1
|
Li L, Hobson L, Perry L, Clark B, Heavey S, Haider A, Sridhar A, Shaw G, Kelly J, Freeman A, Wilson I, Whitaker H, Nurmemmedov E, Oltean S, Porazinski S, Ladomery M. Targeting the ERG oncogene with splice-switching oligonucleotides as a novel therapeutic strategy in prostate cancer. Br J Cancer 2020; 123:1024-1032. [PMID: 32581342 PMCID: PMC7493922 DOI: 10.1038/s41416-020-0951-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The ERG oncogene, a member of the ETS family of transcription factor encoding genes, is a genetic driver of prostate cancer. It is activated through a fusion with the androgen-responsive TMPRSS2 promoter in 50% of cases. There is therefore significant interest in developing novel therapeutic agents that target ERG. We have taken an antisense approach and designed morpholino-based oligonucleotides that target ERG by inducing skipping of its constitutive exon 4. METHODS We designed antisense morpholino oligonucleotides (splice-switching oligonucleotides, SSOs) that target both the 5' and 3' splice sites of ERG's exon 4. We tested their efficacy in terms of inducing exon 4 skipping in two ERG-positive cell lines, VCaP prostate cancer cells and MG63 osteosarcoma cells. We measured their effect on cell proliferation, migration and apoptosis. We also tested their effect on xenograft tumour growth in mice and on ERG protein expression in a human prostate cancer radical prostatectomy sample ex vivo. RESULTS In VCaP cells, both SSOs were effective at inducing exon 4 skipping, which resulted in a reduction of overall ERG protein levels up to 96 h following a single transfection. SSO-induced ERG reduction decreased cell proliferation, cell migration and significantly increased apoptosis. We observed a concomitant reduction in protein levels for cyclin D1, c-Myc and the Wnt signalling pathway member β-catenin as well as a marker of activated Wnt signalling, p-LRP6. We tested the 3' splice site SSO in MG63 xenografts in mice and observed a reduction in tumour growth. We also demonstrated that the 3' splice site SSO caused a reduction in ERG expression in a patient-derived prostate tumour tissue cultured ex vivo. CONCLUSIONS We have successfully designed and tested morpholino-based SSOs that cause a marked reduction in ERG expression, resulting in decreased cell proliferation, a reduced migratory phenotype and increased apoptosis. Our initial tests on mouse xenografts and a human prostate cancer radical prostatectomy specimen indicate that SSOs can be effective for oncogene targeting in vivo. As such, this study encourages further in vivo therapeutic studies using SSOs targeting the ERG oncogene.
Collapse
Affiliation(s)
- Ling Li
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Lisa Hobson
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Laura Perry
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Bethany Clark
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Aiman Haider
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Ashwin Sridhar
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - Greg Shaw
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - John Kelly
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - Alex Freeman
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Ian Wilson
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, USA
| | - Sebastian Oltean
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Sean Porazinski
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK.
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK.
| |
Collapse
|
2
|
The oncogene ERG: a key factor in prostate cancer. Oncogene 2015; 35:403-14. [PMID: 25915839 DOI: 10.1038/onc.2015.109] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022]
Abstract
ETS-related gene (ERG) is a member of the E-26 transformation-specific (ETS) family of transcription factors with roles in development that include vasculogenesis, angiogenesis, haematopoiesis and bone development. ERG's oncogenic potential is well known because of its involvement in Ewing's sarcoma and leukaemia. However, in the past decade ERG has become highly associated with prostate cancer development, particularly as a result of a gene fusion with the promoter region of the androgen-induced TMPRRSS2 gene. We review ERG's structure and function, and its role in prostate cancer. We discuss potential new therapies that are based on targeting ERG.
Collapse
|
3
|
Munde M, Poon GMK, Wilson WD. Probing the electrostatics and pharmacological modulation of sequence-specific binding by the DNA-binding domain of the ETS family transcription factor PU.1: a binding affinity and kinetics investigation. J Mol Biol 2013; 425:1655-69. [PMID: 23416556 DOI: 10.1016/j.jmb.2013.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤10(5)M(-)(1)s(-)(1)), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>10(7)M(-)(1)s(-)(1)). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes.
Collapse
Affiliation(s)
- Manoj Munde
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
4
|
Abstract
Purpose/results/discussion. Rearrangement of the EWS gene with an ETS oncogene by chromosomal translocation is a hallmark of the Ewing family of tumors (EFT). Detectability, incidence, tumor specificity and variability of this aberration have been matters of intense investigation in recent years. A number of related alterations have also been found in other malignancies. The common consequence of these gene rearrangements is the generation of an aberrant transcription factor. In EFT, the ETS partner is responsible for target recognition. However, synergistic and possibly tissue-restricted transcription factors interacting with either the EWS or the ETS portion may influence target selection. Minimal domains of both fusion partners were defined that have proved necessary for the in vitro transformation of murine fibroblasts. These functional studies suggest a role for aberrant transcriptional regulation of transforming target genes by the chimeric
transcription factors. Also, fusion of the two unrelated protein domains may affect overall protein conformation and consequently DNA binding specificity. Recent evidence suggests that EWS, when fused to a transcription factor, interacts with different partners than germ-line EWS. Variability in EWS–ETS gene fusions has recently been demonstrated to correlate with clinical outcome. This finding may reflect functional differences of the individual chimeric transcription
factors. Alternatively, type and availability of specific recombinases at different time-points of stem cell development or in different stem cell lineages may determine fusion type. Studies on EFT cell lines using EWS–ETS antagonists do suggest a rate-limiting essential role for the gene rearrangement in the self-renewal capacity of EFT cells. The presence of additional aberrations varying in number and type that may account for immortalization and full transformation is
postulated. Knowledge about such secondary alterations may provide valuable prognostic markers that could be used for treatment stratification.
Collapse
Affiliation(s)
- H Kovar
- Children's Cancer Research Institute (CCRI) St Anna Kinderspital Kinderspitalgasse 6 Vienna A-1090 Austria
| |
Collapse
|
5
|
Anand A, Pugalenthi G, Fogel GB, Suganthan P. Identification and analysis of transcription factor family-specific features derived from DNA and protein information. Pattern Recognit Lett 2010. [DOI: 10.1016/j.patrec.2009.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Amino acid residues in the β3 strand and subsequent loop of the conserved ETS domain that mediate basic leucine zipper (bZIP) recruitment and potentially distinguish functional attributes of Ets proteins. Biochem J 2010; 430:129-39. [DOI: 10.1042/bj20091742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ets family members share a conserved DNA-binding ETS domain, and serve a variety of roles in development, differentiation and oncogenesis. Besides DNA binding, the ETS domain also participates in protein–protein interactions with other structurally unrelated transcription factors. Although this mechanism appears to confer tissue- or development stage-specific functions on individual Ets proteins, the biological significance of many of these interactions remains to be evaluated, because their molecular basis has been elusive. We previously demonstrated a direct interaction between the ETS domain of the widely expressed GABPα (GA-binding protein α) and the granulocyte inducer C/EBPα (CCAAT/enhancer-binding protein α), and suggested its involvement in co-operative transcriptional activation of myeloid-specific genes, such as human FCAR encoding FcαR [Fc receptor for IgA (CD89)]. By deletion analysis, we identified helix α3 and the β3/β4 region as the C/EBPα-interacting region. Domain-swapping of individual sub-domains with those of other Ets proteins allowed us to highlight β-strand 3 and the subsequent loop, which when exchanged by those of Elf-1 (E74-like factor 1) reduced the ability to recruit C/EBPα. Further analysis identified a four-amino acid swap mutation of this region (I387L/C388A/K393Q/F395L) that reduces both physical interaction and co-operative transcriptional activation with C/EBPα without affecting its transactivation capacity by itself. Moreover, re-ChIP (re-chromatin immunoprecipitation) analysis demonstrated that GABPα recruits C/EBPα to the FCAR promoter, depending on these residues. The identified amino acid residues could confer the specificity of the action on the Ets proteins in diverse biological processes through mediating the recruitment of its partner factor.
Collapse
|
7
|
Pastorcic M, Das HK. The C-terminal region of CHD3/ZFH interacts with the CIDD region of the Ets transcription factor ERM and represses transcription of the human presenilin 1 gene. FEBS J 2007; 274:1434-48. [PMID: 17489097 DOI: 10.1111/j.1742-4658.2007.05684.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Presenilins are required for the function of gamma-secretase: a multiprotein complex implicated in the development of Alzheimer's disease (AD). We analyzed expression of the presenilin 1 (PS1) gene. We show that ERM recognizes avian erythroblastosis virus E26 oncogene homolog (Ets) motifs on the PS1 promoter located at -10, +90, +129 and +165, and activates PS1 transcription with promoter fragments containing or not the -10 Ets site. Using yeast two-hybrid selection we identified interactions between the chromatin remodeling factor CHD3/ZFH and the C-terminal 415 amino acids of ERM used as bait. Clones contained the C-terminal region of CHD3 starting from amino acid 1676. This C-terminal fragment (amino acids 1676-2000) repressed transcription of the PS1 gene in transfection assays and PS1 protein expression from the endogenous gene in SH-SY5Y cells. In cells transfected with both CHD3 and ERM, activation of PS1 transcription by ERM was eliminated with increasing levels of CHD3. Progressive N-terminal deletions of CHD3 fragment (amino acids 1676-2000) indicated that sequences crucial for repression of PS1 and interactions with ERM in yeast two-hybrid assays are located between amino acids 1862 and 1877. This was correlated by the effect of progressive C-terminal deletions of CHD3, which indicated that sequences required for repression of PS1 lie between amino acids 1955 and 1877. Similarly, deletion to amino acid 1889 eliminated binding in yeast two-hybrid assays. Testing various shorter fragments of ERM as bait indicated that the region essential for binding CHD3/ZFH is within the amino acid region 96-349, which contains the central inhibitory DNA-binding domain (CIDD) of ERM. N-Terminal deletions of ERM showed that residues between amino acids 200 and 343 are required for binding to CHD3 (1676-2000) and C-terminal deletions of ERM indicated that amino acids 279-299 are also required. Furthermore, data from chromatin immunoprecipitation (ChIP) indicate that CHD3/ZFH interacts with the PS1 promoter in vivo.
Collapse
Affiliation(s)
- Martine Pastorcic
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | | |
Collapse
|
8
|
Abstract
The various conformations of DNA--the A, B, and Z forms, the protein-induced DNA kink, and the G-quartet form--are thought to play important biological roles in processes such as DNA replication, gene expression and regulation, and the repair of DNA damage. The investigation of local DNA conformational changes associated with biological events is therefore essential for understanding the function of DNA. In this Minireview, we discuss the use of photochemical dehalogenation of 5-halouracil-containing DNA to probe the structure of DNA. Hydrogen abstraction by the resultant uracil-5-yl radicals is atom-specific and highly dependent on the structure of the DNA, suggesting that this photochemical approach could be applied as a probe of DNA conformations in living cells.
Collapse
Affiliation(s)
- Yan Xu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan
| | | |
Collapse
|
9
|
Sugiyama H. Chemical Biology that Controls DNA Structure and Function: Lessons in Organic Chemistry from Nature. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Abstract
The various conformations of DNA are thought to have important biological roles. Investigation of the local DNA conformational changes associated with biological events is therefore essential to an understanding of the functions of DNA. We have reported the photoreactivities of 5-halouracil in the five characteristic local DNA structures: the A, B and Z forms, protein-induced DNA kinks and the G-quadruplex form. These studies demonstrate the detailed relationships between the local DNA structures and the photochemical products of photoinduced hydrogen abstraction by the resulting uracil-5-yl radicals, and show that this photochemical method can be used to detect DNA structures. Here, we describe in detail procedures that have been developed in our laboratory for probing DNA conformations by product analysis of photoirradiated 5-halouracil-containing DNA. The protocol includes the preparation of 5-halouracil-containing DNA and the characterization of the photoproducts, and it can be completed in 2 weeks.
Collapse
Affiliation(s)
- Yan Xu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
11
|
Cloutier P, Sicard-Roselli C, Escher E, Sanche L. Low-Energy (3−24 eV) Electron Damage to the Peptide Backbone. J Phys Chem B 2007; 111:1620-4. [PMID: 17256896 DOI: 10.1021/jp066947q] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report the mass spectrometric measurement of anions desorbed by 3-24 eV electron impact on thin films of formamide-1-d (DCONH2) and on the self-assembled monolayer (SAM) of two different Lys amide molecules used as a molecular model of the peptide backbone. In the present SAM configuration, the amides are elevated from a gold substrate by hydrocarbon chains to remove the effects of the metal substrate. Electron irradiation produces H- and D- from the formamide-1-d film and H-, CH3-, O-, and OH- from the SAM Lys amides. Below 13 eV, the dependence of the anion yields on the incident electron energy exhibits structures indicative of the dissociative electron attachment process, which is responsible for molecular fragmentation via the initial formation of core-excited anions. Above 13 eV, anion desorption is dominated principally by non-resonant dipolar dissociation. Our results suggest that the sensitivity of the peptide backbone to secondary electrons produced by ionizing radiation depends on the chemical environment (i.e., the amino acids sequence).
Collapse
Affiliation(s)
- P Cloutier
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | |
Collapse
|
12
|
Electron-Driven Molecular Processes Induced in Biological Systems by Electromagnetic and Other Ionizing Sources. ADVANCES IN QUANTUM CHEMISTRY 2007. [DOI: 10.1016/s0065-3276(06)52009-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Yu Z, Xia W, Wang HY, Wang SC, Pan Y, Kwong KY, Hortobagyi GN, Hung MC. Antitumor activity of an Ets protein, PEA3, in breast cancer cell lines MDA-MB-361DYT2 and BT474M1. Mol Carcinog 2006; 45:667-75. [PMID: 16652376 DOI: 10.1002/mc.20212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Polyomavirus enhancer activator 3 (PEA3) is a member of the Ets family of transcription factors. We demonstrated in a previous study that, by downregulating the HER-2/neu oncogene at the transcriptional level, PEA3 can inhibit the growth and development into tumors of HER-2/neu-overexpressing ovarian cancer cells. Here, we establish stable clones of the human breast cancer cell line MDA-MB-361DYT2 that express PEA3 under the control of a tetracycline-inducible promoter. Ectopic expression of PEA3 in this cell line inhibited cell growth and resulted in cell cycle accumulation in the G1 phase. We demonstrate that expression of PEA3 in an orthotopic breast cancer model inhibited tumor growth and prolonged the survival of tumor-bearing mice. In a parallel experiment with another breast cancer cell line, BT474M1, we were unable to obtain stable PEA3-inducible transfectants, suggesting that PEA3 may exert a strong growth inhibition effect in this cell line. Indeed, PEA3 coupled with the liposome SN2 demonstrated therapeutic effects in mice bearing tumors induced by BT474M1. These results provide evidence for the antitumor activity of PEA3 in human breast cancers.
Collapse
Affiliation(s)
- Zhenming Yu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mauen S, Huvent I, Raussens V, Demonte D, Baert JL, Tricot C, Ruysschaert JM, Van Lint C, Moguilevsky N, de Launoit Y. Expression, purification, and structural prediction of the Ets transcription factor ERM. Biochim Biophys Acta Gen Subj 2006; 1760:1192-201. [PMID: 16730909 DOI: 10.1016/j.bbagen.2006.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/06/2006] [Accepted: 03/06/2006] [Indexed: 11/27/2022]
Abstract
The PEA3 group within the Ets family comprises PEA3, ER81, and ERM, three transcription factors of about 500 residues. These factors are highly conserved in their ETS DNA-binding domain and in their two transcriptional activation domains. They are involved in many developmental processes and regulate cancer development via metastasis, as in the case of some breast tumors. Here, we describe the oversynthesis of human ERM from a baculovirus expression vector in Spodoptera frugiperda (Sf9) cells, and the subsequent purification and structural characterization of this protein. Oversynthesis of ERM was confirmed by measuring band intensities on SDS-PAGE gels and by Western blot analysis. Two-step purification by affinity chromatography led to a highly stable protein. Electromobility shift assays suggested that this purified protein is functional, since it recognizes specific Ets DNA-binding sites. We then used circular dichroism and infrared spectrometry to perform a structural analysis of the purified full-length ERM, and compared the results with those of current structural prediction algorithms. Our study indicates that ERM contains a highly structured ETS-domain and suggests that each of the N- and C-terminal transactivating domains also contains an alpha-helix. In contrast, the 250-residue central domain seems to have very little structure.
Collapse
Affiliation(s)
- Sébastien Mauen
- Laboratoire de Virologie Moléculaire-Faculté de Médecine, ULB, CP 614, 808 route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Xu Y, Sugiyama H. Die photochemische Untersuchung verschiedener DNA-Strukturen. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200501962] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
YANIW D, HU J. Epithelium-specific ets transcription factor 2 upregulates cytokeratin 18 expression in pulmonary epithelial cells through an interaction with cytokeratin 18 intron 1. Cell Res 2005; 15:423-9. [PMID: 15987600 PMCID: PMC4494830 DOI: 10.1038/sj.cr.7290310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The role of Ese-2, an Ets family transcription factor, in gene regulation is not known. In this study, the interaction between Ese-2 and cytokeratin 18 (K18) intron 1 was characterized in lung epithelial cells. Reporter gene assays showed Ese-2 was able to upregulate K18 intron 1 enhanced reporter gene expression by approximately 2-fold. We found that full length Ese-2 did not bind DNA strongly, therefore truncated versions of the protein, containing the ETS domain or Pointed domain, were created and tested in electrophoresis mobility shift assays. Multiple interactions between the ETS domain and putative DNA binding sites within K18 intron 1 were observed, which led to the determination of a possible Ese-2 DNA binding consensus sequence. These experiments suggest that Ese-2 could play a role in the regulation of K18 expression in lung epithelial cells.
Collapse
Affiliation(s)
- Deanna YANIW
- Programme in Lung Biology Research and the Canadian Institutes of Health Research Group in Lung Development, Hospital for Sick Children, Toronto, Canada M5G 1X8
- Institute of Medical Science, University of Toronto, Toronto, Canada M5S 1A1
| | - Jim HU
- Programme in Lung Biology Research and the Canadian Institutes of Health Research Group in Lung Development, Hospital for Sick Children, Toronto, Canada M5G 1X8
- Institute of Medical Science, University of Toronto, Toronto, Canada M5S 1A1
- Departments of Paediatrics, University of Toronto, Toronto, Canada M5S 1A1
- Laboratory Medicine and Pathbiology, University of Toronto, Toronto, Canada M5S 1A1
- Correspondence: Jim HU, Tel: 01-416-813-6412; Fax: 01-416-813-5771,
| |
Collapse
|
17
|
Rosmarin AG, Yang Z, Resendes KK. Transcriptional regulation in myelopoiesis: Hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol 2005; 33:131-43. [PMID: 15676205 DOI: 10.1016/j.exphem.2004.08.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 08/06/2004] [Indexed: 12/24/2022]
Abstract
Myeloid cells (granulocytes and monocytes) are derived from multipotent hematopoietic stem cells. Gene transcription plays a critical role in hematopoietic differentiation. However, there is no single transcription factor that is expressed exclusively by myeloid cells and that, alone, acts as a "master" regulator of myeloid fate choice. Rather, myeloid gene expression is controlled by the combinatorial effects of several key transcription factors. Hematopoiesis has traditionally been viewed as linear and hierarchical, but there is increasing evidence of plasticity during blood cell development. Transcription factors strongly influence cellular lineage during hematopoiesis and expression of some transcription factors can alter the fate of developing hematopoietic progenitor cells. PU.1 and CCAAT/enhancer-binding protein alpha (C/EBPalpha) regulate expression of numerous myeloid genes, and gene disruption studies have shown that they play essential, nonredundant roles in myeloid cell development. They function in cooperation with other transcription factors, co-activators, and co-repressors to regulate genes in the context of chromatin. Because of their essential roles in regulating myeloid genes and in myeloid cell development, it has been hypothesized that abnormal expression of PU.1 and C/EBPalpha would contribute to aberrant myeloid differentiation, i.e. acute leukemia. Such a direct link has been elusive until recently. However, there is now persuasive evidence that mutations in both PU.1 and C/EBPalpha contribute directly to development of acute myelogenous leukemia. Thus, normal myeloid development and acute leukemia are now understood to represent opposite sides of the same hematopoietic coin.
Collapse
Affiliation(s)
- Alan G Rosmarin
- Department of Medicine, Brown Medical School, Providence, RI, USA.
| | | | | |
Collapse
|
18
|
Poon GMK, Macgregor RB. A Thermodynamic Basis of DNA Sequence Selectivity by the ETS Domain of Murine PU.1. J Mol Biol 2004; 335:113-27. [PMID: 14659744 DOI: 10.1016/j.jmb.2003.09.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ETS domain of the transcription factor PU.1 tolerates a large number of DNA cognate variants that differ exclusively in the sequences flanking a critical central consensus, 5'-GGAA-3'. We investigated the thermodynamics of site selection by the DNA-binding domain by following the PU.1 ETS/DNA equilibrium with a large set of cognate variants under various temperature and salt conditions by filter binding. Our results indicate that the stability of the ETS/DNA complex is quantitatively tied to variations in the change in heat capacity. Thermodynamic effects induced by changing Na(+) concentrations from 150 mM to 250 mM are complex and not readily interpreted by polyelectrolyte theory. We also extended our understanding of data from our previous investigation on energetic base-neighbour coupling, by dissecting the thermodynamic contributions underlying the observed free-energy coupling. In conjunction with available structural and biochemical data, we propose that site selectivity by the PU.1 ETS domain arises from differential protein/DNA contacts in the flanking sequences that modulate the orientation of the ETS recognition helix and trigger a coupled reduction in the flexibility observed in the unbound ETS domain.
Collapse
Affiliation(s)
- Gregory M K Poon
- Department of Pharmaceutical Sciences, University of Toronto, 19 Russell Street, M5S 2S2, Toronto, Ont., Canada
| | | |
Collapse
|
19
|
Obika S, Reddy SY, Bruice TC. Sequence specific DNA binding of Ets-1 transcription factor: molecular dynamics study on the Ets domain--DNA complexes. J Mol Biol 2003; 331:345-59. [PMID: 12888343 DOI: 10.1016/s0022-2836(03)00726-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Molecular dynamics (MD) simulations for Ets-1 ETS domain-DNA complexes were performed to investigate the mechanism of sequence-specific recognition of the GGAA DNA core by the ETS domain. Employing the crystal structure of the Ets-1 ETS domain-DNA complex as a starting structure we carried out MD simulations of: (i). the complex between Ets-1 ETS domain and a 14 base-pair DNA containing GGAA core sequence (ETS-GGAA); (ii). the complex between the ETS domain and a DNA having single base-pair mutation, GGAG sequence (ETS-GGAG); and (iii). the 14 base-pair DNA alone (GGAA). Comparative analyses of the MD structures of ETS-GGAA and ETS-GGAG reveal that the DNA bending angles and the ETS domain-DNA phosphate interactions are similar in these complexes. These results support that the GGAA core sequence is distinguished from the mutated GGAG sequence by a direct readout mechanism in the Ets-1 ETS domain-DNA complex. Further analyses of the direct contacts in the interface between the helix-3 region of Ets-1 and the major groove of the core DNA sequence clearly show that the highly conserved arginine residues, Arg391 and Arg394, play a critical role in binding to the GGAA core sequence. These arginine residues make bidentate contacts with the nucleobases of GG dinucleotides in GGAA core sequence. In ETS-GGAA, the hydroxyl group of Tyr395 is hydrogen bonded to N7 nitrogen of A(3) (the third adenosine in the GGAA core), while the hydroxyl group makes a contact with N4 nitrogen of C(4') (the complementary nucleotide of the fourth guanosine G(4) in the GGAG sequence) in the ETS-GGAG complex. We have found that this difference in behavior of Tyr395 results in the relatively large motion of helix-3 in the ETS-GGAG complex, causing the collapse of bidentate contacts between Arg391/Arg394 and the GG dinucleotides in the GGAG sequence.
Collapse
Affiliation(s)
- Satoshi Obika
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
20
|
Shaw PE, Saxton J. Ternary complex factors: prime nuclear targets for mitogen-activated protein kinases. Int J Biochem Cell Biol 2003; 35:1210-26. [PMID: 12757758 DOI: 10.1016/s1357-2725(03)00031-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ternary complex factors (TCFs), a subgroup of the ETS protein family, were first described in the context of c-fos gene regulation. Subsequently, their early identification as nuclear targets for mitogen-activated protein kinases served to exemplify the fundamental links in eukaryotic cells between growth factor-mediated signalling pathways and gene control. This article provides an overview of recent work on ternary complex factors, addressing their expression and molecular structure, as well as how selective interactions with members of other protein families serve to up-1 regulate or restrict their activity. Although only one genetic study on ternary complex factors has been published to date, unravelling of the underlying molecular events provides a basis for tentative predictions about their biological roles in mammalian organisms.
Collapse
Affiliation(s)
- Peter E Shaw
- Queen's Medical Centre, School of Biomedical Sciences, University of Nottingham, UK.
| | | |
Collapse
|
21
|
Abdoul-Carime H, Sanche L. Alteration of protein constituents induced by low-energy (<35 eV) electrons: II. Dissociative electron attachment to amino acids containing cyclic groups. Radiat Res 2003; 160:86-94. [PMID: 12816527 DOI: 10.1667/rr3025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We report measurements of the desorption of anions from thin condensed films of tryptophan (Trp), histidine (His) and proline (Pro) stimulated by 5-35 eV electron impact. H-, O-, OH- and CN- desorb from Trp, His and Pro, whereas CH2- is observed only from Pro fragmentation. Below 12 eV, the anion yield functions exhibit resonant structures indicative of dissociative electron attachment. For all three amino acids, this process is likely to be initiated by the resonant capture of the incident electron at the NH3(+)-CH-.....-COO- and/or NH2-CH-.....-COOH group of the molecule. Temporary electron attachment to the ring leads to anion desorption only for tryptophan and proline. The energy-averaged yields measured at the detector of the mass spectrometer are (4.9, 0.3 and 54.0) x 10(-8) H-/incident electron and (3.4, 2.9, 1.8) x 10(-11) O-/incident electron, respectively, from Trp, His and Pro dissociation. Fragmentation of amino acids is found to be as intense as that of the nucleic acid bases. These results are discussed within the context of radiobiological damage induced by secondary electrons.
Collapse
Affiliation(s)
- H Abdoul-Carime
- Groupe des Instituts de Recherche en Santé du Canada en Sciences des Radiations, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | |
Collapse
|
22
|
Poon GMK, Macgregor RB. Base coupling in sequence-specific site recognition by the ETS domain of murine PU.1. J Mol Biol 2003; 328:805-19. [PMID: 12729756 DOI: 10.1016/s0022-2836(03)00362-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ETS domain of murine PU.1 tolerates a large number of DNA cognates bearing a central consensus 5'-GGAA-3' that is flanked by a diverse combination of bases on both sides. Previous attempts to define the sequence selectivity of this DNA binding domain by combinatorial methods have not successfully predicted observed patterns among in vivo promoter sequences in the genome, and have led to the hypothesis that energetic coupling occurs among the bases in the flanking sequences. To test this hypothesis, we determined, using thermodynamic cycles, the complex stabilities and base coupling energies of the PU.1 ETS domain for a set of 26 cognate variants (based on the lambdaB site of the Ig(lambda)2-4 enhancer, 5'-AATAAAAGGAAGTGAAACCAA-3') in which flanking sequences up to three bases upstream and/or two bases downstream of the core consensus are substituted. We observed that both cooperative and anticooperative coupling occurs commonly among the flanking sequences at all the positions investigated. This phenomenon extends at least three bases in the 5' side and is, at least on our experimental data, due exclusively to pairwise interactions between the flanking bases, and not changes in the local environment of the DNA groove floor. Energetic coupling also occurs between the flanking sides across the core consensus, suggesting long-range conformational effects along the DNA target and/or in the protein. Our data provide an energetic explanation for the pattern of flanking bases observed among in vivo promoter sequences and reconcile the apparent discrepancies raised by the combinatorial experiments. We also discuss the significance of base coupling in light of an indirect readout mechanism in ETS/DNA site recognition.
Collapse
Affiliation(s)
- Gregory M K Poon
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ont., Canada
| | | |
Collapse
|
23
|
Abdoul-Carime H, Sanche L. Mechanism for Anion and Sulfur-Radical Production by 1−18 eV Electron Impact on Dimethyl Disulfide Adsorbed on Ice. J Phys Chem B 2002. [DOI: 10.1021/jp0206525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- H. Abdoul-Carime
- Group of the Canadian Institutes of Health Research in the Radiation Sciences, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | - L. Sanche
- Group of the Canadian Institutes of Health Research in the Radiation Sciences, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| |
Collapse
|
24
|
Abstract
The receptor tyrosine kinase (RTK) signaling network plays a central role in regulating cellular differentiation, proliferation, and survival in all metazoan animals. Excessive or continuous activation of the RTK pathway has been linked to carcinogenesis in mammals, underscoring the importance of preventing uncontrolled signaling. This review will focus on the inhibitory mechanisms that keep RTK-mediated signals in check, with emphasis on conserved principles discerned from studies using Drosophila as a model system. Two general strategies of inhibition will be discussed. The first, threshold regulation, postulates that an effective way of antagonizing RTK signaling is to erect and maintain high threshold barriers that prevent inappropriate responses to moderate signaling levels. Activation of the pathway above this level overcomes the inhibitory blocks and shifts the balance to allow a positive flow of inductive information. A second layer of negative regulation involving induction of negative feedback loops that limit the extent, strength, or duration of the signal prevents runaway signaling in response to the high levels of activation required to surmount the threshold barriers. Such autoinhibitory mechanisms attenuate signaling at critical points throughout the network, from the receptor to the downstream effectors.
Collapse
Affiliation(s)
- Ilaria Rebay
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA.
| |
Collapse
|
25
|
Sanche L. Nanoscopic aspects of radiobiological damage: Fragmentation induced by secondary low-energy electrons. MASS SPECTROMETRY REVIEWS 2002; 21:349-369. [PMID: 12645089 DOI: 10.1002/mas.10034] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Low-energy electrons (LEEs) are produced in large quantities in any type of material irradiated by high-energy particles. In biological media, these electrons can fragment molecules and lead to the formation of highly reactive radicals and ions. The results of recent experiments performed on biomolecular films bombarded with LEEs under ultra-high vacuum conditions are reviewed in the present article. The major type of experiments, which measure fragments produced in such films as a function of incident electron energy (0.1-45 eV), are briefly described. Examples of the results obtained from DNA films are summarized along with those obtained from the fragmentation of elementary components of the DNA molecule (i.e., thin solid films of H(2)O, DNA bases, sugar analogs, and oligonucleotides) and proteins. By comparing the results of these different experiments, it is possible to determine fundamental mechanisms that are involved in the dissociation of biomolecules and the production of single- and double-strand breaks in DNA, and to show that base damage is dependent on the nature of the bases and on their sequence context. Below 15 eV, electron resonances (i.e., the formation of transient anions) play a dominant role in the fragmentation of all biomolecules investigated. These transient anions fragment molecules by decaying into dissociative electronically excited states or by dissociating into a stable anion and a neutral radical. These fragments usually initiate other reactions with nearby molecules, causing further chemical damage. The damage caused by transient anions is dependent on the molecular environment.
Collapse
Affiliation(s)
- Léon Sanche
- Group of the Canadian Institutes of Health Research in the Radiation Sciences, Faculté de médecine, Université de Sherbrooke, Canada J1H 5N4.
| |
Collapse
|
26
|
Bocquet-Muchembled B, Leroux R, Chotteau-Lelièvre A, Vergoten G, Fontaine F. Expression and evolution studies of ets genes in a primitive coelomate, the polychaete annelid, Hediste (Nereis) diversicolor. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:685-97. [PMID: 12128055 DOI: 10.1016/s1096-4959(01)00511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Ets family includes numerous proteins with a highly conserved DNA-binding domain of 85 amino acids named the ETS domain. Phylogenetic analyses from ETS domains revealed that this family could be divided into 13 groups, among them are ETS and ERG. The ets genes are present in the Metazoan kingdom and we have previously characterized the Nd ets and Nd erg genes in the polychaete annelid Hediste diversicolor. Here, we isolated a fragment encoding the ETS domain from Nd Ets, by genomic library screening. By Northern blot analysis, we showed that this gene was transcribed as one major mRNA of 2.6 kb and one minor mRNA of 3.2 kb. By in situ hybridization, we observed that Nd ets was expressed in the intestine and oocytes and that Nd erg was expressed in cellular clumps present in the coelomic cavity, in an area of proliferating cells situated between the last metamere and the pygidium. Finally, we showed that Nd erg shared the expression pattern of Nd ets in oocytes. Molecular modeling studies have revealed that the spatial structure of ETS domain of Nd Ets and Nd Erg was conserved, in comparison to the murine Ets-1 and human Fli-1 proteins, respectively.
Collapse
Affiliation(s)
- Béatrice Bocquet-Muchembled
- Laboratoire ELICO (Ecosystèmes Littoraux et Côtiers), groupe d'Ecologie Moléculaire, CNRS UPRES-A 8013, Bât. SN3, U.S.T.L., 59655 d'Ascq Cedex, Villeneuve, France
| | | | | | | | | |
Collapse
|
27
|
Abdoul-Carime H, Cecchini S, Sanche L. Alteration of protein structure induced by low-energy (<18 eV) electrons. I. The peptide and disulfide bridges. Radiat Res 2002; 158:23-31. [PMID: 12071800 DOI: 10.1667/0033-7587(2002)158[0023:aopsib]2.0.co;2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We present measurements of low-energy (<18 eV) electron-stimulated desorption of anions from acetamide (CH(3)CONH(2)) and dimethyl disulfide [DMDS: (CH(3)S)(2)] films. Electron irradiation of physisorbed CH(3)CONH(2) produces H(-), CH(3)(-) and O(-) anions, whereas the H(-), CH(2)(-), CH(3)(-), S(-), SH(-) and SCH(3)(-) anions are observed to desorb from the DMDS film. Below 12 eV, the dependence of the anion yields on the incident electron energy exhibits structures that indicate that a resonant process (i.e. dissociative electron attachment) is responsible for molecular fragmentation. Within the range of 1-18 eV, it is found that (1.7 and 1.4) x 10(7) H(-) ions/incident electron and (7.8 x 10(-11) and 4.3 x 10(-8)) of the other ions/incident electron are desorbed from acetamide and DMDS films, respectively. These results suggest that, within proteins, the disulfide bond is more sensitive to low-energy electron attack than the peptide bond. In biological cells, some proteins interact closely with nucleic acid. Therefore, the observed fragments, when produced from secondary low-energy electrons generated by high-energy radiation, not only may denature proteins, but may also induce reactions with the nearby nucleic acid and damage DNA.
Collapse
Affiliation(s)
- H Abdoul-Carime
- Group of the Canadian Institutes of Health Research in the Radiation Sciences, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | |
Collapse
|
28
|
Oyoshi T, Wang AHJ, Sugiyama H. Photoreactivity of 5-iodouracil-containing DNA-Sso7d complex in solution: the protein-induced DNA kink causes intrastrand hydrogen abstraction from the 5-methyl of thymine at the 5' side. J Am Chem Soc 2002; 124:2086-7. [PMID: 11878941 DOI: 10.1021/ja016968s] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoirradiation of 5-iodouracil-containing DNA, d(GTAAT(I)UAC)(2) with Sso7d protein, possessing significant kink in DNA in the crystal structure induces an unprecedented intrastrand H abstraction at the methyl group of T(5), together with selective photooxidations at Met29 of Sso7d. The reactivity of the deoxyuridin-5-yl radical can be explained by the crystal structure of the d(GTAATTAC)(2)-Sso7d complex, suggesting that the interaction of DNA-Sso7d in solution is substantially similar to its crystal structure.
Collapse
Affiliation(s)
- Takanori Oyoshi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Surugadai, Kanda, Chiyoda, Tokyo 101-0062, Japan
| | | | | |
Collapse
|
29
|
Sun P, Loh HH. Transcriptional regulation of mouse delta-opioid receptor gene: role of Ets-1 in the transcriptional activation of mouse delta-opioid receptor gene. J Biol Chem 2001; 276:45462-9. [PMID: 11583993 DOI: 10.1074/jbc.m104793200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we identified a minimum core promoter of the mouse delta-opioid receptor (DOR) gene. The DOR promoter contains an E-box that binds upstream stimulatory factor and is crucial for the DOR promoter activity in NS20Y cells, a mouse neuronal cell line that constitutively expresses DOR. In the present study, we further analyzed the DOR promoter in NS20Y cells and have demonstrated that transcription factor Ets-1 binds to an Ets-1-binding site overlapping the E-box and trans-activates the DOR promoter by synergizing with upstream stimulatory factor in specific DNA binding. In addition, the Ets-1 DNA-binding domain is sufficient to play the functional role of Ets-1 in trans-activating the DOR promoter. Furthermore, through in vivo cross-linking assays and Northern blot analyses, we have demonstrated that Ets-1 binds to the DOR promoter in the neonatal mouse brain and that overexpressed Ets-1 can significantly enhance the expression of DOR mRNA in primary neonatal mouse neuronal cells. Collectively, our data suggest that Ets-1 functions as a trans-activator of the DOR promoter in the neonatal mouse brain and thus may contribute to the development of the mouse brain DOR system.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Binding, Competitive
- Blotting, Northern
- Brain/metabolism
- Cell Line
- Cells, Cultured
- Chromatin/metabolism
- Cross-Linking Reagents/pharmacology
- DNA/metabolism
- Deoxyribonuclease I/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Mice
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Protein c-ets-1
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-ets
- RNA, Messenger/metabolism
- Receptors, Opioid, delta/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- P Sun
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
30
|
Abstract
Ets proteins are a family of transcription factors that share an 85 amino acid conserved DNA binding domain, the ETS domain. Over 25 mammalian Ets family members control important biological processes, including cellular proliferation, differentiation, lymphocyte development and activation, transformation and apoptosis by recognizing the GGA core motif in the promoter or enhancer of their target genes. Protein - protein interactions regulates DNA binding, subcellular localization, target gene selection and transcriptional activity of Ets proteins. Combinatorial control is a characteristic property of Ets family members, involving interaction between Ets and other key transcriptional factors such as AP-1, NFkappaB and Pax family members. Specific domains of Ets proteins interact with many protein motifs such as bHLH, bZipper and Paired domain. Such interactions coordinate cellular processes in response to diverse signals including cytokines, growth factors, antigen and cellular stresses.
Collapse
Affiliation(s)
- R Li
- Center for Molecular and Structural Biology, Medical University of South Carolina, Charleston, South Carolina, SC 29425, USA
| | | | | |
Collapse
|
31
|
Abstract
Cellular responses to environmental stimuli are controlled by a series of signaling cascades that transduce extracellular signals from ligand-activated cell surface receptors to the nucleus. Although most pathways were initially thought to be linear, it has become apparent that there is a dynamic interplay between signaling pathways that result in the complex pattern of cell-type specific responses required for proliferation, differentiation and survival. One group of nuclear effectors of these signaling pathways are the Ets family of transcription factors, directing cytoplasmic signals to the control of gene expression. This family is defined by a highly conserved DNA binding domain that binds the core consensus sequence GGAA/T. Signaling pathways such as the MAP kinases, Erk1 and 2, p38 and JNK, the PI3 kinases and Ca2+-specific signals activated by growth factors or cellular stresses, converge on the Ets family of factors, controlling their activity, protein partnerships and specification of downstream target genes. Interestingly, Ets family members can act as both upstream and downstream effectors of signaling pathways. As downstream effectors their activities are directly controlled by specific phosphorylations, resulting in their ability to activate or repress specific target genes. As upstream effectors they are responsible for the spacial and temporal expression or numerous growth factor receptors. This review provides a brief survey of what is known to date about how this family of transcription factors is regulated by cellular signaling with a special focus on Ras responsive elements (RREs), the MAP kinases (Erks, p38 and JNK) and Ca2+-specific pathways and includes a description of the multiple roles of Ets family members in the lymphoid system. Finally, we will discuss other potential mechanisms and pathways involved in the regulation of this important family of transcription factors.
Collapse
Affiliation(s)
- J S Yordy
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
32
|
Szymczyna BR, Arrowsmith CH. DNA binding specificity studies of four ETS proteins support an indirect read-out mechanism of protein-DNA recognition. J Biol Chem 2000; 275:28363-70. [PMID: 10867009 DOI: 10.1074/jbc.m004294200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the ETS family of transcription factors are involved in several developmental and physiological processes, and, when overexpressed or misexpressed, can contribute to a variety of cancers. Each family member has a conserved DNA-binding domain that recognizes DNA sequences containing a G-G-A trinucleotide. Discrimination between potential ETS-binding sites appears to be governed by both the nucleotides flanking the G-G-A sequence and protein-protein interactions. We have used an adaptation of the "length-encoded multiplex" approach (Desjarlais, J. R., and Berg, J. M. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 11099-11103) to define DNA binding specificities for four ETS proteins: Fli-1, SAP-1, PU.1, and TEL. Our results support a model in which cooperative effects among neighboring bases flanking the central G-G-A site contribute to the formation of stable ETS/DNA complexes. These results are consistent with a mechanism for specific DNA binding that is partially governed by an indirect read-out of the DNA sequence, in which a sequence-specific DNA conformation is sensed or induced.
Collapse
Affiliation(s)
- B R Szymczyna
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | |
Collapse
|
33
|
von Ohlen T, Doe CQ. Convergence of dorsal, dpp, and egfr signaling pathways subdivides the drosophila neuroectoderm into three dorsal-ventral columns. Dev Biol 2000; 224:362-72. [PMID: 10926773 DOI: 10.1006/dbio.2000.9789] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An important question in neurobiology is how different cell fates are established along the dorsoventral (DV) axis of the central nervous system (CNS). Here we investigate the origins of DV patterning within the Drosophila CNS. The earliest sign of neural DV patterning is the expression of three homeobox genes in the neuroectoderm-ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh)-which are expressed in ventral, intermediate, and dorsal columns of neuroectoderm, respectively. Previous studies have shown that the Dorsal, Decapentaplegic (Dpp), and EGF receptor (Egfr) signaling pathways regulate embryonic DV patterning, as well as aspects of CNS patterning. Here we describe the earliest expression of each DV column gene (vnd, ind, and msh), the regulatory relationships between all three DV column genes, and the role of the Dorsal, Dpp, and Egfr signaling pathways in defining vnd, ind, and msh expression domains. We confirm that the vnd domain is established by Dorsal and maintained by Egfr, but unlike a previous report we show that vnd is not regulated by Dpp signaling. We show that ind expression requires both Dorsal and Egfr signaling for activation and positioning of its dorsal border, and that abnormally high Dpp can repress ind expression. Finally, we show that the msh domain is defined by repression: it occurs only where Dpp, Vnd, and Ind activity is low. We conclude that the initial diversification of cell fates along the DV axis of the CNS is coordinately established by Dorsal, Dpp, and Egfr signaling pathways. Understanding the mechanisms involved in patterning vnd, ind, and msh expression is important, because DV columnar homeobox gene expression in the neuroectoderm is an early, essential, and evolutionarily conserved step in generating neuronal diversity along the DV axis of the CNS.
Collapse
|
34
|
Fenrick R, Wang L, Nip J, Amann JM, Rooney RJ, Walker-Daniels J, Crawford HC, Hulboy DL, Kinch MS, Matrisian LM, Hiebert SW. TEL, a putative tumor suppressor, modulates cell growth and cell morphology of ras-transformed cells while repressing the transcription of stromelysin-1. Mol Cell Biol 2000; 20:5828-39. [PMID: 10913166 PMCID: PMC86060 DOI: 10.1128/mcb.20.16.5828-5839.2000] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1999] [Accepted: 05/12/2000] [Indexed: 11/20/2022] Open
Abstract
TEL is a member of the ETS family of transcription factors that interacts with the mSin3 and SMRT corepressors to regulate transcription. TEL is biallelically disrupted in acute leukemia, and loss of heterozygosity at the TEL locus has been observed in various cancers. Here we show that expression of TEL in Ras-transformed NIH 3T3 cells inhibits cell growth in soft agar and in normal cultures. Unexpectedly, cells expressing both Ras and TEL grew as aggregates. To begin to explain the morphology of Ras-plus TEL-expressing cells, we demonstrated that the endogenous matrix metalloproteinase stromelysin-1 was repressed by TEL. TEL bound sequences in the stromelysin-1 promoter and repressed the promoter in transient-expression assays, suggesting that it is a direct target for TEL-mediated regulation. Mutants of TEL that removed a binding site for the mSin3A corepressor but retained the ETS domain failed to repress stromelysin-1. When BB-94, a matrix metalloproteinase inhibitor, was added to the culture medium of Ras-expressing cells, it caused a cell aggregation phenotype similar to that caused by TEL expression. In addition, TEL inhibited the invasiveness of Ras-transformed cells in vitro and in vivo. Our results suggest that TEL acts as a tumor suppressor, in part, by transcriptional repression of stromelysin-1.
Collapse
Affiliation(s)
- R Fenrick
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Thiviyanathan V, Guliaev AB, Leontis NB, Gorenstein DG. Solution conformation of a bulged adenosine base in an RNA duplex by relaxation matrix refinement. J Mol Biol 2000; 300:1143-54. [PMID: 10903860 DOI: 10.1006/jmbi.2000.3931] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bulges are common structural motifs in RNA secondary structure and are thought to play important roles in RNA-protein and RNA-drug interactions. Adenosine bases are the most commonly occurring unpaired base in double helical RNA secondary structures. The solution conformation and dynamics of a 25-nucleotide RNA duplex containing an unpaired adenosine, r(GGCAGAGUGCCGC): r(GCGGCACCUGCC) have been studied by NMR spectroscopy and MORASS iterative relaxation matrix structural refinement. The results show that the bulged adenosine residue stacks into the RNA duplex with little perturbation around the bulged region. Most of the bases in the RNA duplex adopt C(3)'-endo conformation, exhibiting the N-type sugar pucker as found in the A form helices. The sugars of the bulged residue and the 5' flanking residue to it are found to exhibit C(2)'-endo conformation. None of the residues are in syn conformation.
Collapse
Affiliation(s)
- V Thiviyanathan
- Sealy Center for Structural Biology and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77555-1157, USA
| | | | | | | |
Collapse
|
36
|
Reeves R, Leonard WJ, Nissen MS. Binding of HMG-I(Y) imparts architectural specificity to a positioned nucleosome on the promoter of the human interleukin-2 receptor alpha gene. Mol Cell Biol 2000; 20:4666-79. [PMID: 10848593 PMCID: PMC85880 DOI: 10.1128/mcb.20.13.4666-4679.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional induction of the interleukin-2 receptor alpha-chain (IL-2Ralpha) gene is a key event regulating T-cell-mediated immunity in mammals. In vivo, the T-cell-restricted protein Elf-1 and the general architectural transcription factor HMG-I(Y) cooperate in transcriptional regulation of the human IL-2Ralpha gene by binding to a specific positive regulatory region (PRRII) in its proximal promoter. Employing chromatin reconstitution analyses, we demonstrate that the binding sites for both HMG-I(Y) and Elf-1 in the PRRII element are incorporated into a strongly positioned nucleosome in vitro. A variety of analytical techniques was used to determine that a stable core particle is positioned over most of the PRRII element and that this nucleosome exhibits only a limited amount of lateral translational mobility. Regardless of its translational setting, the in vitro position of the nucleosome is such that DNA recognition sequences for both HMG-I(Y) and Elf-1 are located on the surface of the core particle. Restriction nuclease accessibility analyses indicate that a similarly positioned nucleosome also exists on the PRRII element in unstimulated lymphocytes when the IL-2Ralpha gene is silent and suggest that this core particle is remodeled following transcriptional activation of the gene in vivo. In vitro experiments employing the chemical cleavage reagent 1,10-phenanthroline copper (II) covalently attached to its C-terminal end demonstrate that HMG-I(Y) protein binds to the positioned PRRII nucleosome in a direction-specific manner, thus imparting a distinct architectural configuration to the core particle. Together, these findings suggest a role for the HMG-I(Y) protein in assisting the remodeling of a critically positioned nucleosome on the PRRII promoter element during IL-2Ralpha transcriptional activation in lymphocytes in vivo.
Collapse
Affiliation(s)
- R Reeves
- Biochemistry/Biophysics, School of Molecular Biosciences, Washington State University, Pullman 99164, USA.
| | | | | |
Collapse
|
37
|
Gillitzer E, Chen G, Stenlund A. Separate domains in E1 and E2 proteins serve architectural and productive roles for cooperative DNA binding. EMBO J 2000; 19:3069-79. [PMID: 10856250 PMCID: PMC203343 DOI: 10.1093/emboj/19.12.3069] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The E1 and E2 proteins from bovine papillomavirus bind cooperatively to binding sites in the viral origin of DNA replication. The DNA-binding domains (DBDs) of the two proteins interact with each other, and the E2 transactivation domain interacts with the helicase domain of E1. Mutations that disrupt the interaction between the two DBDs also disrupt the interaction between the E2 activation domain and the E1 helicase domain, demonstrating interdependence of the two interactions. Cooperative binding of the two DBDs generates a sharp bend in the DNA that is required for interaction between the E2 activation domain and E1. This indicates that interaction between the two DBDs plays an architectural role, 'triggering' a productive interaction between the E2 transactivation domain and E1 through introduction of a sharp bend in the DNA. This two-step mechanism may be a required feature for cooperative DNA binding to proximal binding sites.
Collapse
Affiliation(s)
- E Gillitzer
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
38
|
Li R, Pei H, Watson DK, Papas TS. EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes. Oncogene 2000; 19:745-53. [PMID: 10698492 DOI: 10.1038/sj.onc.1203385] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ETS1 is a member of the evolutionarily conserved family of ets genes, which are transcription factors that bind to unique DNA sequences, either alone or by association with other proteins. In this study, we have used the yeast two-hybrid system to identify an ETS1 interacting protein. The ETS1 N-terminal amino acid region was used as bait and an interaction was identified with the Daxx protein, referred to as EAP1 (ETS1 Associated Protein 1)/Daxx. This interactin has been shown to exist in yeast and in vitro. EAP1/Daxx and ETS1 are co-localized in the nucleus of mammalian cells. The region in EAP1/Daxx which specifically binds to ETS1 is located within its carboxy terminal 173 amino acid region. The ETS1 interaction region is located within its N-terminal 139 amino acids and is referred as the Daxx Interaction Domain (DID). The DID appears to be conserved in several other ets family members, as well as in other proteins known to interact with Daxx. The EAP1/Daxx interacts with both isoforms of ETS1, p51-ETS1 and p42-ETS1. Interaction of EAP1/Daxx with ETS1 causes the repression of transcriptional activation of the MMP1 and BCL2 genes. The interaction domains of both ETS1 and EAP1/Daxx are required for this repression and deletion of either domain abolishes this activity.
Collapse
Affiliation(s)
- R Li
- Center for Molecular and Structural Biology, Department of Medicine, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
39
|
Chen G, Stenlund A. Two patches of amino acids on the E2 DNA binding domain define the surface for interaction with E1. J Virol 2000; 74:1506-12. [PMID: 10627562 PMCID: PMC111486 DOI: 10.1128/jvi.74.3.1506-1512.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1 and E2 proteins from bovine papillomavirus bind cooperatively to the viral origin of DNA replication (ori), forming a complex which is essential for initiation of DNA replication. Cooperative binding has two components, in which (i) the DNA binding domains (DBDs) of the two proteins interact with each other and (ii) the E2 transactivation domain interacts with the helicase domain of E1. By generating specific point mutations in the DBD of E2, we have defined two patches of amino acids that are involved in the interaction with the E1 DBD. These same mutations, when introduced into the viral genome, result in severely reduced replication of the viral genome, as well as failure to transform mouse cells in tissue culture. Thus, the interaction between the E1 and E2 DBDs is important for the establishment of the viral genome as an episome and most likely contributes to the formation of a preinitiation complex on the viral ori.
Collapse
Affiliation(s)
- G Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
40
|
Wagenknecht HA, Stemp EDA, Barton JK. Evidence of Electron Transfer from Peptides to DNA: Oxidation of DNA-Bound Tryptophan Using the Flash-Quench Technique. J Am Chem Soc 1999. [DOI: 10.1021/ja991855i] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hans-Achim Wagenknecht
- Contribution from the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Eric D. A. Stemp
- Contribution from the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Jacqueline K. Barton
- Contribution from the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
41
|
Kim J, Pelletier J. Molecular genetics of chromosome translocations involving EWS and related family members. Physiol Genomics 1999; 1:127-38. [PMID: 11015571 DOI: 10.1152/physiolgenomics.1999.1.3.127] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many types of sarcomas are characterized by specific chromosomal translocations that appear to result in the production of novel, tumor-specific chimeric transcription factors. Many of these show striking similarities: the emerging picture is that the amino-terminal domain of the fusion product is donated by the Ewing's sarcoma gene (EWS) or a related member from the same gene family, whereas the carboxy-terminal domain often consists of a DNA-binding domain derived from one of a number of transcription factors. Given the observation that the different translocation partners of the EWS protooncogene are associated with distinct types of sarcomas, the functional consequence of fusing EWS (or a related family member) to a different DNA-binding domain can only be understood in the context of functional studies that define the specificity of action of the different fusion products. An understanding of the molecular structure and function of these translocations provides new methods for diagnosis and novel targets for therapeutics.
Collapse
Affiliation(s)
- J Kim
- Department of Biochemistry, Department of Oncology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
42
|
Pio F, Assa-Munt N, Yguerabide J, Maki RA. Mutants of ETS domain PU.1 and GGAA/T recognition: free energies and kinetics. Protein Sci 1999; 8:2098-109. [PMID: 10548056 PMCID: PMC2144130 DOI: 10.1110/ps.8.10.2098] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The ETS family members display specific DNA binding site preferences. As an example, PU.1 and ETS-1 recognize different DNA sequences with a core element centered over 5'-GGAA-3' and 5'-GGAA/T-3', respectively. To understand the molecular basis of this recognition, we carried out site-directed mutagenesis experiments followed by DNA binding studies that use electrophoretic mobility shift assay (EMSA) and surface plasmon resonance methods. EMSA experiments identified amino acid changes A231S and/or N236Y as being important for PU.1 recognition of both 5'-GGAA-3' and 5'-GGAT-3' containing oligonucleotides. To confirm these data and obtain accurate binding parameters, we performed kinetic studies using surface plasmon resonance on these mutants. The N236Y substitution revealed a weak protein-DNA interaction with the 5'-GGAA-3' containing oligonucleotide caused by a faster release of the protein from the DNA (k(off) tenfold higher than the wild-type protein). With the double mutant A231S-N236Y, we obtained an increase in binding affinity and stability toward both 5'-GGAA-3' and 5'-GGAT-3' containing oligonucleotides. We propose that substitution of alanine for serine introduces an oxygen atom that can accept hydrogen and interact with potential water molecules or other atoms to make an energetically favorable hydrogen bond with both 5'-GGAA-3' and 5'-GGAT-3' oligonucleotides. The free energy of dissociation for the double mutant A231S-N236Y with 5'-GGAA-3' (delta deltaG((A231S-N236Y) - (N236Y)) = -1.2 kcal mol confirm the stabilizing effect of this mutant in the protein-DNA complex formation. We conclude that N236Y mutation relaxes the specificity toward 5'-GGAA-3' and 5'-GGAT-3' sequences, while A231S mutation modulates the degree of specificity toward 5'-GGAA-3' and 5'GGAT-3' sequences. This study explains why wild-type PU.1 does not recognize 5'-GGAT-3' sequences and in addition broadens our understanding of 5'-GGAA/T-3' recognition by ETS protein family members.
Collapse
Affiliation(s)
- F Pio
- The Burnham Institute, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
43
|
Nolan SJ, Shiels JC, Tuite JB, Cecere KL, Baranger AM. Recognition of an Essential Adenine at a Protein−RNA Interface: Comparison of the Contributions of Hydrogen Bonds and a Stacking Interaction. J Am Chem Soc 1999. [DOI: 10.1021/ja991617n] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Scott J. Nolan
- Department of Chemistry, Wesleyan University Middletown, Connecticut 06459
| | - Jerome C. Shiels
- Department of Chemistry, Wesleyan University Middletown, Connecticut 06459
| | - Jacob B. Tuite
- Department of Chemistry, Wesleyan University Middletown, Connecticut 06459
| | - Kerry L. Cecere
- Department of Chemistry, Wesleyan University Middletown, Connecticut 06459
| | - Anne M. Baranger
- Department of Chemistry, Wesleyan University Middletown, Connecticut 06459
| |
Collapse
|
44
|
Wolberger C. Multiprotein-DNA complexes in transcriptional regulation. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:29-56. [PMID: 10410794 DOI: 10.1146/annurev.biophys.28.1.29] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription in eukaryotes is frequently regulated by a mechanism termed combinatorial control, whereby several different proteins must bind DNA in concert to achieve appropriate regulation of the downstream gene. X-ray crystallographic studies of multiprotein complexes bound to DNA have been carried out to investigate the molecular determinants of complex assembly and DNA binding. This work has provided important insights into the specific protein-protein and protein-DNA interactions that govern the assembly of multiprotein regulatory complexes. The results of these studies are reviewed here, and the general insights into the mechanism of combinatorial gene regulation are discussed.
Collapse
Affiliation(s)
- C Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
45
|
Robledo-Luiggi C, Vera M, Cobo L, Jaime E, Mart�nez C, Gonz�lez JL. Partial intercalation with nucleic acids of peptides containing aromatic and basic amino acids. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1520-6343(1999)5:5<313::aid-bspy6>3.0.co;2-g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Abstract
Combinatorial regulation of eukaryotic transcription is mediated by proteins that associate in a specific manner to form multiprotein DNA-bound complexes. Substantial progress has recently been made towards the understanding of the molecular determinants of the protein-protein and protein-DNA interactions that govern assembly of these complexes. Three-dimensional structures have been determined of the MATalpha2/MCM1-DNA complex, the p50/p65 Rel homology domain heterodimer bound to DNA, the NFAT/Fos-Jun/DNA quaternary complex, and of the GABPalpha/beta ETS domain-ankyrin repeat heterodimer bound to DNA.
Collapse
Affiliation(s)
- C Wolberger
- Department of Biophysics and Biophysical Chemistry, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA.
| |
Collapse
|
47
|
Affiliation(s)
- B J Graves
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City 84132, USA
| | | |
Collapse
|
48
|
Mo Y, Vaessen B, Johnston K, Marmorstein R. Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mol Cell 1998; 2:201-12. [PMID: 9734357 DOI: 10.1016/s1097-2765(00)80130-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
SAP-1 is a member of the Ets transcription factors and cooperates with SRF protein to activate transcription of the c-fos protooncogene. The crystal structures of the conserved ETS domain of SAP-1 bound to DNA sequences from the E74 and c-fos promoters reveal that a set of conserved residues contact a GGA core DNA sequence. Discrimination for sequences outside this core is mediated by DNA contacts from conserved and nonconserved protein residues and sequence-dependent DNA structural properties characteristic of A-form DNA structure. Comparison with the related PU.1/DNA and GABPalpha/beta/DNA complexes provides general insights into DNA discrimination between Ets proteins. Modeling studies of a SAP-1/SRF/DNA complex suggest that SRF may modulate SAP-1 binding to DNA by interacting with its ETS domain.
Collapse
Affiliation(s)
- Y Mo
- The Wistar Institute, Department of Chemistry, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
49
|
Bonventre JV, Force T. Mitogen-activated protein kinases and transcriptional responses in renal injury and repair. Curr Opin Nephrol Hypertens 1998; 7:425-33. [PMID: 9690043 DOI: 10.1097/00041552-199807000-00013] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian cells respond to external stimuli by activation of a variety of signal transduction pathways which culminate in stereotypical responses important in renal disease, such as proliferation, growth arrest, hypertrophy, differentiation, or apoptosis. A set of intracellular signalling events occurs ultimately leading to the transcription of genes whose encoded proteins mediate the response. In vertebrates many of the stimuli which result in these important cellular responses initiate intracellular signalling events which converge on a set of cellular kinase cascades which are collectively called the mitogen-activated protein (MAP) kinase cascades. There are three families of MAP kinases that have been identified in mammalian cells. These kinase pathways as well as other cellular signalling pathways are critically important for the regulation of transcriptional events. In this review, we will discuss recently published information on how MAP kinases and transcription factors regulated by these kinases may be implicated in renal injury and repair.
Collapse
Affiliation(s)
- J V Bonventre
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
50
|
|