optical neurotransmitter detection and calcium imaging techniques, we examined the extent of GABAergic modulation at the single synapse level. Our findings suggest heterogeneity in GABA modulation, as only 15 out of 31 recorded synaptic sites were modulated by applying the GABABR specific antagonist, CGP (100-200 μM). In conclusion, we provide compelling evidence that GABA and ACh are co-released from at least a subset of MOC terminals. In this circuit, GABA functions as a negative feedback mechanism, locally regulating the extent of cholinergic inhibition at certain efferent-IHC synapses during an immature stage.
Collapse
Affiliation(s)
- Tais Castagnola
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria C Castagna
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, (1121) Ciudad Autónoma de Buenos Aires, Argentina
| | - Siân R. Kitcher
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Mariano N Di Guilmi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Eugenia Gomez Casati
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, (1121) Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula I Buonfiglio
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| | - Viviana Dalamón
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| | - Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria (C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, (1121) Ciudad Autónoma de Buenos Aires, Argentina
| | - Catherine J.C. Weisz
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Juan D Goutman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Wedemeyer
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
11
|
Gallino SL, Agüero L, Boffi JC, Schottlender G, Buonfiglio P, Dalamon V, Marcovich I, Carpaneto A, Craig PO, Plazas PV, Elgoyhen AB. Key role of the TM2-TM3 loop in calcium potentiation of the α9α10 nicotinic acetylcholine receptor. Cell Mol Life Sci 2024; 81:337. [PMID: 39120784 PMCID: PMC11335262 DOI: 10.1007/s00018-024-05381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The α9α10 nicotinic cholinergic receptor (nAChR) is a ligand-gated pentameric cation-permeable ion channel that mediates synaptic transmission between descending efferent neurons and mechanosensory inner ear hair cells. When expressed in heterologous systems, α9 and α10 subunits can assemble into functional homomeric α9 and heteromeric α9α10 receptors. One of the differential properties between these nAChRs is the modulation of their ACh-evoked responses by extracellular calcium (Ca2+). While α9 nAChRs responses are blocked by Ca2+, ACh-evoked currents through α9α10 nAChRs are potentiated by Ca2+ in the micromolar range and blocked at millimolar concentrations. Using chimeric and mutant subunits, together with electrophysiological recordings under two-electrode voltage-clamp, we show that the TM2-TM3 loop of the rat α10 subunit contains key structural determinants responsible for the potentiation of the α9α10 nAChR by extracellular Ca2+. Moreover, molecular dynamics simulations reveal that the TM2-TM3 loop of α10 does not contribute to the Ca2+ potentiation phenotype through the formation of novel Ca2+ binding sites not present in the α9 receptor. These results suggest that the TM2-TM3 loop of α10 might act as a control element that facilitates the intramolecular rearrangements that follow ACh-evoked α9α10 nAChRs gating in response to local and transient changes of extracellular Ca2+ concentration. This finding might pave the way for the future rational design of drugs that target α9α10 nAChRs as otoprotectants.
Collapse
Affiliation(s)
- Sofia L Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucía Agüero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan C Boffi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Gustavo Schottlender
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Buonfiglio
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Viviana Dalamon
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Irina Marcovich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Regeneron Pharmaceuticals, Inc. Tarrytown, 10591, NY, USA
| | - Agustín Carpaneto
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricio O Craig
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Ana B Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Brockmöller S, Molitor LM, Seeger T, Worek F, Rothmiller S. N-Glycosylation Deficiency in Transgene α7 nAChR and RIC3 Expressing CHO Cells Without NACHO. J Membr Biol 2024; 257:245-256. [PMID: 38967800 DOI: 10.1007/s00232-024-00317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
The human neuronal nicotinic acetylcholine receptor α7 (nAChR) is an important target implicated in diseases like Alzheimer's or Parkinson's, as well as a validated target for drug discovery. For α7 nAChR model systems, correct folding and ion influx functions are essential. Two chaperones, resistance to inhibitors of cholinesterase 3 (RIC3) and novel nAChR regulator (NACHO), enhance the assembly and function of α7 nAChR. This study investigates the consequence of NACHO absence on α7 nAChR expression and function. Therefore, the sequences of human α7 nAChR and human RIC3 were transduced in Chinese hamster ovary (CHO) cells. Protein expression and function of α7 nAChR were confirmed by Western blot and voltage clamp, respectively. Cellular viability was assessed by cell proliferation and lactate dehydrogenase assays. Intracellular and extracellular expression were determined by in/on-cell Western, compared with another nAChR subtype by novel cluster fluorescence-linked immunosorbent assay, and N-glycosylation efficiency was assessed by glycosylation digest. The transgene CHO cell line showed expected protein expression and function for α7 nAChR and cell viability was barely influenced by overexpression. While intracellular levels of α7 nAChR were as anticipated, plasma membrane insertion was low. The glycosylation digest revealed no appreciable N-glycosylation product. This study demonstrates a stable and functional cell line expressing α7 nAChR, whose protein expression, function, and viability are not affected by the absence of NACHO. The reduced plasma membrane insertion of α7 nAChR, combined with incorrect matured N-glycosylation at the Golgi apparatus, suggests a loss of recognition signal for lectin sorting.
Collapse
Affiliation(s)
| | | | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
13
|
Zhang C, Burger RM. Cholinergic modulation in the vertebrate auditory pathway. Front Cell Neurosci 2024; 18:1414484. [PMID: 38962512 PMCID: PMC11220170 DOI: 10.3389/fncel.2024.1414484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Acetylcholine (ACh) is a prevalent neurotransmitter throughout the nervous system. In the brain, ACh is widely regarded as a potent neuromodulator. In neurons, ACh signals are conferred through a variety of receptors that influence a broad range of neurophysiological phenomena such as transmitter release or membrane excitability. In sensory circuitry, ACh modifies neural responses to stimuli and coordinates the activity of neurons across multiple levels of processing. These factors enable individual neurons or entire circuits to rapidly adapt to the dynamics of complex sensory stimuli, underscoring an essential role for ACh in sensory processing. In the auditory system, histological evidence shows that acetylcholine receptors (AChRs) are expressed at virtually every level of the ascending auditory pathway. Despite its apparent ubiquity in auditory circuitry, investigation of the roles of this cholinergic network has been mainly focused on the inner ear or forebrain structures, while less attention has been directed at regions between the cochlear nuclei and midbrain. In this review, we highlight what is known about cholinergic function throughout the auditory system from the ear to the cortex, but with a particular emphasis on brainstem and midbrain auditory centers. We will focus on receptor expression, mechanisms of modulation, and the functional implications of ACh for sound processing, with the broad goal of providing an overview of a newly emerging view of impactful cholinergic modulation throughout the auditory pathway.
Collapse
Affiliation(s)
- Chao Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - R. Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
14
|
Guo X, He L, Xu W, Wang W, Feng X, Fu Y, Zhang X, Ding RB, Qi X, Bao J, Luo S. αO-Conotoxin GeXIVA[1,2] Suppresses In Vivo Tumor Growth of Triple-Negative Breast Cancer by Inhibiting AKT-mTOR, STAT3 and NF-κB Signaling Mediated Proliferation and Inducing Apoptosis. Mar Drugs 2024; 22:252. [PMID: 38921563 PMCID: PMC11205035 DOI: 10.3390/md22060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Breast cancer is one of the leading causes of cancer mortality worldwide, and triple-negative breast cancer (TNBC) is the most problematic subtype. There is an urgent need to develop novel drug candidates for TNBC. Marine toxins are a valuable source for drug discovery. We previously identified αO-conotoxin GeXIVA[1,2] from Conus generalis, which is a selective antagonist of α9 nicotinic acetylcholine receptors (nAChRs). Recent studies indicated that α9 nAChR expression is positively correlated with breast cancer development; thus, α9 nAChR could serve as a therapeutic target for breast cancer. In this study, we aimed to investigate the in vivo antitumor effects of GeXIVA[1,2] on TNBC and to elucidate its underlying anticancer mechanism. Our data showed that GeXIVA[1,2] effectively suppressed 4T1 tumor growth in vivo at a very low dose of 0.1 nmol per mouse. Our results uncovered that the antitumor mechanism of GeXIVA[1,2] simultaneously induced apoptosis and blocked proliferation. Further investigations revealed that GeXIVA[1,2]-induced Caspase-3-dependent apoptosis was achieved through regulating Bax/Bcl-2 balance, and GeXIVA[1,2]-inhibited proliferation was mediated by the downregulation of the AKT-mTOR, STAT3 and NF-κB signaling pathways. Our study provides valuable arguments to demonstrate the potential of GeXIVA[1,2] as a novel marine-derived anticancer drug candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Leping He
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Weifeng Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Wanrong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Xiaoli Feng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Xiaofan Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| |
Collapse
|
15
|
Giffen KP, Liu H, Yamane KL, Li Y, Chen L, Kramer KL, Zallocchi M, He DZ. Molecular Specializations Underlying Phenotypic Differences in Inner Ear Hair Cells of Zebrafish and Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595729. [PMID: 38826418 PMCID: PMC11142236 DOI: 10.1101/2024.05.24.595729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Hair cells (HCs) are the sensory receptors of the auditory and vestibular systems in the inner ears of vertebrates that selectively transduce mechanical stimuli into electrical activity. Although all HCs have the hallmark stereocilia bundle for mechanotransduction, HCs in non-mammals and mammals differ in their molecular specialization in the apical, basolateral and synaptic membranes. HCs of non-mammals, such as zebrafish (zHCs), are electrically tuned to specific frequencies and possess an active process in the stereocilia bundle to amplify sound signals. Mammalian cochlear HCs, in contrast, are not electrically tuned and achieve amplification by somatic motility of outer HCs (OHCs). To understand the genetic mechanisms underlying differences among adult zebrafish and mammalian cochlear HCs, we compared their RNA-seq-characterized transcriptomes, focusing on protein-coding orthologous genes related to HC specialization. There was considerable shared expression of gene orthologs among the HCs, including those genes associated with mechanotransduction, ion transport/channels, and synaptic signaling. For example, both zebrafish and mouse HCs express Tmc1, Lhfpl5, Tmie, Cib2, Cacna1d, Cacnb2, Otof, Pclo and Slc17a8. However, there were some notable differences in expression among zHCs, OHCs, and inner HCs (IHCs), which likely underlie the distinctive physiological properties of each cell type. Tmc2 and Cib3 were not detected in adult mouse HCs but tmc2a and b and cib3 were highly expressed in zHCs. Mouse HCs express Kcna10, Kcnj13, Kcnj16, and Kcnq4, which were not detected in zHCs. Chrna9 and Chrna10 were expressed in mouse HCs. In contrast, chrna10 was not detected in zHCs. OHCs highly express Slc26a5 which encodes the motor protein prestin that contributes to OHC electromotility. However, zHCs have only weak expression of slc26a5, and subsequently showed no voltage dependent electromotility when measured. Notably, the zHCs expressed more paralogous genes including those associated with HC-specific functions and transcriptional activity, though it is unknown whether they have functions similar to their mammalian counterparts. There was overlap in the expressed genes associated with a known hearing phenotype. Our analyses unveil substantial differences in gene expression patterns that may explain phenotypic specialization of zebrafish and mouse HCs. This dataset also includes several protein-coding genes to further the functional characterization of HCs and study of HC evolution from non-mammals to mammals.
Collapse
Affiliation(s)
- Kimberlee P. Giffen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Augusta University/University of Georgia Medical Partnership, Athens, GA, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Kacey L. Yamane
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Yi Li
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
- Department of Otorhinolaryngology, Beijing Tongren Hospital, Beijing Capital Medical University, Beijing, China
| | - Lei Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Ken L. Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Marisa Zallocchi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - David Z.Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
16
|
Mondul JA, Burke K, Morley B, Lauer AM. Alpha9alpha10 knockout mice show altered physiological and behavioral responses to signals in masking noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:3183-3194. [PMID: 38738939 PMCID: PMC11093617 DOI: 10.1121/10.0025985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Medial olivocochlear (MOC) efferents modulate outer hair cell motility through specialized nicotinic acetylcholine receptors to support encoding of signals in noise. Transgenic mice lacking the alpha9 subunits of these receptors (α9KOs) have normal hearing in quiet and noise, but lack classic cochlear suppression effects and show abnormal temporal, spectral, and spatial processing. Mice deficient for both the alpha9 and alpha10 receptor subunits (α9α10KOs) may exhibit more severe MOC-related phenotypes. Like α9KOs, α9α10KOs have normal auditory brainstem response (ABR) thresholds and weak MOC reflexes. Here, we further characterized auditory function in α9α10KO mice. Wild-type (WT) and α9α10KO mice had similar ABR thresholds and acoustic startle response amplitudes in quiet and noise, and similar frequency and intensity difference sensitivity. α9α10KO mice had larger ABR Wave I amplitudes than WTs in quiet and noise. Other ABR metrics of hearing-in-noise function yielded conflicting findings regarding α9α10KO susceptibility to masking effects. α9α10KO mice also had larger startle amplitudes in tone backgrounds than WTs. Overall, α9α10KO mice had grossly normal auditory function in quiet and noise, although their larger ABR amplitudes and hyperreactive startles suggest some auditory processing abnormalities. These findings contribute to the growing literature showing mixed effects of MOC dysfunction on hearing.
Collapse
Affiliation(s)
- Jane A Mondul
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kali Burke
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Barbara Morley
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
17
|
Slika E, Fuchs PA. Genetic tools for studying cochlear inhibition. Front Cell Neurosci 2024; 18:1372948. [PMID: 38560293 PMCID: PMC10978695 DOI: 10.3389/fncel.2024.1372948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Efferent feedback to the mammalian cochlea includes cholinergic medial olivocochlear neurons (MOCs) that release ACh to hyperpolarize and shunt the voltage change that drives electromotility of outer hair cells (OHCs). Via brainstem connectivity, MOCs are activated by sound in a frequency- and intensity-dependent manner, thereby reducing the amplification of cochlear vibration provided by OHC electromotility. Among other roles, this efferent feedback protects the cochlea from acoustic trauma. Lesion studies, as well as a variety of genetic mouse models, support the hypothesis of efferent protection from acoustic trauma. Genetic knockout and gain-of-function knockin of the unique α9α10-containing nicotinic acetylcholine receptor (nAChR) in hair cells show that acoustic protection correlates with the efficacy of cholinergic inhibition of OHCs. This protective effect was replicated by viral transduction of the gain-of-function α9L9'T nAChR into α9-knockout mice. Continued progress with "efferent gene therapy" will require a reliable method for visualizing nAChR expression in cochlear hair cells. To that end, mice expressing HA-tagged α9 or α10 nAChRs were generated using CRISPR technology. This progress will facilitate continued study of the hair cell nAChR as a therapeutic target to prevent hearing loss and potentially to ameliorate associated pathologies such as hyperacusis.
Collapse
Affiliation(s)
| | - Paul Albert Fuchs
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins, University School of Medicine Baltimore, Baltimore, MD, United States
| |
Collapse
|
18
|
Burke SM, Avstrikova M, Noviello CM, Mukhtasimova N, Changeux JP, Thakur GA, Sine SM, Cecchini M, Hibbs RE. Structural mechanisms of α7 nicotinic receptor allosteric modulation and activation. Cell 2024; 187:1160-1176.e21. [PMID: 38382524 PMCID: PMC10950261 DOI: 10.1016/j.cell.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in cholinergic signaling throughout the nervous system. Its unique physiological characteristics and implications in neurological disorders and inflammation make it a promising but challenging therapeutic target. Positive allosteric modulators overcome limitations of traditional α7 agonists, but their potentiation mechanisms remain unclear. Here, we present high-resolution structures of α7-modulator complexes, revealing partially overlapping binding sites but varying conformational states. Structure-guided functional and computational tests suggest that differences in modulator activity arise from the stable rotation of a channel gating residue out of the pore. We extend the study using a time-resolved cryoelectron microscopy (cryo-EM) approach to reveal asymmetric state transitions for this homomeric channel and also find that a modulator with allosteric agonist activity exploits a distinct channel-gating mechanism. These results define mechanisms of α7 allosteric modulation and activation with implications across the pentameric receptor superfamily.
Collapse
Affiliation(s)
- Sean M Burke
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariia Avstrikova
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, 67081 Strasbourg Cedex, France
| | - Colleen M Noviello
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nuriya Mukhtasimova
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Jean-Pierre Changeux
- Neuroscience Department, Institut Pasteur, Collège de France, 75015 Paris, France
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, 67081 Strasbourg Cedex, France.
| | - Ryan E Hibbs
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Dallanoce C, Richter K, Stokes C, Papotto C, Andleeb H, Thakur GA, Kerr A, Grau V, Papke RL. New Alpha9 nAChR Ligands Based on a 5-(Quinuclidin-3-ylmethyl)-1,2,4-oxadiazole Scaffold. ACS Chem Neurosci 2024; 15:827-843. [PMID: 38335726 PMCID: PMC11274740 DOI: 10.1021/acschemneuro.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
Several lines of evidence have indicated that nicotinic acetylcholine receptors (nAChR) that contain α9 subunits, probably in combination with α10 subunits, may be valuable targets for the management of pain associated with inflammatory diseases through a cholinergic anti-inflammatory system (CAS), which has also been associated with α7 nAChR. Both α7- and α9-containing neuronal nAChR can be pharmacologically distinguished from the high-affinity nicotinic receptors of the brain by their sensitivity to α-bungarotoxin, but in other ways, they have quite distinct pharmacological profiles. The early association of α7 with CAS led to the development of numerous new ligands, variously characterized as α7 agonists, partial agonists, or silent agonists that desensitized α7 receptors without activation. Subsequent reinvestigation of one such family of α7 ligands based on an N,N-diethyl-N'-phenylpiperazine scaffold led to the identification of potent agonists and antagonists for α9. In this paper, we characterize the α9/α10 activity of a series of compounds based on a 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazole (QMO) scaffold and identify two new potent ligands of α9, QMO-28, an agonist, and QMO-17, an antagonist. We separated the stereoisomers of these compounds to identify the most potent agonist and discovered that only the 3R isomer of QMO-17 was an α9 antagonist, permitting an in silico model of α9 antagonism to be developed. The α9 activity of these compounds was confirmed to be potentially useful for CAS management of inflammatory pain in cell-based assays of cytokine release.
Collapse
Affiliation(s)
- Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi″, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Katrin Richter
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research [DZL], Cardio-Pulmonary Institute [CPI], Giessen 35390, Germany
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, Florida 32610 United States
| | - Claudio Papotto
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi″, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Hina Andleeb
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Andrew Kerr
- United States Naval Research Laboratory, 6920 Washington, District of Columbia, United States
| | - Veronika Grau
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research [DZL], Cardio-Pulmonary Institute [CPI], Giessen 35390, Germany
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, Florida 32610 United States
| |
Collapse
|
20
|
Mondul JA, Burke K, Morley B, Lauer AM. Alpha9alpha10 knockout mice show altered physiological and behavioral responses to signals in masking noise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.567909. [PMID: 38045351 PMCID: PMC10690178 DOI: 10.1101/2023.11.21.567909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Medial olivocochlear (MOC) efferents modulate outer hair cell motility through specialized nicotinic acetylcholine receptors to support encoding of signals in noise. Transgenic mice lacking the alpha9 subunits of these receptors (α9KOs) have normal hearing in quiet and noise, but lack classic cochlear suppression effects and show abnormal temporal, spectral, and spatial processing. Mice deficient for both the alpha9 and alpha10 receptor subunits (α9α10KOs) may exhibit more severe MOC-related phenotypes. Like α9KOs, α9α10KOs have normal auditory brainstem response (ABR) thresholds and weak MOC reflexes. Here, we further characterized auditory function in α9α10KO mice. Wildtype and α9α10KO mice had similar ABR thresholds and acoustic startle response (ASR) amplitudes in quiet and noise, and similar frequency and intensity difference sensitivity. α9α10KO mice had larger ABR Wave I amplitudes than wildtypes in quiet and noise, but the noise:quiet amplitude ratio suggested α9α10KOs were more susceptible to masking effects for some stimuli. α9α10KO mice also had larger startle amplitudes in tone backgrounds than wildtypes. Overall, α9α10KO mice had grossly normal auditory function in quiet and noise, though their larger ABR amplitudes and hyperreactive startles suggest some auditory processing abnormalities. These findings contribute to the growing literature showing mixed effects of MOC dysfunction on hearing.
Collapse
|
21
|
Vicencio-Jimenez S, Delano PH, Madrid N, Terreros G, Maass JC, Delgado C, Jorratt P. Maintained Spatial Learning and Memory Functions in Middle-Aged α9 Nicotinic Receptor Subunit Knock-Out Mice. Brain Sci 2023; 13:brainsci13050794. [PMID: 37239266 DOI: 10.3390/brainsci13050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Age-related hearing loss is linked to cognitive impairment, but the mechanisms that relate to these conditions remain unclear. Evidence shows that the activation of medial olivocochlear (MOC) neurons delays cochlear aging and hearing loss. Consequently, the loss of MOC function may be related to cognitive impairment. The α9/α10 nicotinic receptor is the main target of cholinergic synapses between the MOC neurons and cochlear outer hair cells. Here, we explored spatial learning and memory performance in middle-aged wild-type (WT) and α9-nAChR subunit knock-out (KO) mice using the Barnes maze and measured auditory brainstem response (ABR) thresholds and the number of cochlear hair cells as a proxy of cochlear aging. Our results show non-significant spatial learning differences between WT and KO mice, but KO mice had a trend of increased latency to enter the escape box and freezing time. To test a possible reactivity to the escape box, we evaluated the novelty-induced behavior using an open field and found a tendency towards more freezing time in KO mice. There were no differences in memory, ABR threshold, or the number of cochlear hair cells. We suggest that the lack of α9-nAChR subunit alters novelty-induced behavior, but not spatial learning in middle-aged mice, by a non-cochlear mechanism.
Collapse
Affiliation(s)
- Sergio Vicencio-Jimenez
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
- Otolaryngology Department, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Paul H Delano
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
- Department of Otolaryngology, Hospital Clínico Universidad de Chile, Santiago 8320328, Chile
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile
| | - Natalia Madrid
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua 2841935, Chile
| | - Juan C Maass
- Department of Otolaryngology, Hospital Clínico Universidad de Chile, Santiago 8320328, Chile
- Interdisciplinary Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8320328, Chile
| | - Carolina Delgado
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
| | - Pascal Jorratt
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic
| |
Collapse
|
22
|
Ashmore JF, Oghalai JS, Dewey JB, Olson ES, Strimbu CE, Wang Y, Shera CA, Altoè A, Abdala C, Elgoyhen AB, Eatock RA, Raphael RM. The Remarkable Outer Hair Cell: Proceedings of a Symposium in Honour of W. E. Brownell. J Assoc Res Otolaryngol 2023; 24:117-127. [PMID: 36648734 PMCID: PMC10121982 DOI: 10.1007/s10162-022-00852-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
In 1985, Bill Brownell and colleagues published the remarkable observation that cochlear outer hair cells (OHCs) express voltage-driven mechanical motion: electromotility. They proposed OHC electromotility as the mechanism for the elusive "cochlear amplifier" required to explain the sensitivity of mammalian hearing. The finding and hypothesis stimulated an explosion of experiments that have transformed our understanding of cochlear mechanics and physiology, the evolution of hair cell structure and function, and audiology. Here, we bring together examples of current research that illustrate the continuing impact of the discovery of OHC electromotility.
Collapse
Affiliation(s)
| | - John S Oghalai
- Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, USA
| | - James B Dewey
- Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, USA
| | - Elizabeth S Olson
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA
| | - Clark E Strimbu
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA
| | - Yi Wang
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology and Department of Physics and Astronomy, University of Southern California, Los Angeles, USA
| | - Alessandro Altoè
- Caruso Department of Otolaryngology and Department of Physics and Astronomy, University of Southern California, Los Angeles, USA
| | - Carolina Abdala
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, USA
| | - Ana B Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|
23
|
Hone AJ, McIntosh JM. Nicotinic acetylcholine receptors: Therapeutic targets for novel ligands to treat pain and inflammation. Pharmacol Res 2023; 190:106715. [PMID: 36868367 PMCID: PMC10691827 DOI: 10.1016/j.phrs.2023.106715] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have been historically defined as ligand-gated ion channels and function as such in the central and peripheral nervous systems. Recently, however, non-ionic signaling mechanisms via nAChRs have been demonstrated in immune cells. Furthermore, the signaling pathways where nAChRs are expressed can be activated by endogenous ligands other than the canonical agonists acetylcholine and choline. In this review, we discuss the involvement of a subset of nAChRs containing α7, α9, and/or α10 subunits in the modulation of pain and inflammation via the cholinergic anti-inflammatory pathway. Additionally, we review the most recent advances in the development of novel ligands and their potential as therapeutics.
Collapse
Affiliation(s)
- Arik J Hone
- School of Biological Sciences University of Utah, Salt Lake City, UT, USA; MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - J Michael McIntosh
- School of Biological Sciences University of Utah, Salt Lake City, UT, USA; Department of Psychiatry, University of Utah, Salt Lake City, UT, USA; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| |
Collapse
|
24
|
Elgoyhen AB. The α9α10 acetylcholine receptor: a non-neuronal nicotinic receptor. Pharmacol Res 2023; 190:106735. [PMID: 36931539 DOI: 10.1016/j.phrs.2023.106735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Within the superfamily of pentameric ligand-gated ion channels, cholinergic nicotinic receptors (nAChRs) were classically identified to mediate synaptic transmission in the nervous system and the neuromuscular junction. The α9 and α10 nAChR subunits were the last ones to be identified. Surprisingly, they do not fall into the dichotomic neuronal/muscle classification of nAChRs. They assemble into heteropentamers with a well-established function as canonical ion channels in inner ear hair cells, where they mediate central nervous system control of auditory and vestibular sensory processing. The present review includes expression, pharmacological, structure-function, molecular evolution and pathophysiological studies, that define receptors composed from α9 and α10 subunits as distant and distinct members within the nAChR family. Thus, although α9 and α10 were initially included within the neuronal subdivision of nAChR subunits, they form a distinct clade within the phylogeny of nAChRs. Following the classification of nAChR subunits based on their main synaptic site of action, α9 and α10 should receive a name in their own right.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| |
Collapse
|
25
|
Kang JY, Kim JM, Park SK, Lee HL, Heo HJ. A Mixture of Artemisia argyi and Saururus chinensis Improves PM 2.5-Induced Cognitive Dysfunction by Regulating Oxidative Stress and Inflammatory Response in the Lung and Brain. PLANTS (BASEL, SWITZERLAND) 2023; 12:1230. [PMID: 36986919 PMCID: PMC10059966 DOI: 10.3390/plants12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
This study was performed to investigate the improving effect of a mixture of Artemisia argyi and Saururus chinensis (AASC) on cognitive dysfunction in mice with long-term exposure to fine particles (particulate matter smaller than 2.5 µm: PM2.5). The main compounds of AASC were identified as dicaffeoylquinic acid isomers of A. argyi and a quercetin-3-glucoside of S. chinesis. As a result of behavioral tests for the evaluation of cognitive function, it was confirmed that cognitive dysfunction was induced in the PM2.5 exposure group, and a tendency to improve in the AASC group was confirmed. Increased oxidative stress and inflammatory response and mitochondrial dysfunction were observed in the brain and lung tissues of the PM group. Damage to the brain and lung affected the accumulation of amyloid beta (Aβ) in the brain. It increased Aβ and induced the cholinergic dysfunction, hyperphosphorylation of the tau protein, and activation of apoptosis, leading to cognitive impairment. However, AASC suppressed brain and lung oxidative stress and inflammation, thereby suppressing brain Aβ expression. Consequently, this study shows the potential that a steady intake of plant resources with antioxidant and anti-inflammatory activity could prevent cognitive impairment caused by PM2.5.
Collapse
Affiliation(s)
- Jin-Yong Kang
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jong-Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seon-Kyeong Park
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Korea Food Research institute, Wanju-Gun 55365, Republic of Korea
| | - Hyo-Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho-Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
26
|
Richter K, Grau V. Signaling of nicotinic acetylcholine receptors in mononuclear phagocytes. Pharmacol Res 2023; 191:106727. [PMID: 36966897 DOI: 10.1016/j.phrs.2023.106727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023]
Abstract
Nicotinic acetylcholine receptors are not only expressed by the nervous system and at the neuro-muscular junction but also by mononuclear phagocytes, which belong to the innate immune system. Mononuclear phagocyte is an umbrella term for monocytes, macrophages, and dendritic cells. These cells play pivotal roles in host defense against infection but also in numerous often debilitating diseases that are characterized by exuberant inflammation. Nicotinic acetylcholine receptors of the neuronal type dominate in these cells, and their stimulation is mainly associated with anti-inflammatory effects. Although the cholinergic modulation of mononuclear phagocytes is of eminent clinical relevance for the prevention and treatment of inflammatory diseases and neuropathic pain, we are only beginning to understand the underlying mechanisms on the molecular level. The purpose of this review is to report and critically discuss the current knowledge on signal transduction mechanisms elicited by nicotinic acetylcholine receptors in mononuclear phagocytes.
Collapse
Affiliation(s)
- Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany; German Centre for Lung Research (DZL), Giessen, Germany; Cardiopulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
27
|
Komori Y, Takayama K, Okamoto N, Kamiya M, Koizumi W, Ihara M, Misawa D, Kamiya K, Yoshinari Y, Seike K, Kondo S, Tanimoto H, Niwa R, Sattelle DB, Matsuda K. Functional impact of subunit composition and compensation on Drosophila melanogaster nicotinic receptors-targets of neonicotinoids. PLoS Genet 2023; 19:e1010522. [PMID: 36795653 PMCID: PMC9934367 DOI: 10.1371/journal.pgen.1010522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 02/17/2023] Open
Abstract
Neonicotinoid insecticides target insect nicotinic acetylcholine receptors (nAChRs) and their adverse effects on non-target insects are of serious concern. We recently found that cofactor TMX3 enables robust functional expression of insect nAChRs in Xenopus laevis oocytes and showed that neonicotinoids (imidacloprid, thiacloprid, and clothianidin) exhibited agonist actions on some nAChRs of the fruit fly (Drosophila melanogaster), honeybee (Apis mellifera) and bumblebee (Bombus terrestris) with more potent actions on the pollinator nAChRs. However, other subunits from the nAChR family remain to be explored. We show that the Dα3 subunit co-exists with Dα1, Dα2, Dβ1, and Dβ2 subunits in the same neurons of adult D. melanogaster, thereby expanding the possible nAChR subtypes in these cells alone from 4 to 12. The presence of Dα1 and Dα2 subunits reduced the affinity of imidacloprid, thiacloprid, and clothianidin for nAChRs expressed in Xenopus laevis oocytes, whereas the Dα3 subunit enhanced it. RNAi targeting Dα1, Dα2 or Dα3 in adults reduced expression of targeted subunits but commonly enhanced Dβ3 expression. Also, Dα1 RNAi enhanced Dα7 expression, Dα2 RNAi reduced Dα1, Dα6, and Dα7 expression and Dα3 RNAi reduced Dα1 expression while enhancing Dα2 expression, respectively. In most cases, RNAi treatment of either Dα1 or Dα2 reduced neonicotinoid toxicity in larvae, but Dα2 RNAi enhanced neonicotinoid sensitivity in adults reflecting the affinity-reducing effect of Dα2. Substituting each of Dα1, Dα2, and Dα3 subunits by Dα4 or Dβ3 subunit mostly increased neonicotinoid affinity and reduced efficacy. These results are important because they indicate that neonicotinoid actions involve the integrated activity of multiple nAChR subunit combinations and counsel caution in interpreting neonicotinoid actions simply in terms of toxicity.
Collapse
Affiliation(s)
- Yuma Komori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Masaki Kamiya
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Wataru Koizumi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | | | | | - Yuto Yoshinari
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Kazuki Seike
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Invertebrate Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - David B. Sattelle
- Centre for Respiratory Biology, Division of Medicine, University College London, London, United Kingdom
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
- * E-mail:
| |
Collapse
|
28
|
Lipovsek M, Elgoyhen AB. The evolutionary tuning of hearing. Trends Neurosci 2023; 46:110-123. [PMID: 36621369 DOI: 10.1016/j.tins.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 01/08/2023]
Abstract
After the transition to life on land, tympanic middle ears emerged separately in different groups of tetrapods, facilitating the efficient detection of airborne sounds and paving the way for high frequency sensitivity. The processes that brought about high-frequency hearing in mammals are tightly linked to the accumulation of coding sequence changes in inner ear genes; many of which were selected during evolution. These include proteins involved in hair bundle morphology, mechanotransduction and high endolymphatic potential, somatic electromotility for sound amplification, ribbon synapses for high-fidelity transmission of sound stimuli, and efferent synapses for the modulation of sound amplification. Here, we review the molecular evolutionary processes behind auditory functional innovation. Overall, the evidence to date supports the hypothesis that changes in inner ear proteins were central to the fine tuning of mammalian hearing.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, UK.
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
29
|
RC-4BC cells express nicotinic and muscarinic acetylcholine receptors. PLoS One 2022; 17:e0279284. [PMID: 36525419 PMCID: PMC9757584 DOI: 10.1371/journal.pone.0279284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Acetylcholine is one of the most important endogenous neurotransmitters in a range of organisms spanning different animal phyla. Within pituitary gland it acts as autocrine and paracrine signal. In a current study we assessed expression profile of the different subunits of nicotinic as well as muscarinic acetylcholine receptors in RC-4BC cells, which are derived from rat pituitary gland tumor. Our findings indicate that β2, δ, and M2 subunits are expressed by the cells with the lowest Ct values compared to other tested subunits. The detected Ct values were 26.6±0.16, 27.95±0.5, and 28.8±0.25 for β2, δ, and M2 subunits, respectively.
Collapse
|
30
|
Huynh PN, Christensen SB, McIntosh JM. RgIA4 Prevention of Acute Oxaliplatin-Induced Cold Allodynia Requires α9-Containing Nicotinic Acetylcholine Receptors and CD3 + T-Cells. Cells 2022; 11:cells11223561. [PMID: 36428990 PMCID: PMC9688540 DOI: 10.3390/cells11223561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy-induced neuropathic pain is a debilitating and dose-limiting side effect. Oxaliplatin is a third-generation platinum and antineoplastic compound that is commonly used to treat colorectal cancer and commonly yields neuropathic side effects. Available drugs such as duloxetine provide only modest benefits against oxaliplatin-induced neuropathy. A particularly disruptive symptom of oxaliplatin is painful cold sensitivity, known as cold allodynia. Previous studies of the Conus regius peptide, RgIA, and its analogs have demonstrated relief from oxaliplatin-induced cold allodynia, yielding improvement that persists even after treatment cessation. Moreover, underlying inflammatory and neuronal protection were shown at the cellular level in chronic constriction nerve injury models, consistent with disease-modifying effects. Despite these promising preclinical outcomes, the underlying molecular mechanism of action of RgIA4 remains an area of active investigation. This study aimed to determine the necessity of the α9 nAChR subunit and potential T-cell mechanisms in RgIA4 efficacy against acute oxaliplatin-induced cold allodynia. A single dose of oxaliplatin (10 mg/kg) was utilized followed by four daily doses of RgIA4. Subcutaneous administration of RgIA4 (40 µg/kg) prevented cold allodynia in wildtype mice but not in mice lacking the α9 nAChR-encoding gene, chrna9. RgIA4 also failed to reverse allodynia in mice depleted of CD3+ T-cells. In wildtype mice treated with oxaliplatin, quantitated circulating T-cells remained unaffected by RgIA4. Together, these results show that RgIA4 requires both chrna9 and CD3+ T-cells to exert its protective effects against acute cold-allodynia produced by oxaliplatin.
Collapse
Affiliation(s)
- Peter N. Huynh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence:
| | - Sean B. Christensen
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - J. Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84112, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
31
|
Shen Y, Huang Q, Ji M, Hsueh CY, Zhou L. Smoking-mediated nicotinic acetylcholine receptors (nAChRs) for predicting outcomes for head and neck squamous cell carcinomas. BMC Cancer 2022; 22:1093. [PMID: 36284268 PMCID: PMC9594873 DOI: 10.1186/s12885-022-10161-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background As a human tumor disease, head and neck squamous cell carcinoma (HNSCC) is associated with a high mortality rate worldwide. Nicotinic acetylcholine receptors (nAChRs) are transmembrane receptor proteins and exert their biological effects following activation by nicotine. We aimed to construct a prognostic signature based on the expression of nAChRs among smokers with HNSCC. Methods The transcriptome profile of nAChRs was obtained from The Cancer Genome Atlas (TCGA). Following the integration of survival information, univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were performed to screen the prognosis-related nAChRs and construct a prognostic signature. Kaplan–Meier (KM), receiver operating characteristic (ROC), principal component analysis (PCA), and independent prognostic analysis were utilized to verify the predictive power of the nAChR-associated prognostic signature. The expression of α5 nAChR in clinical samples was verified by quantitative reverse transcriptase PCR. Results Subunits α2, α5, α9, and β4 were related to the prognosis. The prognostic signature comprised the expression of subunits α5, α9, and β4. The nAChR-associated signature showed high sensitivity and specificity for prognostic prediction and was an independent factor for overall survival. Based on the clinical variables and expression of nAChRs, a nomogram was constructed for predicting the outcomes of HNSCC patients who were smokers in the clinical settings. In clinical specimens, α5 nAChR showed high expression in HNSCC tissues, especially among smokers. Conclusions The nAChR-associated signature constructed in this study may provide a better system for the classification of HNSCC patients and facilitate personalized treatment according to their smoking habits. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10161-x.
Collapse
Affiliation(s)
- Yujie Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Qiang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Mengyou Ji
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.
| | - Liang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Hone AJ, McIntosh JM. Alkaloid ligands enable function of homomeric human α10 nicotinic acetylcholine receptors. Front Pharmacol 2022; 13:981760. [PMID: 36188578 PMCID: PMC9523446 DOI: 10.3389/fphar.2022.981760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
In the nervous system, nicotinic acetylcholine receptors (nAChRs) rapidly transduce a chemical signal into one that is electrical via ligand-gated ion flux through the central channel of the receptor. However, some nAChR subunits are expressed by non-excitable cells where signal transduction apparently occurs through non-ionic mechanisms. One such nAChR subunit, α10, is present in a discreet subset of immune cells and has been implicated in pathologies including cancer, neuropathic pain, and chronic inflammation. Longstanding convention holds that human α10 subunits require co-assembly with α9 subunits for function. Here we assessed whether cholinergic ligands can enable or uncover ionic functions from homomeric α10 nAChRs. Xenopus laevis oocytes expressing human α10 subunits were exposed to a panel of ligands and examined for receptor activation using voltage-clamp electrophysiology. Functional expression of human α10 nAChRs was achieved by exposing the oocytes to the alkaloids strychnine, brucine, or methyllycaconitine. Furthermore, acute exposure to the alkaloid ligands significantly enhanced ionic responses. Acetylcholine-gated currents mediated by α10 nAChRs were potently inhibited by the snake toxins α-bungarotoxin and α-cobratoxin but not by α-conotoxins that target α9 and α9α10 nAChRs. Our findings indicate that human α10 homomers are expressed in oocytes and exposure to certain ligands can enable ionic functions. To our knowledge, this is the first demonstration that human α10 subunits can assemble as functional homomeric nAChRs. These findings have potential implications for receptor regulatory-mechanisms and will enable structural, functional, and further pharmacological characterization of human α10 nAChRs.
Collapse
Affiliation(s)
- Arik J. Hone
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, United States
| | - J. Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, United States
| |
Collapse
|
33
|
Chmielowiec K, Chmielowiec J, Strońska-Pluta A, Trybek G, Śmiarowska M, Suchanecka A, Woźniak G, Jaroń A, Grzywacz A. Association of Polymorphism CHRNA5 and CHRNA3 Gene in People Addicted to Nicotine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10478. [PMID: 36078193 PMCID: PMC9517777 DOI: 10.3390/ijerph191710478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Smoking is a chronic and relapsing addictive trait that harms public health. Among the many identified genetic variants of nicotine dependence, the variants in the CHRNA5/A3/B4 gene cluster on chromosome 15 that encode the α5, α3, and β4 subunits have recently received a lot of attention. Importantly, variants in this gene cluster have been associated with nicotine addiction. Among the many significant variants in this cluster, the polymorphism SNP rs16969968 seems to be the most interesting factor in nicotine addiction. This polymorphism causes an amino acid change from aspartate to asparagine at position 398 of the α5 nicotinic receptor protein sequence. Our study aimed to analyze three polymorphic variants: the rs16969968 located in the CHRNA5 gene, the rs578776 and rs1051730 located in the CHRNA3 gene in nicotine-addicted subjects, and in controls. Our study encompasses an association analysis of genotypes and haplotypes. A group of 401 volunteers was recruited for the study and divided into two groups: the study group consisted of addicted smokers and a control group of 200 unrelated non-smokers who were not dependent on any substance and healthy. A statistically significant difference was observed in the frequency of genotypes of the rs1051730 polymorphism of the CHRNA3 gene (χ2 = 6.704 p = 0.035). The T/T genotype was statistically significantly more frequent in the group of nicotine-dependent subjects. The haplotypes rs16969968, rs578776, and rs1051730 were distinguished, of which the G-T-T and G-C-T haplotypes were present only in the study group. With differences in frequencies, statistical significance was noted-for the G-T-T haplotype p = 0.01284 and the G-C-T haplotype p = 0.00775. The research stated that novel haplotypes G-T-T and G-C-T, though with very low-frequency variants in CHRNA3, were associated with nicotine addiction.
Collapse
Affiliation(s)
- Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland
| | - Małgorzata Śmiarowska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Grzegorz Woźniak
- Private Dental Practice, 9 Bahnhofstrasse, 3940 Steg, Switzerland
| | - Aleksandra Jaroń
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| |
Collapse
|
34
|
Neurotransmitters: Potential Targets in Glioblastoma. Cancers (Basel) 2022; 14:cancers14163970. [PMID: 36010960 PMCID: PMC9406056 DOI: 10.3390/cancers14163970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aiming to discover potential treatments for GBM, this review connects emerging research on the roles of neurotransmitters in the normal neural and the GBM microenvironments and sheds light on the prospects of their application in the neuropharmacology of GBM. Conventional therapy is blamed for its poor effect, especially in inhibiting tumor recurrence and invasion. Facing this dilemma, we focus on neurotransmitters that modulate GBM initiation, progression and invasion, hoping to provide novel therapy targeting GBM. By analyzing research concerning GBM therapy systematically and scientifically, we discover increasing insights into the regulatory effects of neurotransmitters, some of which have already shown great potential in research in vivo or in vitro. After that, we further summarize the potential drugs in correlation with previously published research. In summary, it is worth expecting that targeting neurotransmitters could be a promising novel pharmacological approach for GBM treatment. Abstract For decades, glioblastoma multiforme (GBM), a type of the most lethal brain tumor, has remained a formidable challenge in terms of its treatment. Recently, many novel discoveries have underlined the regulatory roles of neurotransmitters in the microenvironment both physiologically and pathologically. By targeting the receptors synaptically or non-synaptically, neurotransmitters activate multiple signaling pathways. Significantly, many ligands acting on neurotransmitter receptors have shown great potential for inhibiting GBM growth and development, requiring further research. Here, we provide an overview of the most novel advances concerning the role of neurotransmitters in the normal neural and the GBM microenvironments, and discuss potential targeted drugs used for GBM treatment.
Collapse
|
35
|
Zhang B, Ren M, Yang F, Li R, Yu L, Luo A, Zhangsun D, Luo S, Dong S. Oligo-basic amino acids, potential nicotinic acetylcholine receptor inhibitors. Biomed Pharmacother 2022; 152:113215. [PMID: 35667234 DOI: 10.1016/j.biopha.2022.113215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Oligo-basic amino acids have been extensively studied in molecular biology and pharmacology, but the inhibitory activity on nicotinic acetylcholine receptors (nAChRs) was unknown. In this study, the inhibitory activity of 8 oligopeptides, including both basic and acidic amino acids, was evaluated on 9 nAChR subtypes by a two-electrode voltage clamp (TEVC). Among them, the oligo-lysine K9, K12, d-K9, d-K9F, and oligo-arginine R9 showed nanomolar inhibitory activity on various nAChRs, especially for α7 and α9α10 nAChRs. d-K9 containing N-Fmoc protecting group (d-K9F) has an enhanced inhibitory activity on most of the nAChRs, including 47-fold promotion on α1β1δε nAChR. However, H9 and H12 only showed weak inhibitory activity on α9α10 and α1β1δε nAChRs, and the acidic oligopeptide D9 has no inhibitory activity on nAChRs. Flexible docking of K9 in α10(+) α9(-) and α7(+) α7(-) binding pockets showed particularly strong dipole-dipole interactions, which may be responsible for the inhibition of nAChRs. These results demonstrated that oligo-basic amino acids have the potential to be the lead compounds as selective nAChR subtype inhibitors, and oligo-lysines deserved to be modified for further exploitation and utilization. On the other hand, the toxicity and side effects of these nAChR inhibitory peptides should be contemplated in the application.
Collapse
Affiliation(s)
- Baojian Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Maomao Ren
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Fang Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Rui Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liutong Yu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - An Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| |
Collapse
|
36
|
Bavo F, Pallavicini M, Pucci S, Appiani R, Giraudo A, Eaton B, Lucero L, Gotti C, Moretti M, Whiteaker P, Bolchi C. From 2-Triethylammonium Ethyl Ether of 4-Stilbenol (MG624) to Selective Small-Molecule Antagonists of Human α9α10 Nicotinic Receptor by Modifications at the Ammonium Ethyl Residue. J Med Chem 2022; 65:10079-10097. [PMID: 35834819 PMCID: PMC9339509 DOI: 10.1021/acs.jmedchem.2c00746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nicotinic acetylcholine receptors containing α9 subunits (α9*-nAChRs) are potential druggable targets arousing great interest for pain treatment alternative to opioids. Nonpeptidic small molecules selectively acting as α9*-nAChRs antagonists still remain an unattained goal. Here, through modifications of the cationic head and the ethylene linker, we have converted the 2-triethylammonium ethyl ether of 4-stilbenol (MG624), a well-known α7- and α9*-nAChRs antagonist, into some selective antagonists of human α9*-nAChR. Among these, the compound with cyclohexyldimethylammonium head (7) stands out for having no α7-nAChR agonist or antagonist effect along with very low affinity at both α7- and α3β4-nAChRs. At supra-micromolar concentrations, 7 and the other selective α9* antagonists behaved as partial agonists at α9*-nAChRs with a very brief response, followed by rebound current once the application is stopped and the channel is disengaged. The small or null postapplication activity of ACh seems to be related to the slow recovery of the rebound current.
Collapse
Affiliation(s)
- Francesco Bavo
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy,Department
of Drug Design and Pharmacology, University
of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Marco Pallavicini
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Susanna Pucci
- Institute
of Neuroscience, CNR, via Vanvitelli 32, I-20129 Milano, Italy,NeuroMi
Milan Center for Neuroscience, University
of Milano Bicocca, piazza
Ateneo Nuovo 1, I-20126 Milano, Italy
| | - Rebecca Appiani
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Alessandro Giraudo
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Brek Eaton
- Division
of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013, United States
| | - Linda Lucero
- Division
of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013, United States
| | - Cecilia Gotti
- Institute
of Neuroscience, CNR, via Vanvitelli 32, I-20129 Milano, Italy
| | - Milena Moretti
- Institute
of Neuroscience, CNR, via Vanvitelli 32, I-20129 Milano, Italy,Department
of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via Vanvitelli 32, I-20129 Milano, Italy
| | - Paul Whiteaker
- Department
of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Cristiano Bolchi
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy,. Phone: +390250319347
| |
Collapse
|
37
|
Munoz F, Vicencio-Jimenez S, Jorratt P, Delano PH, Terreros G. Corticofugal and Brainstem Functions Associated With Medial Olivocochlear Cholinergic Transmission. Front Neurosci 2022; 16:866161. [PMID: 35573302 PMCID: PMC9094045 DOI: 10.3389/fnins.2022.866161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Cholinergic transmission is essential for survival and reproduction, as it is involved in several physiological responses. In the auditory system, both ascending and descending auditory pathways are modulated by cholinergic transmission, affecting the perception of sounds. The auditory efferent system is a neuronal network comprised of several feedback loops, including corticofugal and brainstem pathways to the cochlear receptor. The auditory efferent system's -final and mandatory synapses that connect the brain with the cochlear receptor- involve medial olivocochlear neurons and outer hair cells. A unique cholinergic transmission mediates these synapses through α9/α10 nicotinic receptors. To study this receptor, it was generated a strain of mice carrying a null mutation of the Chrna9 gene (α9-KO mice), lacking cholinergic transmission between medial olivocochlear neurons and outer hair cells, providing a unique opportunity to study the role of medial olivocochlear cholinergic transmission in auditory and cognitive functions. In this article, we review behavioral and physiological studies carried out to research auditory efferent function in the context of audition, cognition, and hearing impairments. Auditory studies have shown that hearing thresholds in the α9-KO mice are normal, while more complex auditory functions, such as frequency selectivity and sound localization, are altered. The corticofugal pathways have been studied in α9-KO mice using behavioral tasks, evidencing a reduced capacity to suppress auditory distractors during visual selective attention. Finally, we discuss the evolutionary role of the auditory efferent system detecting vocalizations in noise and its role in auditory disorders, such as the prevention of age-related hearing loss.
Collapse
Affiliation(s)
- Felipe Munoz
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
- Universidad de Valparaíso, Valparaíso, Chile
| | - Sergio Vicencio-Jimenez
- Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pascal Jorratt
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Paul H. Delano
- Facultad de Medicina, Neuroscience Department, Universidad de Chile, Santiago, Chile
- Department of Otolaryngology, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Facultad de Medicina, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| |
Collapse
|
38
|
Zlotos DP, Mandour YM, Jensen AA. Strychnine and its mono- and dimeric analogues: a pharmaco-chemical perspective. Nat Prod Rep 2022; 39:1910-1937. [PMID: 35380133 DOI: 10.1039/d1np00079a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to November 2021Since its isolation in 1818, strychnine has attracted the attention of a plethora of chemists and pharmacologists who have established its structure, developed total syntheses, and examined its complex pharmacology. While numerous reviews on structure elucidation and total synthesis of strychnine are available, reports on structure-activity relationships (SARs) of this fascinating alkaloid are rare. In this review, we present and discuss structures, synthetic approaches, metabolic transformations, and the diverse pharmacological actions of strychnine and its mono- and dimeric analogues. Particular attention is given to its SARs at glycine receptors (GlyRs) in light of recently published high-resolution structures of strychnine-GlyR complexes. Other pharmacological actions of strychnine and its derivatives, such as their antagonistic properties at nicotinic acetylcholine receptors (nAChRs), allosteric modulation of muscarinic acetylcholine receptors as well as anti-cancer and anti-plasmodial effects are also critically reviewed, and possible future developments in the field are discussed.
Collapse
Affiliation(s)
- Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt.
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
39
|
Khan SI, Hübner PP, Brichta AM, Migliaccio AA. Vestibulo-Ocular Reflex Short-Term Adaptation Is Halved After Compensation for Unilateral Labyrinthectomy. J Assoc Res Otolaryngol 2022; 23:457-466. [PMID: 35313363 DOI: 10.1007/s10162-022-00844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
Several prior studies, including those from this laboratory, have suggested that vestibulo-ocular reflex (VOR) adaptation and compensation are two neurologically related mechanisms. We therefore hypothesised that adaptation would be affected by compensation, depending on the amount of overlap between these two mechanisms. To better understand this overlap, we examined the effect of gain-increase (gain = eye velocity/head velocity) adaptation training on the VOR in compensated mice since both adaptation and compensation mechanisms are presumably driving the gain to increase. We tested 11 cba129 controls and 6 α9-knockout mice, which have a compromised efferent vestibular system (EVS) known to affect both adaptation and compensation mechanisms. Baseline VOR gains across frequencies (0.2 to 10 Hz) and velocities (20 to 100°/s) were measured on day 28 after unilateral labyrinthectomy (UL) and post-adaptation gains were measured after gain-increase training on day 31 post-UL. Our findings showed that after chronic compensation gain-increase adaptation, as a percentage of baseline, in both strains of mice (~14%), was about half compared to their previously reported healthy, non-operated counterparts (~32%). Surprisingly, there was no difference in gain-increase adaptation between control and α9-knockout mice. These data support the notion that adaptation and compensation are separate but overlapping processes. They also suggest that half of the original adaptation capacity remained in chronically compensated mice, regardless of EVS compromise associated with α9-knockout mice, and strongly suggest VOR adaptation training is a viable treatment strategy for vestibular rehabilitation therapy and, importantly, augments the compensatory process.
Collapse
Affiliation(s)
- Serajul I Khan
- Balance and Vision Laboratory, Neuroscience Research Australia, Cnr Barker Street & Easy Street, Randwick, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2033, Australia
| | - Patrick P Hübner
- Balance and Vision Laboratory, Neuroscience Research Australia, Cnr Barker Street & Easy Street, Randwick, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2033, Australia
| | - Alan M Brichta
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Americo A Migliaccio
- Balance and Vision Laboratory, Neuroscience Research Australia, Cnr Barker Street & Easy Street, Randwick, Sydney, NSW, 2031, Australia. .,University of New South Wales, Sydney, NSW, 2033, Australia. .,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia. .,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
40
|
Lorente-Cánovas B, Eckrich S, Lewis MA, Johnson SL, Marcotti W, Steel KP. Grxcr1 regulates hair bundle morphogenesis and is required for normal mechanoelectrical transduction in mouse cochlear hair cells. PLoS One 2022; 17:e0261530. [PMID: 35235570 PMCID: PMC8890737 DOI: 10.1371/journal.pone.0261530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
Tasmanian devil (tde) mice are deaf and exhibit circling behaviour. Sensory hair cells of mutants show disorganised hair bundles with abnormally thin stereocilia. The origin of this mutation is the insertion of a transgene which disrupts expression of the Grxcr1 (glutaredoxin cysteine rich 1) gene. We report here that Grxcr1 exons and transcript sequences are not affected by the transgene insertion in tde homozygous (tde/tde) mice. Furthermore, 5'RACE PCR experiments showed the presence of two different transcripts of the Grxcr1 gene, expressed in both tde/tde and in wild-type controls. However, quantitative analysis of Grxcr1 transcripts revealed a significantly decreased mRNA level in tde/tde mice. The key stereociliary proteins ESPN, MYO7A, EPS8 and PTPRQ were distributed in hair bundles of homozygous tde mutants in a similar pattern compared with control mice. We found that the abnormal morphology of the stereociliary bundle was associated with a reduction in the size and Ca2+-sensitivity of the mechanoelectrical transducer (MET) current. We propose that GRXCR1 is key for the normal growth of the stereociliary bundle prior to the onset of hearing, and in its absence hair cells are unable to mature into fully functional sensory receptors.
Collapse
Affiliation(s)
- Beatriz Lorente-Cánovas
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephanie Eckrich
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
41
|
Papke RL, Andleeb H, Stokes C, Quadri M, Horenstein NA. Selective Agonists and Antagonists of α9 Versus α7 Nicotinic Acetylcholine Receptors. ACS Chem Neurosci 2022; 13:624-637. [PMID: 35167270 PMCID: PMC9547379 DOI: 10.1021/acschemneuro.1c00747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nicotinic acetylcholine receptors containing α9 subunits are essential for the auditory function and have been implicated, along with α7-containing nicotinic receptors, as potential targets for the treatment of inflammatory and neuropathic pain. The study of α9-containing receptors has been hampered by the lack of selective agonists. The only α9-selective antagonists previously identified are peptide conotoxins. Curiously, the activity of α7 and α9 receptors as modulators of inflammatory pain appears to not rely strictly on ion channel activation, which led to the identification of α7 "silent agonists" and phosphocholine as an "unconventional agonist" for α9 containing receptors. The parallel testing of the α7 silent agonist p-CF3-diEPP and phosphocholine led to the discovery that p-CF3-diEPP was an α9 agonist. In this report, we compared the activity of α7 and α9 with a family of structurally related compounds, most of which were previously shown to be α7 partial or silent agonists. We identify several potent α9-selective agonists as well as numerous potent and selective α9 antagonists and describe the structural basis for these activities. Several of these compounds have previously been shown to be effective in animal models of inflammatory pain, an activity that was assumed to be due to α7 silent agonism but may, in fact, be due to α9 activity. The α9-selective conotoxin antagonists have also been shown to reduce pain in similar models. Our identification of these new α9 agonists and antagonists may prove to be invaluable for defining an optimal approach for treating pain, allowing for reduced use of opioid drugs.
Collapse
Affiliation(s)
- Roger L. Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (CS, RLP),To whom correspondence should be addressed: Roger L. Papke, Ph.D., , Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville FL, 32610-0267
| | - Hina Andleeb
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200 USA (HA, MQ, NAH)
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (CS, RLP)
| | - Marta Quadri
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200 USA (HA, MQ, NAH)
| | - Nicole A. Horenstein
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200 USA (HA, MQ, NAH)
| |
Collapse
|
42
|
Elgoyhen AB. The α9α10 nicotinic acetylcholine receptor: a compelling drug target for hearing loss? Expert Opin Ther Targets 2022; 26:291-302. [PMID: 35225139 PMCID: PMC9007918 DOI: 10.1080/14728222.2022.2047931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hearing loss is a major health problem, impacting education, communication, interpersonal relationships, and mental health. Drugs that prevent or restore hearing are lacking and hence novel drug targets are sought. There is the possibility of targeting the α9α10 nicotinic acetylcholine receptor (nAChR) in the prevention of noise-induced, hidden hearing loss and presbycusis. This receptor mediates synaptic transmission between medial olivocochlear efferent fibers and cochlear outer hair cells. This target is key since enhanced olivocochlear activity prevents noise-induced hearing loss and delays presbycusis. AREAS COVERED The work examines the α9α10 nicotinic acetylcholine receptor (nAChR), its role in noise-induced, hidden hearing loss and presbycusis and the possibility of targeting. Data has been searched in Pubmed, the World Report on Hearing from the World Health Organization and the Global Burden of Disease Study 2019. EXPERT OPINION The design of positive allosteric modulators of α9α10 nAChRs is proposed because of the advantage of reinforcing the medial olivocochlear (MOC)-hair cell endogenous neurotransmission without directly stimulating the target receptors, therefore avoiding receptor desensitization and reduced efficacy. The time is right for the discovery and development of α9α10 nAChRs targeting agents and high throughput screening assays will support this.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
43
|
A Once-Daily High Dose of Intraperitoneal Ascorbate Improves Vestibulo-ocular Reflex Compensation After Unilateral Labyrinthectomy in the Mouse. J Assoc Res Otolaryngol 2022; 23:27-34. [PMID: 34981264 PMCID: PMC8782995 DOI: 10.1007/s10162-021-00831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023] Open
Abstract
Ascorbate potentiates the response of nicotinic-acetylcholine-receptors containing α9 and α10 subunits found predominantly in the efferent systems of the inner ear, such as the efferent vestibular system (EVS). Prior mouse studies have shown that an attenuated EVS results in reduced vestibulo-ocular reflex (VOR) gain (=eye_velocity/head_velocity) plasticity in intact (VOR adaptation) and surgically-lesioned (VOR compensation) mice. We sought to determine whether ascorbate-treatment could improve VOR recovery after vestibular organ injury, possibly through potentiation of the EVS pathway. We tested 10 cba129 mice, 5 received ascorbate-treatment and 5 did not, but otherwise experienced the same conditions. Ascorbate-treatment comprised a once-daily intraperitoneal injection of L-form reduced ascorbate (4 g/kg) in 0.2 ml saline starting 1 week before, and ending 4 weeks after, unilateral labyrinthectomy surgery. These were deliberately high doses to determine the ascorbate effects on recovery. Baseline, acute, and chronic sinusoidal VOR gains (frequency and velocity ranges: 0.2-10 Hz, 20-100 deg/s) were measured 3-5 days before, 3-5 days after, and 28-31 days after labyrinthectomy. Mice treated with ascorbate had acute ipsilesional VOR gains 12 % higher compared to control mice (+45.2 ± 14.9 % from baseline versus +33.7 ± 15.4 %, P < 0.001). Similarly, chronic ipsilesional and contralesional VOR gains were respectively 16 % (+74.3 ± 16.3 % from baseline versus +58.1 ± 15.8 %, P < 0.001) and 13 % (+78.6 ± 16.0 % versus +65.6 ± 10.9 %, P < 0.001) higher compared to control mice. These data suggest ascorbate-treatment had a prophylactic effect reducing acute loss, and helped recovery during acute to chronic stages of compensation. One possible mechanism is that an ascorbate-enhanced EVS drives an increase in the number and sensitivity of irregular-discharging primary vestibular afferents, important for VOR plasticity.
Collapse
|
44
|
Pucci S, Zoli M, Clementi F, Gotti C. α9-Containing Nicotinic Receptors in Cancer. Front Cell Neurosci 2022; 15:805123. [PMID: 35126059 PMCID: PMC8814915 DOI: 10.3389/fncel.2021.805123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors containing the α9 or the α9 and α10 subunits are expressed in various extra-neuronal tissues. Moreover, most cancer cells and tissues highly express α9-containing receptors, and a number of studies have shown that they are powerful regulators of responses that stimulate cancer processes such as proliferation, inhibition of apoptosis, and metastasis. It has also emerged that their modulation is a promising target for drug development. The aim of this review is to summarize recent data showing the involvement of these receptors in controlling the downstream signaling cascades involved in the promotion of cancer.
Collapse
Affiliation(s)
- Susanna Pucci
- Institute of Neuroscience, National Research Council (CNR), Milan, Italy
- NeuroMi Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Clementi
- Institute of Neuroscience, National Research Council (CNR), Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Gotti
- Institute of Neuroscience, National Research Council (CNR), Milan, Italy
- NeuroMi Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
- *Correspondence: Cecilia Gotti
| |
Collapse
|
45
|
Chang HHV, Morley BJ, Cullen KE. Loss of α-9 Nicotinic Acetylcholine Receptor Subunit Predominantly Results in Impaired Postural Stability Rather Than Gaze Stability. Front Cell Neurosci 2022; 15:799752. [PMID: 35095424 PMCID: PMC8792779 DOI: 10.3389/fncel.2021.799752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The functional role of the mammalian efferent vestibular system (EVS) is not fully understood. One proposal is that the mammalian EVS plays a role in the long-term calibration of central vestibular pathways, for example during development. Here to test this possibility, we studied vestibular function in mice lacking a functional α9 subunit of the nicotinic acetylcholine receptor (nAChR) gene family, which mediates efferent activation of the vestibular periphery. We focused on an α9 (−/−) model with a deletion in exons 1 and 2. First, we quantified gaze stability by testing vestibulo-ocular reflex (VOR, 0.2–3 Hz) responses of both α9 (−/−) mouse models in dark and light conditions. VOR gains and phases were comparable for both α9 (−/−) mutants and wild-type controls. Second, we confirmed the lack of an effect from the α9 (−/−) mutation on central visuo-motor pathways/eye movement pathways via analyses of the optokinetic reflex (OKR) and quick phases of the VOR. We found no differences between α9 (−/−) mutants and wild-type controls. Third and finally, we investigated postural abilities during instrumented rotarod and balance beam tasks. Head movements were quantified using a 6D microelectromechanical systems (MEMS) module fixed to the mouse’s head. Compared to wild-type controls, we found head movements were strikingly altered in α9 (−/−) mice, most notably in the pitch axis. We confirmed these later results in another α9 (−/−) model, with a deletion in the exon 4 region. Overall, we conclude that the absence of the α9 subunit of nAChRs predominately results in an impairment of posture rather than gaze.
Collapse
Affiliation(s)
| | - Barbara J. Morley
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Kathleen E. Cullen,
| |
Collapse
|
46
|
Tsetlin V, Haufe Y, Safronova V, Serov D, Shadamarshan P, Son L, Shelukhina I, Kudryavtsev D, Kryukova E, Kasheverov I, Nicke A, Utkin Y. Interaction of α9α10 Nicotinic Receptors With Peptides and Proteins From Animal Venoms. Front Cell Neurosci 2022; 15:765541. [PMID: 35002625 PMCID: PMC8732759 DOI: 10.3389/fncel.2021.765541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Unlike most neuronal nicotinic acetylcholine receptor (nAChR) subunits, α7, α9, and α10 subunits are able to form functional homo- or heteromeric receptors without any β subunits. While the α7 subtype is widely distributed in the mammalian brain and several peripheral tissues, α9 and α9α10 nAChRs are mainly found in the cochlea and immune cells. α-Conotoxins that specifically block the α9α10 receptor showed anti-nociceptive and anti-hyperalgesic effects in animal models. Hence, this subtype is considered a drug target for analgesics. In contrast to the α9α10-selective α-conotoxins, the three-finger toxin α-bungarotoxin inhibits muscle-type and α7 nAChRs in addition to α9α10 nAChRs. However, the selectivity of α-neurotoxins at the α9α10 subtype was less intensively investigated. Here, we compared the potencies of α-conotoxins and α-neurotoxins at the human α9α10 nAChR by two-electrode voltage clamp analysis upon expression in Xenopus oocytes. In addition, we analyzed effects of several α9α10-selective α-conotoxins on mouse granulocytes from bone marrow to identify possible physiological functions of the α9α10 nAChR subtype in these cells. The α-conotoxin-induced IL-10 release was measured upon LPS-stimulation. We found that α-conotoxins RgIA, PeIA, and Vc1.1 enhance the IL-10 expression in granulocytes which might explain the known anti-inflammatory and associated analgesic activities of α9α10-selective α-conotoxins. Furthermore, we show that two long-chain α-neurotoxins from the cobra Naja melanoleuca venom that were earlier shown to bind to muscle-type and α7 nAChRs, also inhibit the α9α10 subtype at nanomolar concentrations with one of them showing a significantly slower dissociation from this receptor than α-bungarotoxin.
Collapse
Affiliation(s)
- Victor Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yves Haufe
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Valentina Safronova
- Laboratory of Cellular Neurobiology, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Dmitriy Serov
- Laboratory of Cellular Neurobiology, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - PranavKumar Shadamarshan
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lina Son
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irina Shelukhina
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Denis Kudryavtsev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena Kryukova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor Kasheverov
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Annette Nicke
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yuri Utkin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
47
|
Odstrcil I, Petkova MD, Haesemeyer M, Boulanger-Weill J, Nikitchenko M, Gagnon JA, Oteiza P, Schalek R, Peleg A, Portugues R, Lichtman JW, Engert F. Functional and ultrastructural analysis of reafferent mechanosensation in larval zebrafish. Curr Biol 2022; 32:176-189.e5. [PMID: 34822765 PMCID: PMC8752774 DOI: 10.1016/j.cub.2021.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 11/03/2021] [Indexed: 01/12/2023]
Abstract
All animals need to differentiate between exafferent stimuli, which are caused by the environment, and reafferent stimuli, which are caused by their own movement. In the case of mechanosensation in aquatic animals, the exafferent inputs are water vibrations in the animal's proximity, which need to be distinguishable from the reafferent inputs arising from fluid drag due to locomotion. Both of these inputs are detected by the lateral line, a collection of mechanosensory organs distributed along the surface of the body. In this study, we characterize in detail how hair cells-the receptor cells of the lateral line-in zebrafish larvae discriminate between such reafferent and exafferent signals. Using dye labeling of the lateral line nerve, we visualize two parallel descending inputs that can influence lateral line sensitivity. We combine functional imaging with ultra-structural EM circuit reconstruction to show that cholinergic signals originating from the hindbrain transmit efference copies (copies of the motor command that cancel out self-generated reafferent stimulation during locomotion) and that dopaminergic signals from the hypothalamus may have a role in threshold modulation, both in response to locomotion and salient stimuli. We further gain direct mechanistic insight into the core components of this circuit by loss-of-function perturbations using targeted ablations and gene knockouts. We propose that this simple circuit is the core implementation of mechanosensory reafferent suppression in these young animals and that it might form the first instantiation of state-dependent modulation found at later stages in development.
Collapse
Affiliation(s)
- Iris Odstrcil
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Mariela D Petkova
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Martin Haesemeyer
- The Ohio State University, Department of Neuroscience, Columbus, OH 43210, USA
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Center for Cell & Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Pablo Oteiza
- Max Planck Institute for Ornithology, Flow Sensing Research Group, Seewiesen 82319, Germany
| | - Richard Schalek
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Adi Peleg
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ruben Portugues
- Institute of Neuroscience, Technical University of Munich, Munich 80333, Germany; Max Planck Institute of Neurobiology, Research Group of Sensorimotor Control, Martinsried 82152, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Jeff W Lichtman
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
48
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
49
|
Skok M. Universal nature of cholinergic regulation demonstrated with nicotinic acetylcholine receptors. BBA ADVANCES 2022; 2:100061. [PMID: 37082580 PMCID: PMC10074969 DOI: 10.1016/j.bbadva.2022.100061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
Mammalian nicotinic acetylcholine receptors (nAChRs) were initially discovered as ligand-gated ion channels mediating fast synaptic transmission in the neuro-muscular junctions and autonomic ganglia. They were further found to be involved in a wide range of basic biological processes within the brain and in non-excitable tissues. The present review summarizes the data obtained in our laboratory during last two decades. Investigation of autonomic ganglia with the nAChR subunit-specific antibodies was followed by identification of nAChRs in B lymphocytes, discovery of mitochondrial nAChRs and their role in mitochondrial apoptosis pathway, and revealing the role of α7 nAChRs and α7-specific antibodies in neuroinflammation-related Alzheimer disease and COVID-19. The data obtained demonstrate the involvement of nAChRs in cell survival, proliferation, cell-to-cell communication and inflammatory reaction. Together with the ability of nAChRs to function in both ionotropic and metabotropic way, these data illustrate the universal nature of cholinergic regulation mediated by nAChRs.
Collapse
|
50
|
Zhao HB, Liu LM, Yu N, Zhu Y, Mei L, Chen J, Liang C. Efferent neurons control hearing sensitivity and protect hearing from noise through the regulation of gap junctions between cochlear supporting cells. J Neurophysiol 2022; 127:313-327. [PMID: 34907797 PMCID: PMC8759971 DOI: 10.1152/jn.00468.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is critical for hearing that the descending cochlear efferent system provides a negative feedback to hair cells to regulate hearing sensitivity and protect hearing from noise. The medial olivocochlear (MOC) efferent nerves project to outer hair cells (OHCs) to regulate OHC electromotility, which is an active cochlear amplifier and can increase hearing sensitivity. Here, we report that the MOC efferent nerves also could innervate supporting cells (SCs) in the vicinity of OHCs to regulate hearing sensitivity. MOC nerve fibers are cholinergic, and acetylcholine (ACh) is a primary neurotransmitter. Immunofluorescent staining showed that MOC nerve endings, presynaptic vesicular acetylcholine transporters (VAChTs), and postsynaptic ACh receptors were visible at SCs and in the SC area. Application of ACh in SCs could evoke a typical inward current and reduce gap junctions (GJs) between them, which consequently enhanced the direct effect of ACh on OHCs to shift but not eliminate OHC electromotility. This indirect, GJ-mediated inhibition had a long-lasting influence. In vivo experiments further demonstrated that deficiency of this GJ-mediated efferent pathway decreased the regulation of active cochlear amplification and compromised the protection against noise. In particular, distortion product otoacoustic emission (DPOAE) showed a delayed reduction after noise exposure. Our findings reveal a new pathway for the MOC efferent system via innervating SCs to control active cochlear amplification and hearing sensitivity. These data also suggest that this SC GJ-mediated efferent pathway may play a critical role in long-term efferent inhibition and is required for protection of hearing from noise trauma.NEW & NOTEWORTHY The cochlear efferent system provides a negative feedback to control hair cell activity and hearing sensitivity and plays a critical role in noise protection. We reveal a new efferent control pathway in which medial olivocochlear efferent fibers have innervations with cochlear supporting cells to control their gap junctions, therefore regulating outer hair cell electromotility and hearing sensitivity. This supporting cell gap junction-mediated efferent control pathway is required for the protection of hearing from noise.
Collapse
|