• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4599705)   Today's Articles (4338)   Subscriber (49357)
For: Cohn D, Younes H. Compositional and structural analysis of PELA biodegradable block copolymers degrading under in vitro conditions. Biomaterials 1989;10:466-74. [PMID: 2804234 DOI: 10.1016/0142-9612(89)90088-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Number Cited by Other Article(s)
1
Ng F, Nicoulin V, Peloso C, Curia S, Richard J, Lopez-Noriega A. In Vitro and In Vivo Hydrolytic Degradation Behaviors of a Drug-Delivery System Based on the Blend of PEG and PLA Copolymers. ACS APPLIED MATERIALS & INTERFACES 2023;15:55495-55509. [PMID: 38011651 DOI: 10.1021/acsami.2c13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
2
Park J, Park E, Choi SQ, Wu J, Park J, Lee H, Kim H, Lee H, Seo M. Biodegradable Block Copolymer-Tannic Acid Glue. JACS AU 2022;2:1978-1988. [PMID: 36186559 PMCID: PMC9516699 DOI: 10.1021/jacsau.2c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
3
Physico-Chemical Characteristics and Posterolateral Fusion Performance of Biphasic Calcium Phosphate with Submicron Needle-Shaped Surface Topography Combined with a Novel Polymer Binder. MATERIALS 2022;15:ma15041346. [PMID: 35207887 PMCID: PMC8880136 DOI: 10.3390/ma15041346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022]
4
Malhotra M, Surnar B, Jayakannan M. Polymer Topology Driven Enzymatic Biodegradation in Polycaprolactone Block and Random Copolymer Architectures for Drug Delivery to Cancer Cells. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01793] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
5
Lins LC, Wianny F, Livi S, Hidalgo IA, Dehay C, Duchet-Rumeau J, Gérard JF. Development of Bioresorbable Hydrophilic–Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering. Biomacromolecules 2016;17:3172-3187. [DOI: 10.1021/acs.biomac.6b00820] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
6
Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate)-block-poly(Ethylene Oxide) Copolymers. Polymers (Basel) 2016;8:polym8070237. [PMID: 30974518 PMCID: PMC6432139 DOI: 10.3390/polym8070237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]  Open
7
Kutikov AB, Song J. Biodegradable PEG-Based Amphiphilic Block Copolymers for Tissue Engineering Applications. ACS Biomater Sci Eng 2015;1:463-480. [PMID: 27175443 PMCID: PMC4860614 DOI: 10.1021/acsbiomaterials.5b00122] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
8
Kutikov AB, Song J. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells. Acta Biomater 2013;9:8354-64. [PMID: 23791675 PMCID: PMC3745304 DOI: 10.1016/j.actbio.2013.06.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 01/13/2023]
9
Chen B, Han B, Song L, Xu D, Pei J. A Novel Preparation Method for Octreotide Acetate-Loaded PLGA Microspheres with a High Drug-Loading Capacity and a Low Initial Burst Release, and Its Studies on Relations between In Vitro and In Vivo Release. ADVANCES IN POLYMER TECHNOLOGY 2013. [DOI: 10.1002/adv.21354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
10
Spassky N. Stereospecific and anionic ring-opening polymerization. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/masy.19910420104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
11
Zhong Q, Ren J, Wang Q. Preparation and characterization of polylactide-block -poly(butylene adipate) polyurethane thermoplastic elastomer. POLYM ENG SCI 2011. [DOI: 10.1002/pen.21911] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
12
Thieme M, Agarwal S, Wendorff JH, Greiner A. Electrospinning and cutting of ultrafine bioerodible poly(lactide-co-ethylene oxide) tri- and multiblock copolymer fibers for inhalation applications. POLYM ADVAN TECHNOL 2009. [DOI: 10.1002/pat.1617] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
13
Li J, Jiang G, Ding F. The effect of pH on the polymer degradation and drug release from PLGA-mPEG microparticles. J Appl Polym Sci 2008. [DOI: 10.1002/app.28122] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
14
Spinu M, Jackson C, Keating MY, Gardner KH. Material Design in Poly(Lactic Acid) Systems: Block Copolymers, Star Homo- and Copolymers, and Stereocomplexes. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2006. [DOI: 10.1080/10601329608014922] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
15
Tew GN, Sanabria-DeLong N, Agrawal SK, Bhatia SR. New properties from PLA-PEO-PLA hydrogels. SOFT MATTER 2005;1:253-258. [PMID: 32646115 DOI: 10.1039/b509800a] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
16
Cohn D, Salomon AH. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials 2005;26:2297-305. [PMID: 15585232 DOI: 10.1016/j.biomaterials.2004.07.052] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2004] [Accepted: 07/23/2004] [Indexed: 11/27/2022]
17
Cohn D, Hotovely-Salomon A. Biodegradable multiblock PEO/PLA thermoplastic elastomers: molecular design and properties. POLYMER 2005. [DOI: 10.1016/j.polymer.2005.01.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
18
Tjong SC, Bei JZ. Degradation behavior of poly (caprolactone)-poly(ethylene glycol) block copolymer/low-density polyethylene blends. POLYM ENG SCI 2004. [DOI: 10.1002/pen.10200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
19
Friess W, Schlapp M. Modifying the release of gentamicin from microparticles using a PLGA blend. Pharm Dev Technol 2002;7:235-48. [PMID: 12066578 DOI: 10.1081/pdt-120003491] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
20
Cohn D, Stern T, González MF, Epstein J. Biodegradable poly(ethylene oxide)/poly(epsilon-caprolactone) multiblock copolymers. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002;59:273-81. [PMID: 11745563 DOI: 10.1002/jbm.1242] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
21
Kissel T, Li Y, Unger F. ABA-triblock copolymers from biodegradable polyester A-blocks and hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv Drug Deliv Rev 2002;54:99-134. [PMID: 11755708 DOI: 10.1016/s0169-409x(01)00244-7] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
22
Feasibility study of hydrolyzable polyrotaxanes aiming at implantable materials. J Artif Organs 2000. [DOI: 10.1007/bf02479980] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
23
Watanabe J, Ooya T, Yui N. Effect of acetylation of biodegradable polyrotaxanes on its supramolecular dissociation via terminal ester hydrolysis. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2000;10:1275-88. [PMID: 10673022 DOI: 10.1163/156856299x00072] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
24
Hydrolytic degradation of PLA/PEO/PLA triblock copolymers prepared in the presence of Zn metal or CaH2. POLYMER 1998. [DOI: 10.1016/s0032-3861(97)10272-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
25
Yeh MK, Davis SS, Coombes AG. Improving protein delivery from microparticles using blends of poly(DL lactide co-glycolide) and poly(ethylene oxide)-poly(propylene oxide) copolymers. Pharm Res 1996;13:1693-8. [PMID: 8956336 DOI: 10.1023/a:1016496824839] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
26
High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. POLYMER 1996. [DOI: 10.1016/s0032-3861(96)00455-7] [Citation(s) in RCA: 407] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
27
Improving the delivery capacity of microparticle systems using blends of poly(DL-lactide co-glycolide) and poly(ethylene glycol). J Control Release 1995. [DOI: 10.1016/0168-3659(95)00039-b] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
28
Grijpma DW, Van Hofslot RDA, Supèr H, Nijenhuis AJ, Pennings AJ. Rubber toughening of poly(lactide) by blending and block copolymerization. POLYM ENG SCI 1994. [DOI: 10.1002/pen.760342205] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
29
Coombes AG, Meikle MC. Resorbable synthetic polymers as replacements for bone graft. CLINICAL MATERIALS 1993;17:35-67. [PMID: 10150176 DOI: 10.1016/0267-6605(94)90046-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
30
Bae YH, Kim SW. Hydrogel delivery systems based on polymer blends, block co-polymers or interpenetrating networks. Adv Drug Deliv Rev 1993. [DOI: 10.1016/0169-409x(93)90029-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
31
Cohn D, Elchai Z, Gershon B, Karck M, Lazarovici G, Sela J, Chandra M, Marom G, Uretzky G. Introducing a selectively biodegradable filament wound arterial prosthesis: a short-term implantation study. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1992;26:1184-204. [PMID: 1429766 DOI: 10.1002/jbm.820260909] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
32
Coombes AG, Heckman JD. Gel casting of resorbable polymers. 2. In-vitro degradation of bone graft substitutes. Biomaterials 1992;13:297-307. [PMID: 1600032 DOI: 10.1016/0142-9612(92)90053-q] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA