1
|
Miyamoto RY, de Melo RR, de Mesquita Sampaio IL, de Sousa AS, Morais ER, Sargo CR, Zanphorlin LM. Paradigm shift in xylose isomerase usage: a novel scenario with distinct applications. Crit Rev Biotechnol 2021; 42:693-712. [PMID: 34641740 DOI: 10.1080/07388551.2021.1962241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Isomerases are enzymes that induce physical changes in a molecule without affecting the original molecular formula. Among this class of enzymes, xylose isomerases (XIs) are the most studied to date, partly due to their extensive application in industrial processes to produce high-fructose corn sirups. In recent years, the need for sustainable initiatives has triggered efforts to improve the biobased economy through the use of renewable raw materials. In this context, D-xylose usage is crucial as it is the second-most abundant sugar in nature. The application of XIs in biotransforming xylose, enabling downstream metabolism in several microorganisms, is a smart strategy for ensuring a low-carbon footprint and producing several value-added biochemicals with broad industrial applications such as in the food, cosmetics, pharmaceutical, and polymer industries. Considering recent advancements that have expanded the range of applications of XIs, this review provides a comprehensive and concise overview of XIs, from their primary sources to the biochemical and structural features that influence their mechanisms of action. This comprehensive review may help address the challenges involved in XI applications in different industries and facilitate the exploitation of xylose bioprocesses.
Collapse
Affiliation(s)
- Renan Yuji Miyamoto
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences (FCF), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Ricardo Rodrigues de Melo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Isabelle Lobo de Mesquita Sampaio
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Amanda Silva de Sousa
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Edvaldo Rodrigo Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Cintia Regina Sargo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Leticia Maria Zanphorlin
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
2
|
Identification of a Novel Cobamide Remodeling Enzyme in the Beneficial Human Gut Bacterium Akkermansia muciniphila. mBio 2020; 11:mBio.02507-20. [PMID: 33293380 PMCID: PMC7733943 DOI: 10.1128/mbio.02507-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cobamides, comprising the vitamin B12 family of cobalt-containing cofactors, are required for metabolism in all domains of life, including most bacteria. Cobamides have structural variability in the lower ligand, and selectivity for particular cobamides has been observed in most organisms studied to date. The beneficial human gut bacterium Akkermansia muciniphila provides metabolites to other members of the gut microbiota by breaking down host mucin, but most of its other metabolic functions have not been investigated. A. muciniphila strain MucT is known to use cobamides, the vitamin B12 family of cofactors with structural diversity in the lower ligand. However, A. muciniphila MucT is unable to synthesize cobamides de novo, and the specific forms that can be used by A. muciniphila have not been examined. We found that the levels of growth of A. muciniphila MucT were nearly identical with each of seven cobamides tested, in contrast to nearly all bacteria that had been studied previously. Unexpectedly, this promiscuity is due to cobamide remodeling—the removal and replacement of the lower ligand—despite the absence of the canonical remodeling enzyme CbiZ in A. muciniphila. We identified a novel enzyme, CbiR, that is capable of initiating the remodeling process by hydrolyzing the phosphoribosyl bond in the nucleotide loop of cobamides. CbiR does not share similarity with other cobamide remodeling enzymes or B12-binding domains and is instead a member of the apurinic/apyrimidinic (AP) endonuclease 2 enzyme superfamily. We speculate that CbiR enables bacteria to repurpose cobamides that they cannot otherwise use in order to grow under cobamide-requiring conditions; this function was confirmed by heterologous expression of cbiR in Escherichia coli. Homologs of CbiR are found in over 200 microbial taxa across 22 phyla, suggesting that many bacteria may use CbiR to gain access to the diverse cobamides present in their environment.
Collapse
|
3
|
Taberman H, Bury CS, van der Woerd MJ, Snell EH, Garman EF. Structural knowledge or X-ray damage? A case study on xylose isomerase illustrating both. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:931-944. [PMID: 31274415 PMCID: PMC6613113 DOI: 10.1107/s1600577519005599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/23/2019] [Indexed: 05/29/2023]
Abstract
Xylose isomerase (XI) is an industrially important metalloprotein studied for decades. Its reaction mechanism has been postulated to involve movement of the catalytic metal cofactor to several different conformations. Here, a dose-dependent approach was used to investigate the radiation damage effects on XI and their potential influence on the reaction mechanism interpreted from the X-ray derived structures. Radiation damage is still one of the major challenges for X-ray diffraction experiments and causes both global and site-specific damage. In this study, consecutive high-resolution data sets from a single XI crystal from the same wedge were collected at 100 K and the progression of radiation damage was tracked over increasing dose (0.13-3.88 MGy). The catalytic metal and its surrounding amino acid environment experience a build-up of free radicals, and the results show radiation-damage-induced structural perturbations ranging from an absolute metal positional shift to specific residue motions in the active site. The apparent metal movement is an artefact of global damage and the resulting unit-cell expansion, but residue motion appears to be driven by the dose. Understanding and identifying radiation-induced damage is an important factor in accurately interpreting the biological conclusions being drawn.
Collapse
Affiliation(s)
- Helena Taberman
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin, Albert-Einstein Straße 15, 12489 Berlin, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Charles S. Bury
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark J. van der Woerd
- Department of Enterprise Technology Services, 2001 Capitol Avenue, Cheyenne, WY 82001, USA
| | - Edward H. Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Materials Design and Innovation, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
4
|
Lee M, Rozeboom HJ, de Waal PP, de Jong RM, Dudek HM, Janssen DB. Metal Dependence of the Xylose Isomerase from Piromyces sp. E2 Explored by Activity Profiling and Protein Crystallography. Biochemistry 2017; 56:5991-6005. [PMID: 29045784 PMCID: PMC5688467 DOI: 10.1021/acs.biochem.7b00777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Xylose isomerase from Piromyces sp. E2 (PirXI) can be used to equip Saccharomyces cerevisiae with the capacity to ferment xylose to ethanol. The biochemical properties and structure of the enzyme have not been described even though its metal content, catalytic parameters, and expression level are critical for rapid xylose utilization. We have isolated the enzyme after high-level expression in Escherichia coli, analyzed the metal dependence of its catalytic properties, and determined 12 crystal structures in the presence of different metals, substrates, and substrate analogues. The activity assays revealed that various bivalent metals can activate PirXI for xylose isomerization. Among these metals, Mn2+ is the most favorable for catalytic activity. Furthermore, the enzyme shows the highest affinity for Mn2+, which was established by measuring the activation constants (Kact) for different metals. Metal analysis of the purified enzyme showed that in vivo the enzyme binds a mixture of metals that is determined by metal availability as well as affinity, indicating that the native metal composition can influence activity. The crystal structures show the presence of an active site similar to that of other xylose isomerases, with a d-xylose binding site containing two tryptophans and a catalytic histidine, as well as two metal binding sites that are formed by carboxylate groups of conserved aspartates and glutamates. The binding positions and conformations of the metal-coordinating residues varied slightly for different metals, which is hypothesized to contribute to the observed metal dependence of the isomerase activity.
Collapse
Affiliation(s)
- Misun Lee
- Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Henriëtte J Rozeboom
- Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Paul P de Waal
- DSM Biotechnology Center , Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Rene M de Jong
- DSM Biotechnology Center , Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Hanna M Dudek
- Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Temer B, dos Santos LV, Negri VA, Galhardo JP, Magalhães PHM, José J, Marschalk C, Corrêa TLR, Carazzolle MF, Pereira GAG. Conversion of an inactive xylose isomerase into a functional enzyme by co-expression of GroEL-GroES chaperonins in Saccharomyces cerevisiae. BMC Biotechnol 2017; 17:71. [PMID: 28888227 PMCID: PMC5591498 DOI: 10.1186/s12896-017-0389-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Second-generation ethanol production is a clean bioenergy source with potential to mitigate fossil fuel emissions. The engineering of Saccharomyces cerevisiae for xylose utilization is an essential step towards the production of this biofuel. Though xylose isomerase (XI) is the key enzyme for xylose conversion, almost half of the XI genes are not functional when expressed in S. cerevisiae. To date, protein misfolding is the most plausible hypothesis to explain this phenomenon. RESULTS This study demonstrated that XI from the bacterium Propionibacterium acidipropionici becomes functional in S. cerevisiae when co-expressed with GroEL-GroES chaperonin complex from Escherichia coli. The developed strain BTY34, harboring the chaperonin complex, is able to efficiently convert xylose to ethanol with a yield of 0.44 g ethanol/g xylose. Furthermore, the BTY34 strain presents a xylose consumption rate similar to those observed for strains carrying the widely used XI from the fungus Orpinomyces sp. In addition, the tetrameric XI structure from P. acidipropionici showed an elevated number of hydrophobic amino acid residues on the surface of protein when compared to XI commonly expressed in S. cerevisiae. CONCLUSIONS Based on our results, we elaborate an extensive discussion concerning the uncertainties that surround heterologous expression of xylose isomerases in S. cerevisiae. Probably, a correct folding promoted by GroEL-GroES could solve some issues regarding a limited or absent XI activity in S. cerevisiae. The strains developed in this work have promising industrial characteristics, and the designed strategy could be an interesting approach to overcome the non-functionality of bacterial protein expression in yeasts.
Collapse
Affiliation(s)
- Beatriz Temer
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Leandro Vieira dos Santos
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
- CTBE – Brazilian Bioethanol Science and Technology Laboratory, Campinas, SP Brazil
| | - Victor Augusti Negri
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Juliana Pimentel Galhardo
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Pedro Henrique Mello Magalhães
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Juliana José
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Cidnei Marschalk
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Thamy Lívia Ribeiro Corrêa
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
- CTBE – Brazilian Bioethanol Science and Technology Laboratory, Campinas, SP Brazil
| |
Collapse
|
6
|
Waltman MJ, Yang ZK, Langan P, Graham DE, Kovalevsky A. Engineering acidic Streptomyces rubiginosus D-xylose isomerase by rational enzyme design. Protein Eng Des Sel 2014; 27:59-64. [PMID: 24402330 DOI: 10.1093/protein/gzt062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To maximize bioethanol production from lignocellulosic biomass, all sugars must be utilized. Yeast fermentation can be improved by introducing the d-xylose isomerase enzyme to convert the pentose sugar d-xylose, which cannot be fermented by Saccharomyces cerevisiae, into the fermentable ketose d-xylulose. The low activity of d-xylose isomerase, especially at the low pH required for optimal fermentation, limits its use. A rational enzyme engineering approach was undertaken, and seven amino acid positions were replaced to improve the activity of Streptomyces rubiginosus d-xylose isomerase towards its physiological substrate at pH values below 6. The active-site design was guided by mechanistic insights and the knowledge of amino acid protonation states at low pH obtained from previous joint X-ray/neutron crystallographic experiments. Tagging the enzyme with 6 or 12 histidine residues at the N-terminus resulted in a significant increase in the active-site affinity towards substrate at pH 5.8. Substituting an asparagine at position 215, which hydrogen bonded to the metal-bound Glu181 and Asp245, with an aspartate gave a variant with almost an order of magnitude lower KM than measured for the native enzyme, with a 4-fold increase in activity. Other studied variants showed similar (Asp57Asn, Glu186Gln/Asn215Asp), lower (Asp57His, Asn247Asp, Lys289His, Lys289Glu) or no (Gln256Asp, Asp287Asn, ΔAsp287) activity in acidic conditions relative to the native enzyme.
Collapse
Affiliation(s)
- Mary Jo Waltman
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | |
Collapse
|
7
|
Kovalevsky A, Hanson BL, Mason SA, Forsyth VT, Fisher Z, Mustyakimov M, Blakeley MP, Keen DA, Langan P. Inhibition of D-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1201-6. [PMID: 22948921 PMCID: PMC3489103 DOI: 10.1107/s0907444912024808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/30/2012] [Indexed: 11/10/2022]
Abstract
D-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni(2+) cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg(2+) ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni(2+) ions occupying the catalytic metal site (M2) were found at two locations, while Mg(2+) in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Le Meur S, Zinn M, Egli T, Thöny-Meyer L, Ren Q. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. BMC Biotechnol 2012; 12:53. [PMID: 22913372 PMCID: PMC3542253 DOI: 10.1186/1472-6750-12-53] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/17/2012] [Indexed: 11/25/2022] Open
Abstract
Background Pseudomonas putida KT2440 is able to synthesize large amounts of medium-chain-length polyhydroxyalkanoates (mcl-PHAs). To reduce the substrate cost, which represents nearly 50% of the total PHA production cost, xylose, a hemicellulose derivate, was tested as the growth carbon source in an engineered P. putida KT2440 strain. Results The genes encoding xylose isomerase (XylA) and xylulokinase (XylB) from Escherichia coli W3110 were introduced into P. putida KT2440. The recombinant KT2440 exhibited a XylA activity of 1.47 U and a XylB activity of 0.97 U when grown on a defined medium supplemented with xylose. The cells reached a maximum specific growth rate of 0.24 h-1 and a final cell dry weight (CDW) of 2.5 g L-1 with a maximal yield of 0.5 g CDW g-1 xylose. Since no mcl-PHA was accumulated from xylose, mcl-PHA production can be controlled by the addition of fatty acids leading to tailor-made PHA compositions. Sequential feeding strategy was applied using xylose as the growth substrate and octanoic acid as the precursor for mcl-PHA production. In this way, up to 20% w w-1 of mcl-PHA was obtained. A yield of 0.37 g mcl-PHA per g octanoic acid was achieved under the employed conditions. Conclusions Sequential feeding of relatively cheap carbohydrates and expensive fatty acids is a practical way to achieve more cost-effective mcl-PHA production. This study is the first reported attempt to produce mcl-PHA by using xylose as the growth substrate. Further process optimizations to achieve higher cell density and higher productivity of mcl-PHA should be investigated. These scientific exercises will undoubtedly contribute to the economic feasibility of mcl-PHA production from renewable feedstock.
Collapse
Affiliation(s)
- Sylvaine Le Meur
- Laboratory for Biomaterials, Swiss Federal Laboratories for Materials Science and Technology (Empa), Gallen, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Silva CR, Zangirolami TC, Rodrigues JP, Matugi K, Giordano RC, Giordano RLC. An innovative biocatalyst for production of ethanol from xylose in a continuous bioreactor. Enzyme Microb Technol 2011; 50:35-42. [PMID: 22133438 DOI: 10.1016/j.enzmictec.2011.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
The use of the hemicellulose fraction of biomass may be important for the feasibility of the production of second generation bioethanol. Wild strains of Saccharomyces cerevisiae are widely used in industry for production of 1st generation ethanol, and the robustness of this yeast is an important advantage in large scale applications. Isomerization of xylose to xylulose is an essential step in this process. This reaction is catalyzed by glucose isomerase (GI). A new biocatalyst is presented here for the simultaneous isomerization and fermentation (SIF) of xylose. GI from Streptomyces rubiginosus was immobilized in chitosan, through crosslinking with glutaraldehyde, and the support containing the immobilized GI (IGI-Ch) was co-immobilized with S. cerevisiae, in calcium alginate gel. The immobilization experiments led to high immobilized protein loads (30-68 mg × g(support)(-1)), high yields (circa of 100%) and high recovered enzyme activity (>90%). The IGI-Ch derivative with maximum activity presented 1700 IU × g(catalyst)(-1), almost twice the activity of a commercial immobilized GI, GENSWEET(®) IGI-HF. At typical operational conditions for xylose SIF operation (pH 5, 30-35 °C, presence of nutrients and ethanol concentrations in the medium up to 70 L(-1)), both derivatives, IGI-Ch and GENSWEET(®) IGI-HF retained app. 90% of the initial activity after 120 h, while soluble GI was almost completely inactive at pH 5, 30 °C. The isomerization xylose/xylulose, catalyzed by IGI-Ch, reached the equilibrium in batch experiments after 4h, with 12,000 IU × L(-1) (7 g(der) × L(-1)), at pH 5 and 30 °C, in the presence of fermentation nutrients. After co-immobilization of IGI-Ch with yeast in alginate gel, this biocatalyst succeeded in producing 12 g × L(-1) of ethanol, 9.5 g × L(-1) of xylitol, 2.5 g × L(-1) of glycerol and 1.9 g × L(-1) of acetate after consumption of 50 g × L(-1) of xylose, in 48 h, using 32.5 × 10(3) IU × L(-1) and 20 g(yeast) × L(-1), at 35 °C and initial pH 5.3.
Collapse
Affiliation(s)
- C R Silva
- Department of Chemical Engineering, Federal University of São Carlos (UFSCar), via Washington Luiz, Km 235, Monjolinho,13565-905, São Carlos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Kovalevsky AY, Hanson L, Fisher SZ, Mustyakimov M, Mason S, Forsyth T, Blakeley MP, Kean DA, Wagner T, Carrell HL, Katz AK, Glusker JP, Langan P. Metal ion roles and the movement of hydrogen during reaction catalyzed by D-xylose isomerase: a joint x-ray and neutron diffraction study. Structure 2010; 18:688-99. [PMID: 20541506 PMCID: PMC2887347 DOI: 10.1016/j.str.2010.03.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/11/2010] [Accepted: 03/08/2010] [Indexed: 11/21/2022]
Abstract
Conversion of aldo to keto sugars by the metalloenzyme D-xylose isomerase (XI) is a multistep reaction that involves hydrogen transfer. We have determined the structure of this enzyme by neutron diffraction in order to locate H atoms (or their isotope D). Two studies are presented, one of XI containing cadmium and cyclic D-glucose (before sugar ring opening has occurred), and the other containing nickel and linear D-glucose (after ring opening has occurred but before isomerization). Previously we reported the neutron structures of ligand-free enzyme and enzyme with bound product. The data show that His54 is doubly protonated on the ring N in all four structures. Lys289 is neutral before ring opening and gains a proton after this; the catalytic metal-bound water is deprotonated to hydroxyl during isomerization and O5 is deprotonated. These results lead to new suggestions as to how changes might take place over the course of the reaction.
Collapse
Affiliation(s)
- Andrey Y. Kovalevsky
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Leif Hanson
- Chemistry Department, University of Toledo, Toledo, OH 43606, USA
| | - S. Zoe Fisher
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Marat Mustyakimov
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Sax Mason
- Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France
| | - Trevor Forsyth
- Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France
| | - Matthew P. Blakeley
- Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France
| | - David. A. Kean
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, Oxon, UK
| | | | | | | | | | - Paul Langan
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Chemistry Department, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
11
|
Rao K, Chelikani S, Relue P, Varanasi S. A novel technique that enables efficient conduct of simultaneous isomerization and fermentation (SIF) of xylose. Appl Biochem Biotechnol 2008; 146:101-17. [PMID: 18421591 DOI: 10.1007/s12010-007-8122-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 12/11/2007] [Indexed: 11/26/2022]
Abstract
Of the sugars recovered from lignocellulose, D-glucose can be readily converted into ethanol by baker's or brewer's yeast (Saccharomyces cerevisiae). However, xylose that is obtained by the hydrolysis of the hemicellulosic portion is not fermentable by the same species of yeasts. Xylose fermentation by native yeasts can be achieved via isomerization of xylose to its ketose isomer, xylulose. Isomerization with exogenous xylose isomerase (XI) occurs optimally at a pH of 7-8, whereas subsequent fermentation of xylulose to ethanol occurs at a pH of 4-5. We present a novel scheme for efficient isomerization of xylose to xylulose at conditions suitable for the fermentation by using an immobilized enzyme system capable of sustaining two different pH microenvironments in a single vessel. The proof-of-concept of the two-enzyme pellet is presented, showing conversion of xylose to xylulose even when the immobilized enzyme pellets are suspended in a bulk solution whose pH is sub-optimal for XI activity. The co-immobilized enzyme pellets may prove extremely valuable in effectively conducting "simultaneous isomerization and fermentation" (SIF) of xylose. To help further shift the equilibrium in favor of xylulose formation, sodium tetraborate (borax) was added to the isomerization solution. Binding of tetrahydroxyborate ions to xylulose effectively reduces the concentration of xylulose and leads to increased xylose isomerization. The formation of tetrahydroxyborate ions and the enhancement in xylulose production resulting from the complexation was studied at two different bulk pH values. The addition of 0.05 M borax to the isomerization solution containing our co-immobilized enzyme pellets resulted in xylose to xylulose conversion as high as 86% under pH conditions that are suboptimal for XI activity. These initial findings, which can be optimized for industrial conditions, have significant potential for increasing the yield of ethanol from xylose in an SIF approach.
Collapse
Affiliation(s)
- Kripa Rao
- Department of Chemical and Environmental Engineering, The University of Toledo, Toledo, OH 43606, USA
| | | | | | | |
Collapse
|
12
|
Kappl R, Ranguelova K, Koch B, Duboc C, Hüttermann J. Multi-frequency high-field EPR studies on metal-substituted xylose isomerase. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43 Spec no.:S65-73. [PMID: 16235215 DOI: 10.1002/mrc.1691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The bacterial enzyme D-xylose isomerase (XI) catalyses the conversion of D-xylose to D-xylulose. Each subunit of the homotetrameric protein contains a bimetallic active centre requiring divalent metal ions such as Mg2+, Mn2+ or Co2+ for catalytic activity. We report here on XI in which the metal binding site 1 is specifically loaded with EPR active Mn2+, while binding site 2 is occupied by Co2+ or Cd2+, rendering a catalytically active or inactive species respectively. The Q-band (34 GHz) EPR spectra of these mixed-metal samples (Co2+/Mn2+ and Cd2+/Mn2+ XI) show a clear influence of the metal in site 2 on the Mn2+ EPR parameters. Likewise, a systematic increase of the zero field splitting parameters (zfs) of Mn2+ in site 1 upon incubation with the inhibitor xylitol or substrates for both mixed-metal samples is found. For Co2+/Mn2+ XI complexed with substrate, a drastic line broadening of the central -1/2 <--> +1/2 transition is observed in Q-band EPR, which was not amenable to analysis so far. By means of a multi-frequency approach at frequencies beyond Q-band, the relevant zfs parameters were derived from spectral simulations of EPR spectra measured at 94, 285 and 670 GHz. It is shown that parallel to the increase of the D-value its distribution also grows considerably in going from free Co2+/Mn2+ XI to the species complexed with inhibitor or substrate. For XI with bound substrate, D-values in the range of 70-90 mT and a distribution of about 30 mT were found from simulation trials. The large distribution in zfs values is thought to be correlated to the structural disorder induced by the shift of the metal ion of site 2 into a location necessary for the isomerisation reaction. The results are discussed with respect to high-resolution crystal data.
Collapse
Affiliation(s)
- R Kappl
- Institut fuer Biophysik, FR 2.5, Geb. 76, Klinikum, Universität des Saarlandes, 66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
13
|
Gárdonyi M, Hahn-Hägerdal B. The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(02)00285-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Lönn A, Gárdonyi M, van Zyl W, Hahn-Hägerdal B, Otero RC. Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:157-63. [PMID: 11784309 DOI: 10.1046/j.0014-2956.2002.02631.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Random PCR mutagenesis was applied to the Thermus thermophilus xylA gene encoding xylose isomerase. Three cold-adapted mutants were isolated with the following amino-acid substitutions: E372G, V379A (M-1021), E372G, F163L (M-1024) and E372G (M-1026). The wild-type and mutated xylA genes were cloned and expressed in Escherichia coli HB101 using the vector pGEM-T Easy, and their physicochemical and catalytic properties were determined. The optimum pH for xylose isomerization activity for the mutants was approximately 7.0, which is similar to the wild-type enzyme. Compared with the wild-type, the mutants were active over a broader pH range. The mutants exhibited up to nine times higher catalytic rate constants (k(cat)) for d-xylose compared with the wild-type enzyme at 60 degrees C, but they did not show any increase in catalytic efficiency (k(cat)/K(m)). For d-glucose, both the k(cat) and the k(cat)/K(m) values for the mutants were increased compared with the wild-type enzyme. Furthermore, the mutant enzymes exhibited up to 255 times higher inhibition constants (K(i)) for xylitol than the wild-type, indicating that they are less inhibited by xylitol. The thermal stability of the mutated enzymes was poorer than that of the wild-type enzyme. The results are discussed in terms of increased molecular flexibility of the mutant enzymes at low temperatures.
Collapse
Affiliation(s)
- Anna Lönn
- Department of Applied Microbiology, Lund University, Sweden
| | | | | | | | | |
Collapse
|
15
|
Träff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 2001; 67:5668-74. [PMID: 11722921 PMCID: PMC93358 DOI: 10.1128/aem.67.12.5668-5674.2001] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae ferments hexoses efficiently but is unable to ferment xylose. When the bacterial enzyme xylose isomerase (XI) from Thermus thermophilus was produced in S. cerevisiae, xylose utilization and ethanol formation were demonstrated. In addition, xylitol and acetate were formed. An unspecific aldose reductase (AR) capable of reducing xylose to xylitol has been identified in S. cerevisiae. The GRE3 gene, encoding the AR enzyme, was deleted in S. cerevisiae CEN.PK2-1C, yielding YUSM1009a. XI from T. thermophilus was produced, and endogenous xylulokinase from S. cerevisiae was overproduced in S. cerevisiae CEN.PK2-1C and YUSM1009a. In recombinant strains from which the GRE3 gene was deleted, xylitol formation decreased twofold. Deletion of the GRE3 gene combined with expression of the xylA gene from T. thermophilus on a replicative plasmid generated recombinant xylose utilizing S. cerevisiae strain TMB3102, which produced ethanol from xylose with a yield of 0.28 mmol of C from ethanol/mmol of C from xylose. None of the recombinant strains grew on xylose.
Collapse
Affiliation(s)
- K L Träff
- Department of Applied Microbiology, Lund University, 221 00 Lund, Sweden
| | | | | | | |
Collapse
|
16
|
Chaillou S, Bor YC, Batt CA, Postma PW, Pouwels PH. Molecular cloning and functional expression in lactobacillus plantarum 80 of xylT, encoding the D-xylose-H+ symporter of Lactobacillus brevis. Appl Environ Microbiol 1998; 64:4720-8. [PMID: 9835554 PMCID: PMC90914 DOI: 10.1128/aem.64.12.4720-4728.1998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 3-kb region, located downstream of the Lactobacillus brevis xylA gene (encoding D-xylose isomerase), was cloned in Escherichia coli TG1. The sequence revealed two open reading frames which could code for the D-xylulose kinase gene (xylB) and another gene (xylT) encoding a protein of 457 amino acids with significant similarity to the D-xylose-H+ symporters of E. coli, XylE (57%), and Bacillus megaterium, XylT (58%), to the D-xylose-Na+ symporter of Tetragenococcus halophila, XylE (57%), and to the L-arabinose-H+ symporter of E. coli, AraE (60%). The L. brevis xylABT genes showed an arrangement similar to that of the B. megaterium xylABT operon and the T. halophila xylABE operon. Southern hybridization performed with the Lactobacillus pentosus xylR gene (encoding the D-xylose repressor protein) as a probe revealed the existence of a xylR homologue in L. brevis which is not located with the xyABT locus. The existence of a functional XylR was further suggested by the presence of xylO sequences upstream of xylA and xylT and by the requirement of D-xylose for the induction of D-xylose isomerase, D-xylulose kinase, and D-xylose transport activities in L. brevis. When L. brevis was cultivated in a mixture of D-glucose and D-xylose, the D-xylose isomerase and D-xylulose kinase activities were reduced fourfold and the D-xylose transport activity was reduced by sixfold, suggesting catabolite repression by D-glucose of D-xylose assimilation. The xylT gene was functionally expressed in Lactobacillus plantarum 80, a strain which lacks proton motive force-linked D-xylose transport activity. The role of the XylT protein was confirmed by the accumulation of D-xylose in L. plantarum 80 cells, and this accumulation was dependent on the proton motive force generated by either malolactic fermentation or by the metabolism of D-glucose. The apparent affinity constant of XylT for D-xylose was approximately 215 microM, and the maximal initial velocity of transport was 35 nmol/min per mg (dry weight). Furthermore, of a number of sugars tested, only 6-deoxy-D-glucose inhibited the transport of D-xylose by XylT competitively, with a Ki of 220 microM.
Collapse
Affiliation(s)
- S Chaillou
- EC Slater Institute, BioCentrum, University of Amsterdam, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Chaillou S, Lokman BC, Leer RJ, Posthuma C, Postma PW, Pouwels PH. Cloning, sequence analysis, and characterization of the genes involved in isoprimeverose metabolism in Lactobacillus pentosus. J Bacteriol 1998; 180:2312-20. [PMID: 9573180 PMCID: PMC107170 DOI: 10.1128/jb.180.9.2312-2320.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Two genes, xylP and xylQ, from the xylose regulon of Lactobacillus pentosus were cloned and sequenced. Together with the repressor gene of the regulon, xylR, the xylPQ genes form an operon which is inducible by xylose and which is transcribed from a promoter located 145 bp upstream of xylP. A putative xylR binding site (xylO) and a cre-like element, mediating CcpA-dependent catabolite repression, were found in the promoter region. L. pentosus mutants in which both xylP and xylQ (LPE1) or only xylQ (LPE2) was inactivated retained the ability to ferment xylose but were impaired in their ability to ferment isoprimeverose (alpha-D-xylopyranosyl-(1,6)-D-glucopyranose). Disruption of xylQ resulted specifically in the loss of a membrane-associated alpha-xylosidase activity when LPE1 or LPE2 cells were grown on xylose. In the membrane fraction of wild-type bacteria, alpha-xylosidase could catalyze the hydrolysis of isoprimeverose and p-nitrophenyl-alpha-D-xylopyranoside with apparent Km and Vmax values of 0.2 mM and 446 nmol/min/mg of protein, and 1.3 mM and 54 nmol/min/mg of protein, respectively. The enzyme could also hydrolyze the alpha-xylosidic linkage in xyloglucan oligosaccharides, but neither methyl-alpha-D-xylopyranoside nor alpha-glucosides were substrates. Glucose repressed the synthesis of alpha-xylosidase fivefold, and 80% of this repression was released in an L. pentosus delta ccpA mutant. The alpha-xylosidase gene was also expressed in the absence of xylose when xylR was disrupted.
Collapse
Affiliation(s)
- S Chaillou
- EC Slater Institute, Biocentrum, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Fuxreiter M, Böcskei Z, Szeibert A, Szabó E, Dallmann G, Naray-Szabo G, Asboth B. Role of electrostatics at the catalytic metal binding site in xylose isomerase action: Ca(2+)-inhibition and metal competence in the double mutant D254E/D256E. Proteins 1997; 28:183-93. [PMID: 9188736 DOI: 10.1002/(sici)1097-0134(199706)28:2<183::aid-prot7>3.0.co;2-g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The catalytic metal binding site of xylose isomerase from Arthrobacter B3728 was modified by protein engineering to diminish the inhibitory effect of Ca2+ and to study the competence of metals on catalysis. To exclude Ca2+ from Site 2 a double mutant D254E/D256E was designed with reduced space available for binding. In order to elucidate structural consequences of the mutation the binary complex of the mutant with Mg2+ as well as ternary complexes with bivalent metal ions and the open-chain inhibitor xylitol were crystallized for x-ray studies. We determined the crystal structures of the ternary complexes containing Mg2+, Mn2+, and Ca2+ at 2.2 to 2.5 A resolutions, and refined them to R factors of 16.3, 16.6, and 19.1, respectively. We found that all metals are liganded by both engineered glutamates as well as by atoms O1 and O2 of the inhibitor. The similarity of the coordination of Ca2+ to that of the cofactors as well as results with Be2+ weaken the assumption that geometry differences should account for the catalytic noncompetence of this ion. Kinetic results of the D254E/D256E mutant enzyme showed that the significant decrease in Ca2+ inhibition was accompanied by a similar reduction in the enzymatic activity. Qualitative argumentation, based on the protein electrostatic potential, indicates that the proximity of the negative side chains to the substrate significantly reduces the electrostatic stabilization of the transition state. Furthermore, due to the smaller size of the catalytic metal site, no water molecule, coordinating the metal, could be observed in ternary complexes of the double mutant. Consequently, the proton shuttle step in the overall mechanism should differ from that in the wild type. These effects can account for the observed decrease in catalytic efficiency of the D254E/D256E mutant enzyme.
Collapse
Affiliation(s)
- M Fuxreiter
- Department of Theoretical Chemistry, Loránd Eötvös University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
19
|
Kristo P, Saarelainen R, Fagerström R, Aho S, Korhola M. Protein purification, and cloning and characterization of the cDNA and gene for xylose isomerase of barley. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:240-6. [PMID: 8620879 DOI: 10.1111/j.1432-1033.1996.0240n.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The first eukaryotic xylose isomerase protein was purified from barley Hordeum vulgare. The enzyme requires Mn2+ for its activity and is fairly thermostable, with the optimum temperature being 60 degrees C. It showed maximum activity over a broad pH range (7.0-9.0). The molecular mass of the monomer was about 50,000 Da based on the SDS/PAGE, and the calculated value from the cDNA-deduced polypeptide sequence was 53,620 Da. A relative mass estimation of 100,000 Da was obtained from the Superose 12 chromatography, suggesting that the barley enzyme is a dimer. The cloned corresponding cDNA sequence of 1710 nucleotides encoded a polypeptide of 480 amino acids. The genomic sequence of 4473 nucleotides, revealed that the isomerase gene contained 20 introns, all starting with GT and ending with AG. One large intron was located in the 5'untranslated region. The barley isomerase has an insertion of about 40 residues at its amino terminus when compared to the prokaryotic cluster (family) II isomerases; cluster (family) I and cluster (family) II isomerases vary from the former in an insertion of around 50 residues at their amino termini. Comparison of the barley protein with the prokaryotic isomerases shows that the conserved catalytic and metal binding regions are also well conserved in barley.
Collapse
Affiliation(s)
- P Kristo
- Research Laboratories of Alko Ltd., currently Primalco Ltd, Helsinki, Finland
| | | | | | | | | |
Collapse
|
20
|
Whitaker RD, Cho Y, Cha J, Carrell HL, Glusker JP, Karplus PA, Batt CA. Probing the roles of active site residues in D-xylose isomerase. J Biol Chem 1995; 270:22895-906. [PMID: 7559425 DOI: 10.1074/jbc.270.39.22895] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The roles of active site residues His54, Phe94, Lys183, and His220 in the Streptomyces rubiginosus D-xylose isomerase were probed by site-directed mutagenesis. The kinetic properties and crystal structures of the mutant enzymes were characterized. The pH dependence of diethylpyrocarbonate modification of His54 suggests that His54 does not catalyze ring-opening as a general acid. His54 appears to be involved in anomeric selection and stabilization of the acyclic transition state by hydrogen bonding. Phe94 stabilizes the acyclic-extended transition state directly by hydrophobic interactions and/or indirectly by interactions with Trp137 and Phe26. Lys183 and His220 mutants have little or no activity and the structures of these mutants with D-xylose reveal cyclic alpha-D-xylopyranose. Lys183 functions structurally by maintaining the position of Pro187 and Glu186 and catalytically by interacting with acyclic-extended sugars. His220 provides structure for the M2-metal binding site with properties which are necessary for extension and isomerization of the substrate. A second M2 metal binding site (M2') is observed at a relatively lower occupancy when substrate is added consistent with the hypothesis that the metal moves as the hydride is shifted on the extended substrate.
Collapse
Affiliation(s)
- R D Whitaker
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis. Science 1995; 267:240-3. [PMID: 17791346 DOI: 10.1126/science.267.5195.240] [Citation(s) in RCA: 343] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The ethanol-producing bacterium Zymomonas mobilis was metabolically engineered to broaden its range of fermentable substrates to include the pentose sugar xylose. Two operons encoding xylose assimilation and pentose phosphate pathway enzymes were constructed and transformed into Z. mobilis in order to generate a strain that grew on xylose and efficiently fermented it to ethanol. Thus, anaerobic fermentation of a pentose sugar to ethanol was achieved through a combination of the pentose phosphate and Entner-Doudoroff pathways. Furthermore, this strain efficiently fermented both glucose and xylose, which is essential for economical conversion of lignocellulosic biomass to ethanol.
Collapse
|
22
|
Biesterveld S, Kok MD, Dijkema C, Zehnder AJ, Stams AJ. D-xylose catabolism in Bacteroides xylanolyticus X5-1. Arch Microbiol 1994; 161:521-7. [PMID: 8048843 DOI: 10.1007/bf00307774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The xylose metabolism of Bacteroides xylanolyticus X5-1 was studied by determining specific enzyme activities in cell free extracts, by following 13C-label distribution patterns in growing cultures and by mass balance calculations. Enzyme activities of the pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway were sufficiently high to account for in vivo xylose fermentation to pyruvate via a combination of these two pathways. Pyruvate was mainly oxidized to acetyl-CoA, CO2 and a reduced cofactor (ferredoxin). Part of the pyruvate was converted to acetyl-CoA and formate by means of a pyruvate-formate lyase. Acetyl-CoA was either converted to acetate by a combined action of phosphotransacetylase and acetate kinase or reduced to ethanol by an acetaldehyde dehydrogenase and an ethanol dehydrogenase. The latter two enzymes displayed both a NADH- and a NADPH-linked activity. Cofactor regeneration proceeded via a reduction of intermediates of the metabolism (i.e. acetyl-CoA and acetaldehyde) and via proton reduction. According to the deduced pathway about 2.5 mol ATP are generated per mol of xylose degraded.
Collapse
Affiliation(s)
- S Biesterveld
- Department of Microbiology, Agricultural University Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Pawar HS, Deshmukh DR. Immobilization of D-xylose (D-glucose) isomerase from a Chainia species. PREPARATIVE BIOCHEMISTRY 1994; 24:143-50. [PMID: 8072956 DOI: 10.1080/10826069408010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
D-Xylose isomerase is a heat-stable enzyme which isomerizes D-xylose into D-xylulose. D-Xylose isomerase from various species also isomerizes D-glucose into D-fructose. This enzyme is used in industry for the production of high-fructose corn syrup. The enzyme is specific for both, xylose and glucose. In most species xylose isomerase is localized intracellularly. However, in a rare actinomycete, Chainia sp. (NCL 82-5-1), xylose isomerase is present in both intracellular and extracellular compartments. We have previously purified and characterized intracellular enzyme from Chainia sp. In the present paper, we describe a procedure for immobilization of intracellular xylose isomerase on INDION 48-R by ionic binding. This method is inexpensive, does not require cross-linking agents and results in firm binding of the enzyme with the resin. The properties of immobilized enzyme such as pH optimum, substrate specificity, Km and inhibition by various metabolites are described and compared with those of purified, nonimmobilized enzyme.
Collapse
Affiliation(s)
- H S Pawar
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | |
Collapse
|
24
|
Biesterveld S, Oude Elferink SJ, Zehnder AJ, Stams AJ. Xylose and Glucose Utilization by
Bacteroides xylanolyticus
X5-1 Cells Grown in Batch and Continuous Culture. Appl Environ Microbiol 1994; 60:576-80. [PMID: 16349187 PMCID: PMC201351 DOI: 10.1128/aem.60.2.576-580.1994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During cultivation on a mixture of xylose and glucose,
Bacteroides xylanolyticus
X5-1 showed neither diauxic growth nor a substrate preference. Xylose-limited continuous-culture cells were able to consume xylose and glucose both as single substrates and as mixed substrates without any lag phase. When glucose was the growth-limiting substrate, the microorganism was unable to consume xylose. However, in the presence of a small amount of glucose or pyruvate, xylose was utilized after a short lag phase. In glucose-limited cells, xylose isomerase was present at low activity but xylulose kinase activity could not be detected. On addition of a mixture of xylose and glucose, xylose isomerase was induced immediately and xylulose kinase was induced after about 30 min. The induction of the two enzymes was sensitive to chloramphenicol, showing de novo synthesis. Xylose uptake in glucose-grown cells was very low, but the uptake rate could be increased when incubated with a xylose-glucose mixture. The increase in the uptake rate was not affected by chloramphenicol, indicating that a constitutive uptake system had to be activated. The inability of
B. xylanolyticus
X5-1 cells undergoing glucose-limited continuous culture to induce the xylose catabolic pathway after the addition of only xylose probably was caused by energy limitation.
Collapse
Affiliation(s)
- S Biesterveld
- Department of Microbiology, Wageningen Agricultural University, 6703 CT Wageningen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Bogumil R, Kappl R, Hüttermann J, Sudfeldt C, Witzel H. X- and Q-band EPR studies on the two Mn(2+)-substituted metal-binding sites of D-xylose isomerase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:1185-92. [PMID: 8389296 DOI: 10.1111/j.1432-1033.1993.tb17869.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The two metal-binding sites (A and B)/subunit of the homotetrameric D-xylose isomerase (Xyl isomerase) from Streptomyces rubiginosus have been studied with Mn(2+)-EPR spectroscopy at X-band and Q-band frequencies and with electronic spectroscopy. Displacement studies in the visible absorbance range showed that Mn2+ have a higher affinity for the B site. With the low-affinity A site unoccupied, the coordination sphere of Mn2+ in the B site is quite distorted giving rise to a highly anisotropic X-band EPR spectrum. Simulation of the Q-band spectrum reveals a zero field splitting (zfs) D of about 45-48 mT and a rhombicity parameter E/D between 0.2 and 0.3. Occupation of both binding sites with Mn2+ induces a significant shift towards a higher symmetry in the coordination sphere of the B site resulting in similar zfs parameters for both binding sites. The change in A-site environment caused by B-site occupation was analysed in mixed Xyl isomerase derivatives, in which the B site is loaded with Co2+, Cd2+ or Pb2+ and the A site with Mn2+. In the Co2+/Mn2+ Xyl isomerase the Mn2+ has a relatively symmetric ligand environment with small zfs parameters (D = 12 mT, E/D < 0.15). Substituting Co2+ with Cd2+ or Pb2+ in the B site leads to a drastic increase in the zfs parameters of Mn2+ in the A site. The distortions are directly linked to the ionic radii of the ions bound to the B site and may be mediated by the carboxylate group of Glu216 that bridges the metal-binding sites. The EPR spectra also reflect the catalytic activity of the mixed metal samples. With the larger Cd2+ or Pb2+ in the B site, which are strongly influencing the stereochemistry of the A site, the catalytic activity is lost, whereas Co2+ and Mn2+ render the enzyme in an active state, so that the mutual influence on catalysis depends on the complex geometry of both metal-binding sites.
Collapse
Affiliation(s)
- R Bogumil
- Institut für Biochemie, Universität Münster, Germany
| | | | | | | | | |
Collapse
|
26
|
van Tilbeurgh H, Jenkins J, Chiadmi M, Janin J, Wodak SJ, Mrabet NT, Lambeir AM. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 3. Changing metal specificity and the pH profile by site-directed mutagenesis. Biochemistry 1992; 31:5467-71. [PMID: 1610793 DOI: 10.1021/bi00139a007] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aldose-ketose isomerization by xylose isomerase requires bivalent cations such as Mg2+, Mn2+, or Co2+. The active site of the enzyme from Actinoplanes missouriensis contains two metal ions that are involved in substrate binding and in catalyzing a hydride shift between the C1 and C2 substrate atoms. Glu 186 is a conserved residue located near the active site but not in contact with the substrate and not with a metal ligand. The E186D and E186Q mutant enzymes were prepared. Both are active, and their metal specificity is different from that of the wild type. The E186Q enzyme is most active with Mn2+ and has a drastically shifted pH optimum. The X-ray analysis of E186Q was performed in the presence of xylose and either Mn2+ or Mg2+. The Mn2+ structure is essentially identical to that of the wild type. In the presence of Mg2+, the carboxylate group of residue Asp 255, which is part of metal site 2 and a metal ligand, turns toward Gln 186 and hydrogen bonds to its side-chain amide. Mg2+ is not bound at metal site 2, explaining the low activity of the mutant with this cation. Movements of Asp 255 also occur in the wild-type enzyme. We propose that they play a role in the O1 to O2 proton relay accompanying the hydride shift.
Collapse
|
27
|
Lambeir AM, Lauwereys M, Stanssens P, Mrabet NT, Snauwaert J, van Tilbeurgh H, Matthyssens G, Lasters I, De Maeyer M, Wodak SJ. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 2. Site-directed mutagenesis of the xylose binding site. Biochemistry 1992; 31:5459-66. [PMID: 1610792 DOI: 10.1021/bi00139a006] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Site-directed mutagenesis in the active site of xylose isomerase derived from Actinoplanes missouriensis is used to investigate the structural and functional role of specific residues. The mutagenesis work together with the crystallographic studies presented in detail in two accompanying papers adds significantly to the understanding of the catalytic mechanism of this enzyme. Changes caused by introduced mutations emphasize the correlation between substrate specificity and cation preference. Mutations in both His 220 and His 54 mainly affect the catalytic rate constant, with catalysis being severely reduced but not abolished, suggesting that both histidines are important, but not essential, for catalysis. Our results thus challenge the hypothesis that His 54 acts as an obligatory catalytic base for ring opening; this residue appears instead to be implicated in governing the anomeric specificity. With none of the active site histidines acting as a catalytic base, the role of the cations in catalyzing proton transfer is confirmed. In addition, Lys 183 appears to play a crucial part in the isomerization step, by assisting the proton shuttle. Other residues also are important but to a lesser extent. The conserved Lys 294 is indirectly involved in binding the activating cations. Among the active site aromatic residues, the tryptophans (16 and 137) play a role in maintaining the general architecture of the substrate binding site while the role of Phe 26 seems to be purely structural.
Collapse
|
28
|
Characteristics of the glucose isomerase from Streptomyces atratus. Chem Nat Compd 1991. [DOI: 10.1007/bf00629939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Influence of metal ions on the activity and stability of the glucose isomerase from Streptomyces atratus. Chem Nat Compd 1991. [DOI: 10.1007/bf00629940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Quax WJ, Mrabet NT, Luiten RG, Schuurhuizen PW, Stanssens P, Lasters I. Enhancing the Thermostability of Glucose Isomerase by Protein Engineering. Nat Biotechnol 1991; 9:738-42. [PMID: 1367634 DOI: 10.1038/nbt0891-738] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have engineered recombinant glucose isomerase (GI) from Actinoplanes missouriensis by site-directed mutagenesis to enhance its thermal stability in both the soluble and immobilized forms. Substitution of arginine for lysine at position 253, which lies at the dimer/dimer interface of the GI tetramer, produced the largest stabilization under model industrial conditions. We discuss our results in terms of a model in which chemical glycation of lysines by sugars in the industrial corn syrup substrate represents a major pathway of destabilization.
Collapse
Affiliation(s)
- W J Quax
- Gist-brocades, Research & Development, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Whitlow M, Howard AJ, Finzel BC, Poulos TL, Winborne E, Gilliland GL. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose. Proteins 1991; 9:153-73. [PMID: 2006134 DOI: 10.1002/prot.340090302] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The crystal structure of recombinant Streptomyces rubiginosus D-xylose isomerase (D-xylose keto-isomerase, EC 5.3.1.5) solved by the multiple isomorphous replacement technique has been refined to R = 0.16 at 1.64 A resolution. As observed in an earlier study at 4.0 A (Carrell et al., J. Biol. Chem. 259: 3230-3236, 1984), xylose isomerase is a tetramer composed of four identical subunits. The monomer consists of an eight-stranded parallel beta-barrel surrounded by eight helices with an extended C-terminal tail that provides extensive contacts with a neighboring monomer. The active site pocket is defined by an opening in the barrel whose entrance is lined with hydrophobic residues while the bottom of the pocket consists mainly of glutamate, aspartate, and histidine residues coordinated to two manganese ions. The structures of the enzyme in the presence of MnCl2, the inhibitor xylitol, and the substrate D-xylose in the presence and absence of MnCl2 have also been refined to R = 0.14 at 1.60 A, R = 0.15 at 1.71 A, R = 0.15 at 1.60 A, and R = 0.14 at 1.60 A, respectively. Both the ring oxygen of the cyclic alpha-D-xylose and its C1 hydroxyl are within hydrogen bonding distance of NE2 of His-54 in the structure crystallized in the presence of D-xylose. Both the inhibitor, xylitol, and the extended form of the substrate, D-xylose, bind such that the C2 and C4 OH groups interact with one of the two divalent cations found in the active site and the C1 OH with the other cation. The remainder of the OH groups hydrogen bond with neighboring amino acid side chains. A detailed mechanism for D-xylose isomerase is proposed. Upon binding of cyclic alpha-D-xylose to xylose isomerase, His-54 acts as the catalytic base in a ring opening reaction. The ring opening step is followed by binding of D-xylose, involving two divalent cations, in an extended conformation. The isomerization of D-xylose to D-xylulose involves a metal-mediated 1,2-hydride shift. The final step in the mechanism is a ring closure to produce alpha-D-xylulose. The ring closing is the reverse of the ring opening step. This mechanism accounts for the majority of xylose isomerase's biochemical properties, including (1) the lack of solvent exchange between the 2-position of D-xylose and the 1-pro-R position of D-xylulose, (2) the chemical modification of histidine and lysine, (3) the pH vs. activity profile, and (4) the requirement for two divalent cations in the mechanism.
Collapse
Affiliation(s)
- M Whitlow
- Department of Protein Engineering, Genex Corporation, Gaithersburg, Maryland 20877
| | | | | | | | | | | |
Collapse
|
32
|
Sudfeldt C, Schäffer A, Kägi JH, Bogumil R, Schulz HP, Wulff S, Witzel H. Spectroscopic studies on the metal-ion-binding sites of Co2(+)-substituted D-xylose isomerase from Streptomyces rubiginosus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:863-71. [PMID: 2249698 DOI: 10.1111/j.1432-1033.1990.tb19410.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The coordination sphere of the two metal-binding sites/subunit of the homotetrameric D-xylose isomerase from Streptomyces rubiginosus has been probed by the investigation of the Co2(+)-substituted enzyme using electronic absorption, CD and magnetic circular dichroic spectroscopies in the visible region. The spectrum of the high-affinity site (B site) has an absorption coefficient, epsilon 545, of 18 M-1 cm-1, indicating a distorted octahedral complex geometry. The spectrum of the low-affinity site (A site) shows two absorption maxima at 505 nm and 586 nm with epsilon values of 170 M-1 cm-1 and 240 M-1 cm-1, respectively, which indicates a distorted tetrahedral or pentacoordinated complex structure as also observed for the enzyme from Streptomyces violaceoruber [Callens et al. (1988) Biochem. J. 250, 285-290] having the same feature but lower epsilon values. The first 4 mol Co2+ added/mol apoenzyme occupy both sites nearly equally. Subsequently the Co2+ located in the A site slowly moves into the B site. After equilibrium is reached, the next 4 mol Co2+/mol again occupy the A site with its typical spectrum, restoring full activity. Addition of 4 mol Cd2+ or Pb2+/mol Co4-loaded derivative displaces the Co2+ from the B site to form the Pb4/Co4 derivative containing Co2+ in the A site, reducing activity fourfold while the Pb4/Pb4 species is completely inactive. In contrast, Eu3+ displaces Co2+ preferentially from the A site. Thus, the high- and low-affinity sites may be different for different cations. After addition of the substrates D-xylose, D-glucose and D-fructose and the inhibitor xylitol the intense Co2+ A-site spectrum of both the active Co4/Co4 derivative and the less active Pb4/PCo4 derivative decreases, indicating that these compounds are bound to the A site, changing the distorted tetrahedral or pentacoordinated symmetry there to a distorted octahedral complex geometry.
Collapse
Affiliation(s)
- C Sudfeldt
- Institute of Biochemistry, University of Münster, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Collyer CA, Henrick K, Blow DM. Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift. J Mol Biol 1990; 212:211-35. [PMID: 2319597 DOI: 10.1016/0022-2836(90)90316-e] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The active site and mechanism of D-xylose isomerase have been probed by determination of the crystal structures of the enzyme bound to various substrates, inhibitors and cations. Ring-opening is an obligatory first step of the reaction and is believed to be the rate-determining step for the aldose to ketose conversion. The structure of a complex with a cyclic thio-glucose has been determined and it is concluded that this is an analogue of the Michaelis complex. At -10 degrees C substrates in crystals are observed in the extended chain form. The absence of an appropriately situated base for either the cyclic or extended chain forms from the substrate binding site indicates that the isomerisation does not take place by an enediol or enediolate mechanism. Binding of a trivalent cation places an additional charge at the active site, producing a substrate complex that is analogous to a possible transition state. Of the two binding sites for divalent cations, [1] is permanently occupied under catalytic conditions and is co-ordinated to four carboxylate groups. In the absence of substrate it is exposed to solvent, and in the Michaelis complex analogue, site [1] is octahedrally coordinated, with ligands to O-3 and O-4 of the thiopyranose. In the complex with an open-chain substrate it remains octahedrally co-ordinated, with ligands to O-2 and O-4. Binding at a second cation site [2] is also necessary for catalysis and this site is believed to bind Co2+ more strongly than site [1]. This site is octahedrally co-ordinated to three carboxylate groups (bidentate co-ordination to one of them), an imidazole and a solvent molecule. It is proposed that during the hydride shift the C-O-1 and C-O-2 bonds of the substrate are polarized by the close approach of the site [2] cation. In the transition-state analogue this cation is observed at a site [2'], 1.0 A from site [2] and about 2.7 A from O-1 and O-2 of the substrate. It is likely that co-ordination of the cation to O-1 and O-2 would be concomitant with ionisation of the sugar hydroxyl group. The polarisation of C-O-1 and C-O-2 is assisted by the co-ordination of O-2 to cation [1] and O-1 to a lysine side-chain.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C A Collyer
- Blackett Laboratory, Imperial College, London, England
| | | | | |
Collapse
|
34
|
Lindén T, Hahn-Hägerdal B. HPLC determination of xylulose formed by enzymatic xylose isomerization in lignocellulose hydrolysates. ACTA ACUST UNITED AC 1989. [DOI: 10.1007/bf01875618] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Callens M, Kersters-Hilderson H, Vangrysperre W, De Bruyne CK. d-Xylose isomerase from Streptomyces violaceoruber: Structural and catalytic roles of bivalent metal ions. Enzyme Microb Technol 1988. [DOI: 10.1016/0141-0229(88)90064-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Kersters-Hilderson H, Callens M, Van Opstal O, Vangrysperre W, De Bruyne CK. Kinetic characterization of d-xylose isomerases by enzymatic assays using d-sorbitol dehydrogenase. Enzyme Microb Technol 1987. [DOI: 10.1016/0141-0229(87)90067-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|