1
|
Ghahramanzadeh Asl H, Çelik Uzuner S, Çam S, Uzuner U. Evaluation of the mechanical properties and cell cultural behavior of diamond lattice scaffolds with different porosities. Proc Inst Mech Eng H 2025; 239:388-397. [PMID: 40152121 DOI: 10.1177/09544119251328434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Metal porous structures are a common treatment for bone tissue loss when the loss exceeds the self-repair capacity of the human body. The structural characteristics, mechanical properties, and biological behavior of scaffold biomaterials exert a significant influence on the formation of new bone cells. The objective of this study was to ascertain the mechanical and cell biological behavior of scaffold structures with four distinct porosities (60%, 70%, 80%, and 90%). Scaffold structures with a diamond lattice unit cell were manufactured by the selective laser melting method using a CoCr alloy powder with a diameter of 4 mm and a height of 5 mm and were then subjected to a static compression test. Subsequently, human gingival fibroblast cells were seeded into each sample via the cell culture process, and cell formation was observed. According to the results obtained from the compression test, the sample with 60% porosity demonstrated optimal mechanical performance and effective modulus of elasticity. In the cell culture process, the sample with 60% porosity exhibited the highest adherence rate.
Collapse
Affiliation(s)
- Hojjat Ghahramanzadeh Asl
- Department of Mechanical Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Selcen Çelik Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Salim Çam
- Department of Mechanical Engineering, Faculty of Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Uğur Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
2
|
Kovrlija I, Menshikh K, Abreu H, Cochis A, Rimondini L, Marsan O, Rey C, Combes C, Locs J, Loca D. Challenging applicability of ISO 10993-5 for calcium phosphate biomaterials evaluation: Towards more accurate in vitro cytotoxicity assessment. BIOMATERIALS ADVANCES 2024; 160:213866. [PMID: 38642518 DOI: 10.1016/j.bioadv.2024.213866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Research on biomaterials typically starts with cytocompatibility evaluation, using the ISO 10993-5 standard as a reference that relies on extract tests to determine whether the material is safe (cell metabolic activity should exceed 70 %). However, the generalized approach within the standard may not accurately reflect the material's behavior in direct contact with cells, raising concerns about its effectiveness. Calcium phosphates (CaPs) are a group of materials that, despite being highly biocompatible and promoting bone formation, still exhibit inconsistencies in basic cytotoxicity evaluations. Hence, in order to test the cytocompatibility dependence on different experimental setups and material-cell interactions, we used amorphous calcium phosphate, α-tricalcium phosphate, hydroxyapatite, and octacalcium phosphate (0.1 mg/mL to 5 mg/mL) with core cell lines of bone microenvironment: mesenchymal stem cells, osteoblast-like and endothelial cells. All materials have been characterized for their physicochemical properties before and after cellular contact and once in vitro assays were finalized, groups identified as 'cytotoxic' were further analyzed using a modified Annexin V apoptosis assay to accurately determine cell death. The obtained results showed that indirect contact following ISO standards had no sensitivity of tested cells to the materials, but direct contact tests at physiological concentrations revealed decreased metabolic activity and viability. In summary, our findings offer valuable guidelines for handling biomaterials, especially in powder form, to better evaluate their biological properties and avoid false negatives commonly associated with the traditional standard approach.
Collapse
Affiliation(s)
- Ilijana Kovrlija
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Ksenia Menshikh
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Hugo Abreu
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Andrea Cochis
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Olivier Marsan
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Christian Rey
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| |
Collapse
|
3
|
Akhtar H, Alhamoudi FH, Marshall J, Ashton T, Darr JA, Rehman IU, Chaudhry AA, Reilly G. Synthesis of cerium, zirconium, and copper doped zinc oxide nanoparticles as potential biomaterials for tissue engineering applications. Heliyon 2024; 10:e29150. [PMID: 38601679 PMCID: PMC11004213 DOI: 10.1016/j.heliyon.2024.e29150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
A novel eco-friendly high throughput continuous hydrothermal flow system was used to synthesise phase pure ZnO and doped ZnO in order to explore their properties for tissue engineering applications. Cerium, zirconium, and copper were introduced as dopants during flow synthesis of ZnO nanoparticles, Zirconium doped ZnO were successfully synthesised, however secondary phases of CeO and CuO were detected in X-ray diffraction (XRD). The nanoparticles were characterised using X-ray diffraction, Brunauer-Emmett-Teller (BET), Dynamic Light scattering Measurements, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and RAMAN spectroscopy was used to evaluate physical, chemical, and structural properties. The change in BET surface area was also significant, the surface area increased from 11.35 (ZnO_2) to 26.18 (ZrZnO_5). However. In case of CeZnO_5 and CuZnO_5 was not significant 13.68 (CeZnO_5) and 12.16 (CuZnO_5) respectively. Cell metabolic activity analysis using osteoblast-like cells (MG63) and human embryonic derived mesenchymal stem cells (hES-MP) demonstrated that doped ZnO nanoparticles supported higher cell metabolic activity compared to cells grown in standard media with no nanoparticles added, or pure zinc oxide nanoparticles. The ZrZnO_5 demonstrated the highest cell metabolic activity and non-cytotoxicity over the duration of 28 days as compared to un doped or Ce or Cu incorporated nanoparticles. The current data suggests that Zirconium doping positively enhances the properties of ZnO nanoparticles by increasing the surface area and cell proliferation. Therefore, are potential additives within biomaterials or for tissue engineering applications.
Collapse
Affiliation(s)
- Hafsah Akhtar
- Department of Materials Science and Engineering, Pam Liversidge Building, Mappin Street, Sheffield, United Kingdom
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Fahad Hussain Alhamoudi
- Dental Technology Department, Applied Medical Science, King Khalid University, Abha 62529, Kingdom of Saudi Arabia
| | - Julie Marshall
- Department of Materials Science and Engineering, Pam Liversidge Building, Mappin Street, Sheffield, United Kingdom
| | | | | | - Ihtesham Ur Rehman
- Research and Enterprise, School of Medicine,University of Central Lancashire, Preston, United Kingdom
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Gwendolen Reilly
- Department of Materials Science and Engineering, Pam Liversidge Building, Mappin Street, Sheffield, United Kingdom
| |
Collapse
|
4
|
Allioux FM, Merhebi S, Liu L, Centurion F, Abbasi R, Zhang C, Ireland J, Biazik JM, Mayyas M, Yang J, Mousavi M, Ghasemian MB, Tang J, Xie W, Rahim MA, Kalantar-Zadeh K. A liquid metal-polydopamine composite for cell culture and electro-stimulation. J Mater Chem B 2023; 11:3941-3950. [PMID: 37067358 DOI: 10.1039/d2tb02079c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Gallium (Ga) is a low melting point metal in the liquid state in the biological environment which presents a unique combination of fluidity, softness, and metallic electrical and thermal properties. In this work, liquid Ga is proposed as a biocompatible electrode material for cell culture by electro-stimulation since the cytotoxicity of Ga is generally considered low and some Ga compounds have been reported to exhibit anti-bacterial and anti-inflammatory activities. Complementarily, polydopamine (PDA) was coated on liquid Ga to increase the attachment capability of cells on the liquid Ga electrode and provide enhanced biocompatibility. The liquid Ga layer could be readily painted at room temperature on a solid inert substrate, followed by the formation of a nanoscale PDA coating layer resulting in a conformable and biocompatible composite electrode. The PDA layer was shown to coordinate with Ga3+, which is sourced from liquid Ga, providing electrical conductivity in the cell culture medium. The PDA-Ga3+ composite acted as a conductive substrate for advanced electro-stimulation for cell culture methods of representative animal fibroblasts. The cell proliferation was observed to increase by ∼143% as compared to a standard glass coverslip at a low potential of 0.1 V of direct coupling stimulation. This novel PDA-Ga3+ composite has potential applications in cell culture and regenerative medicine.
Collapse
Affiliation(s)
- Francois-Marie Allioux
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Salma Merhebi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Li Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Roozbeh Abbasi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chengchen Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jake Ireland
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Joanna M Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jiong Yang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mohammad B Ghasemian
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Wanjie Xie
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Md Arifur Rahim
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Visalakshan RM, Bright R, Burzava ALS, Barker AJ, Simon J, Ninan N, Palms D, Wood J, Martínez-Negro M, Morsbach S, Mailänder V, Anderson PH, Brown T, Barker D, Landfester K, Vasilev K. Antibacterial Nanostructured Surfaces Modulate Protein Adsorption, Inflammatory Responses, and Fibrous Capsule Formation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:220-235. [PMID: 36416784 DOI: 10.1021/acsami.2c13415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present study interrogates the interaction of highly efficient antibacterial surfaces containing sharp nanostructures with blood proteins and the subsequent immunological consequences, processes that are of key importance for the fate of every implantable biomaterial. Studies with human serum and plasma pointed to significant differences in the composition of the protein corona that formed on control and nanostructured surfaces. Quantitative analysis using liquid chromatography-mass spectrometry demonstrated that the nanostructured surface attracted more vitronectin and less complement proteins compared to the untreated control. In turn, the protein corona composition modulated the adhesion and cytokine expression by immune cells. Monocytes produced lower amounts of pro-inflammatory cytokines and expressed more anti-inflammatory factors on the nanostructured surface. Studies using an in vivo subcutaneous mouse model showed reduced fibrous capsule thickness which could be a consequence of the attenuated inflammatory response. The results from this work suggest that antibacterial surface modification with sharp spike-like nanostructures may not only lead to the reduction of inflammation but also more favorable foreign body response and enhanced healing, processes that are beneficial for most medical devices implanted in patients.
Collapse
Affiliation(s)
- Rahul Madathiparambil Visalakshan
- UniSA STEM, University of South Australia, Adelaide, Mawson Lakes, South Australia 5095, Australia
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon 97201, United States
| | - Richard Bright
- UniSA STEM, University of South Australia, Adelaide, Mawson Lakes, South Australia 5095, Australia
| | - Anouck L S Burzava
- UniSA STEM, University of South Australia, Adelaide, Mawson Lakes, South Australia 5095, Australia
| | - Alex J Barker
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Johanna Simon
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Neethu Ninan
- UniSA STEM, University of South Australia, Adelaide, Mawson Lakes, South Australia 5095, Australia
| | - Dennis Palms
- UniSA STEM, University of South Australia, Adelaide, Mawson Lakes, South Australia 5095, Australia
| | - Jonathan Wood
- UniSA STEM, University of South Australia, Adelaide, Mawson Lakes, South Australia 5095, Australia
| | - María Martínez-Negro
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Paul H Anderson
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Toby Brown
- Corin Group, Corin Australia, Sydney, New South Wales 2153, Australia
| | - Dan Barker
- Corin Group, Corin Australia, Sydney, New South Wales 2153, Australia
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Krasimir Vasilev
- UniSA STEM, University of South Australia, Adelaide, Mawson Lakes, South Australia 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
6
|
Influence of surface termination of ultrananocrystalline diamond films coated on titanium on response of human osteoblast cells: A proteome study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112289. [PMID: 34474840 DOI: 10.1016/j.msec.2021.112289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Successful osseointegration, i.e. the fully functional connection of patient's bone and artificial implant depends on the response of the cells to the direct contact with the surface of the implant. The surface properties of the implant which trigger cell responses leading to its integration into the surrounding bone can be tailored by surface modifications or coating with thin layers. One potential material for such applications is ultrananocrystalline diamond (UNCD). It combines the exceptional mechanical properties of diamond with good biocompatibility and possibility of coating as thin uniform films on different substrates of biological interest. In the current work we firstly deposited UNCD films on titanium-coated substrates and applied oxygen or ammonia plasma to modify their surface properties. The as-grown and modified UNCD exhibited relatively smooth surfaces with topography dominated by rounded features. The modifications induced oxygen- or amino-terminated surfaces with increased hydrophilicity. In addition, the UNCD coatings exhibited very low coefficient of friction when diamond was used as a counterpart. As-grown and modified UNCD samples were applied to study the responses of human osteoblast MG63 cells triggered by surfaces with various terminations assessed by proteomic analysis. The results revealed that the coating of Ti with UNCD as well as the plasma modifications resulting in O- or NH2-terminated UNCD induced upregulation of proteins specific for cytoskeleton, cell membrane, and extracellular matrix (ECM) involved in the cell-ECM-surface interactions. Proteins from each of these groups, namely, vimentin, cadherin and fibronectin were further studied immunocytochemically and the results confirmed their increased abundance leading to improved cell-to-surface adhesion and cell-to-cell interactions. These findings demonstrate the potential of implant coating with UNCD and its surface modifications for better osseointegration and bone formation.
Collapse
|
7
|
Choi E, Bae S, Kim D, Yang GH, Lee K, You HJ, Kang HJ, Gwak SJ, An S, Jeon H. Characterization and intracellular mechanism of electrospun poly (ε-caprolactone) (PCL) fibers incorporated with bone-dECM powder as a potential membrane for guided bone regeneration. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
An in vitro assessment and comparative effectiveness of silanized-glutaraldehyde functionalized titanium surfaces with phosphatidylcholine and type I collagen grafts. Dent Mater 2019; 36:320-328. [PMID: 31864675 DOI: 10.1016/j.dental.2019.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVE This study aims to evaluate sequence-modified Ti surfaces functionalized with silanized glutaraldehyde and further grafted with the active biomolecules of phosphatidylcholine and type I collagen (COL I). METHODS The properties of the functional surfaces were investigated by various surface analysis techniques and characterized their capability in osteogenic cell attachment, differentiation, and mineralization in vitro. RESULTS The Ti surfaces grafted with phosphatidylcholine and COL I effectively improved the hydrophilicity. In addition, an effect of COL I concentrations (higher than 2.5μg/mL) do not stimulate subsequent alkaline phosphatase (ALP) activity during osteogenesis in vitro. However, the result is different in phosphatidylcholine, that is, as the concentration of phosphatidylcholine increased enhances subsequent osteogenetic properties. The Ti groups with bioactive molecules affected cell characteristics in vitro in contrast to the controlled Ti group. The proliferation and differentiation levels of osteoprogenetor cells were enhanced and ALP was strongly expressed in the groups grafted with phosphatidylcholine and COL I. SIGNIFICANCE This modification promotes progenitor bone cell adhesion, proliferation, and differentiation and thus drastically improves the success rate for implant modification by accelerating surface osseointegration.
Collapse
|
9
|
Januariyasa IK, Ana ID, Yusuf Y. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110347. [PMID: 31761152 DOI: 10.1016/j.msec.2019.110347] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/03/2019] [Accepted: 10/20/2019] [Indexed: 10/25/2022]
Abstract
A scaffold that mimics the physicochemical structure of bone at the nanoscale level is an attractive alternative to conventional bone grafts, but its development remains a main challenge in bone tissue engineering today. This work describes the fabrication of a nanofibrous poly(vinyl alcohol)/chitosan/carbonated hydroxyapatite (PVA/CS/CHAp) scaffold. CHAp nanoparticles were synthesized using a co-precipitation method, and nanofibrous PVA/CS/CHAp scaffolds were fabricated by electrospinning using CHAp concentrations of 0, 5, 10, 15, and 20 wt%. The physicochemical properties of the scaffolds were evaluated by SEM, XRD, FTIR, and EDS, and the mechanical properties were determined by tensile strength tests. Swelling behavior, protein adsorption onto the scaffold surfaces, surface biomineralization, and cells viability were also evaluated in vitro. The addition of CHAp to the composite decreased the fiber diameter from ∼160 nm at 0 wt% to ∼139 nm at 15 wt% and great agglomerations were evident at 20 wt%. XRD, FTIR, and EDS showed effective incorporation of CHAp into the nanofibrous structure. This CHAp incorporation significantly increased the modulus of the scaffold at PVA/CS/CHAp 15 wt%, with an average 103.86 MPa, but tensile strength was not significantly altered. However, the elongation at break was decreased as the CHAp concentration increased. Swelling capacity of scaffold increases due to CHAp addition. Protein adsorption onto the scaffold increased 2.3fold at 20 wt% when compared to 0 wt%. The PVA/CS/CHAp 15 wt% showed a better bioactivity when compared to PVA/CS/CHAp 0 wt% after immersion of the scaffolds in a simulated body fluid solution for 7 days. Cell viability and cell morphology results reveal that PVA/CS/CHAp able to facilitate osteoblast cells to attach and proliferate. Introducing higher CHAp into the scaffold could increase the cell viability of the scaffold. PVA/CS/CHAp has potential to serve as an alternative scaffold material for bone tissue engineering.
Collapse
Affiliation(s)
- I Komang Januariyasa
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| |
Collapse
|
10
|
A Vitronectin-Derived Bioactive Peptide Improves Bone Healing Capacity of SLA Titanium Surfaces. MATERIALS 2019; 12:ma12203400. [PMID: 31627447 PMCID: PMC6829905 DOI: 10.3390/ma12203400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
Abstract
In this study, we evaluated early bone responses to a vitronectin-derived, minimal core bioactive peptide, RVYFFKGKQYWE motif (VnP-16), both in vitro and in vivo, when the peptide was treated on sandblasted, large-grit, acid-etched (SLA) titanium surfaces. Four surface types of titanium discs and of titanium screw-shaped implants were prepared: control, SLA, scrambled peptide-treated, and VnP-16-treated surfaces. Cellular responses, such as attachment, spreading, migration, and viability of human osteoblast-like HOS and MG63 cells were evaluated in vitro on the titanium discs. Using the rabbit tibia model with the split plot design, the implants were inserted into the tibiae of four New Zealand white rabbits. After two weeks of implant insertion, the rabbits were sacrificed, the undecalcified specimens were prepared for light microscopy, and the histomorphometric data were measured. Analysis of variance tests were used for the quantitative evaluations in this study. VnP-16 was non-cytotoxic and promoted attachment and spreading of the human osteoblast-like cells. The VnP-16-treated SLA implants showed no antigenic activities at the interfaces between the bones and the implants and indicated excellent bone-to-implant contact ratios, the means of which were significantly higher than those in the SP-treated implants. VnP-16 reinforces the osteogenic potential of the SLA titanium dental implant.
Collapse
|
11
|
do Nascimento RM, Sarig U, da Cruz NC, de Carvalho VR, Eyssartier C, Siad L, Ganghoffer J, Hernandes AC, Rahouadj R. Optimized‐Surface Wettability: A New Experimental 3D Modeling Approach Predicting Favorable Biomaterial–Cell Interactions. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rodney Marcelo do Nascimento
- São Carlos Institute of PhysicsUniversity of São Paulo USP 13566‐590 Brazil
- Laboratoire d'Etude des Microstructures et de Mécanique des MatériauxLEM3 UMR CNRS 7239University of Lorraine Nancy‐Metz 57070 France
- Departamento de FisicaUniversidade Federal de Santa CatarinaCampus Reitor Joao David Ferreira Lima, s/n, Trindade Florianopolis 88040‐900 Brazil
| | - Udi Sarig
- Biotechnology & Food EngineeringTechnion – Israel Institute of Technology 32000 Haifa Israel
- Biotechnology & Food EngineeringGuangdong‐Technion Israel Institute of Technology 515063 Shantou Guangdong Province P. R. China
| | | | | | - Camille Eyssartier
- Ecole Nationale Supérieure des Mines de Nancy Campus Artem – CS 14 234, 92 France
| | - Larbi Siad
- Biomatériaux et inflammation en site osseuxBIOSUniversité de Reims EA 4691 CNRS 51095 France
| | - Jean‐François Ganghoffer
- Laboratoire d'Etude des Microstructures et de Mécanique des MatériauxLEM3 UMR CNRS 7239University of Lorraine Nancy‐Metz 57070 France
| | | | - Rachid Rahouadj
- Laboratoire d'Etude des Microstructures et de Mécanique des MatériauxLEM3 UMR CNRS 7239University of Lorraine Nancy‐Metz 57070 France
| |
Collapse
|
12
|
Raines AL, Berger MB, Patel N, Hyzy SL, Boyan BD, Schwartz Z. VEGF-A regulates angiogenesis during osseointegration of Ti implants via paracrine/autocrine regulation of osteoblast response to hierarchical microstructure of the surface. J Biomed Mater Res A 2018; 107:423-433. [PMID: 30461195 DOI: 10.1002/jbm.a.36559] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Establishment of a patent vasculature at the bone-implant interface plays a significant role in determining overall success of orthopedic and dental implants. Osteoblasts produce vascular endothelial growth factor-A (VEGF-A), an important regulator of angiogenesis during bone formation and healing, and the amount secreted is sensitive to titanium (Ti) surface microtopography and surface energy. The purpose of this study was to determine if surface properties modulate cellular response to VEGF-A. MG63 osteoblast-like cells were transfected with shRNA targeting VEGF-A at >80% knockdown. Cells stably silenced for VEGF-A secreted reduced levels of osteocalcin, osteoprotegerin, FGF-2, and angiopoietin-1 when cultured on grit-blasted/acid-etched (SLA) and hydrophilic SLA (modSLA) Ti surfaces and conditioned media from these cultures caused reduced angiogenesis in an endothelial tubule formation assay. Treatment of MG63 cells with 20 ng/mL rhVEGF-A165 rescued production in silenced cells and increased production of osteocalcin, osteoprotegerin, FGF-2, and angiopoietin-1, with greatest effects on control cells cultured on modSLA. Addition of a neutralization antibody against VEGF receptor 2 (VEGFR2; Flk-1) resulted in a significant increase in VEGF-A production. Overall, this study indicates that VEGF-A has two roles in osseointegration: enhanced angiogenesis and an autocrine/paracrine role in maturation of osteoblast-like cells in response to Ti surface properties. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 423-433, 2019.
Collapse
Affiliation(s)
- Andrew L Raines
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael B Berger
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nehal Patel
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sharon L Hyzy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, USA.,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Barbara D Boyan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, USA.,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
13
|
Behera RR, Hasan A, Sankar MR, Pandey LM. Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility. SURFACE AND COATINGS TECHNOLOGY 2018; 352:420-436. [DOI: 10.1016/j.surfcoat.2018.08.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
14
|
Chang CH, Li CL, Yu CC, Chen YL, Chyntara S, Chu JP, Chen MJ, Chang SH. Beneficial effects of thin film metallic glass coating in reducing adhesion of platelet and cancer cells: Clinical testing. SURFACE AND COATINGS TECHNOLOGY 2018; 344:312-321. [DOI: 10.1016/j.surfcoat.2018.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
|
15
|
Biomineralization of osteoblasts on DLC coated surfaces for bone implants. Biointerphases 2018; 13:041002. [PMID: 29788723 DOI: 10.1116/1.5007805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diamond like carbon (DLC) films were deposited onto Ti6Al4V and Si wafer substrates by RF plasma enhanced chemical vapor deposition. The influence of dopants such as fluorine (F), silicon (Si), and nitrogen (N) on composition, structure, and biocompatibility was investigated. Ion scattering spectroscopy analysis revealed the presence of dopant atoms in the outer-most layers of the films. Raman studies showed that the position of the G-band shifts to higher frequencies with the fluorine and nitrogen content in the DLC film, whereas the incorporation of Si into DLC induces a decrease of the position of the G peak. The corrosion behavior was studied in simulated body fluid. A higher charge transfer resistance (Rct) was observed for the doped DLC films. The indirect cytotoxicity was performed using L929 fibroblast cells. The coated surfaces were hemocompatible when tested with red blood cells. DLC films were noncytotoxic to L929 cells over a 24 h exposure. Saos-2 osteoblast cell response to the doped and undoped DLC coated surfaces was studied in adhesion, proliferation, differentiation, and mineralization assays. The production of calcium and phosphate by cells on doped DLC, particularly, nitrogen doped DLC, was higher than that on undoped DLC.
Collapse
|
16
|
Hu C, Shi Y, Sun C, Liang S, Bao S, Pang M. Facile preparation of ion-doped poly(p-phenylenediamine) nanoparticles for photothermal therapy. Chem Commun (Camb) 2018; 54:4862-4865. [DOI: 10.1039/c8cc01100a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion-doped poly(p-phenylenediamine) nanoparticles were synthesized and used as a photothermal agent for photothermal therapy for the first time.
Collapse
Affiliation(s)
- Chunling Hu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
- University of the Chinese Academy of Sciences
| | - Yanshu Shi
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
- University of the Chinese Academy of Sciences
| | - Chunqiang Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Shouxin Bao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Maolin Pang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
17
|
|
18
|
Lawton JM, Habib M, Ma B, Brooks RA, Best SM, Lewis AL, Rushton N, Bonfield W. The effect of cationically-modified phosphorylcholine polymers on human osteoblasts in vitro and their effect on bone formation in vivo. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:144. [PMID: 28819908 PMCID: PMC5561156 DOI: 10.1007/s10856-017-5958-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
The effect of introducing cationic charge into phosphorylcholine (PC)-based polymers has been investigated in this study with a view to using these materials as coatings to improve bone formation and osseointegration at the bone-implant interface. PC-based polymers, which have been used in a variety of medical devices to improve biocompatibility, are associated with low protein adsorption resulting in reduced complement activation, inflammatory response and cell adhesion. However, in some applications, such as orthopaedics, good integration between the implant and bone is needed to allow the distribution of loading stresses and a bioactive response is required. It has previously been shown that the incorporation of cationic charge into PC-based polymers may increase protein adsorption that stimulates subsequent cell adhesion. In this paper, the effect of cationic charge in PC-based polymers on human osteoblasts (HObs) in vitro and the effect of these polymers on bone formation in the rat tibia was assessed. Increasing PC positive surface charge increased HOb cell adhesion and stimulated increased cell differentiation and the production of calcium phosphate deposits. However, when implanted in bone these materials were at best biotolerant, stimulating the production of fibrous tissue and areas of loosely associated matrix (LAM) around the implant. Their development, as formulated in this study, as bone interfacing implant coatings is therefore not warranted.
Collapse
Affiliation(s)
- Jonathan M Lawton
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, New Museum Site, Cambridge, CB2 3QZ, UK
| | - Mariam Habib
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, New Museum Site, Cambridge, CB2 3QZ, UK
| | - Bingkui Ma
- Orthopaedic Research Unit, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Roger A Brooks
- Orthopaedic Research Unit, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Serena M Best
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, New Museum Site, Cambridge, CB2 3QZ, UK
| | - Andrew L Lewis
- Biocompatibles UK Ltd, Chapman House, Farnham Business Park, Weydon Lane, Farnham, Surrey, GU9 8QL, UK.
| | - Neil Rushton
- Orthopaedic Research Unit, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - William Bonfield
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, New Museum Site, Cambridge, CB2 3QZ, UK
| |
Collapse
|
19
|
Aiyelabegan HT, Sadroddiny E. Fundamentals of protein and cell interactions in biomaterials. Biomed Pharmacother 2017; 88:956-970. [PMID: 28178627 DOI: 10.1016/j.biopha.2017.01.136] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) is an active and complex microenvironment with outstanding biomechanical, biophysical, and biochemical characteristics, which can indirectly or directly controls cell adhesion, migration, proliferation, and differentiation, as well as partaking in regeneration and homeostasis of organs and tissues. The ECM has captivated a great deal of attention with the rapid progress of tissue engineering (TE) in the field of regenerative medicine (RM). Approaches to TE, RM and cancer therapy center on the necessity to deliver cell signals to direct cell proliferation and differentiation. These "external signals" are induced from cell-cell, and cell-ECM, interactions, as well as from physico-chemical, mechanical stimuli and growth factors. With the advent of new biomaterials such as casein, we gave a general insight into cell-ECM protein interactions in biomaterials and their applications in TE, RM and cancer therapy. An account of the main ECM molecules and cellular receptors with emphasis on integrins and its ligands was given, their effect on the induction of particular signal transduction pathways is also elucidated.
Collapse
Affiliation(s)
- Hammed Tanimowo Aiyelabegan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, International Campus-Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Gitelman Povimonsky A, Rapaport H. Peptide coating applied on the spot improves osseointegration of titanium implants. J Mater Chem B 2017; 5:2096-2105. [DOI: 10.1039/c6tb03093a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
On the spot osseointegrating peptide coating applicable to any size and shape of titanium bone implants.
Collapse
Affiliation(s)
- Anna Gitelman Povimonsky
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering
- Ben-Gurion University of the Negev
- Beer-Sheva 84105
- Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering
- Ben-Gurion University of the Negev
- Beer-Sheva 84105
- Israel
- Ilse Katz Institute for Nano-Science and Technology (IKI)
| |
Collapse
|
21
|
Shibata Y, Kawai H, Yamamoto H, Igarashi T, Miyazaki T. Antibacterial Titanium Plate Anodized by being Discharged in NaCl Solution Exhibits Cell Compatibility. J Dent Res 2016; 83:115-9. [PMID: 14742647 DOI: 10.1177/154405910408300206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Implant surfaces should be modified to achieve excellent cell compatibility as well as antibacterial activity. Our previous study demonstrated that titanium plates anodized by being discharged in NaCl (Ti-Cl) exhibited high antibacterial activity. Since Ti-Cl was prepared with a NaCl solution, we hypothesized that Ti-Cl would exhibit low toxicity toward cells. The aims of this study were to characterize the surface of Ti-Cl and investigate the cell compatibility (MC3T3-E1 and L929 cells) of Ti-Cl. The results demonstrated that, since the TiCl3 formed on the Ti-Cl surface was hydrolyzed into HCl, HClO, and TiOH after immersion in pure distilled water, TiCl3 contributed to the antibacterial activity of Ti-Cl. On the other hand, TiO formed on the Ti-Cl surface enhanced cell extension and cell growth through a larger adsorption of fibronectin compared with the pure titanium control. These findings suggest that antibacterial titanium is a promising material for use in dental implant systems.
Collapse
Affiliation(s)
- Y Shibata
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | | | | | | | | |
Collapse
|
22
|
Zhang D, Wong CS, Wen C, Li Y. Cellular responses of osteoblast-like cells to 17 elemental metals. J Biomed Mater Res A 2016; 105:148-158. [PMID: 27601355 DOI: 10.1002/jbm.a.35895] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 11/06/2022]
Abstract
Elemental metals have been widely used to alloy metallic orthopedic implants. However, there is still insufficient research data elucidating the cell responses of osteoblastic cells to alloying elemental metals, which impedes the development of new metallic implant materials. In this study, the cellular responses of osteoblast-like cells (SaOS2) to 17 pure alloying elemental metals, that is, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), manganese (Mn), iron (Fe), ruthenium (Ru), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), silicon (Si), and tin (Sn) were comparatively investigated in vitro. Cellular responses including intracellular total protein synthesis and collagen content, cell adhesion, cell proliferation, and alkaline phosphatase (ALP) activity on these elemental metals were systematically assessed and compared. It was found that these elemental metals could be categorized into three groups based on the cellular functions on them. Group 1, including Ti, Zr, Hf, Nb, Ta, Cr, Ru, and Si, showed excellent cell proliferation and varied ALP activity for SaOS2 cells. Cells exposed to Group 2, including Mo and Sn, although initially attached and grew, did not proliferate over time. In contrast, Group 3, including V, Mn, Fe, Co, Ni, Cu, and Zn, showed severe cytotoxicity toward SaOS2 cells. It is vital to consider the cell responses to the elemental metals when designing a new metallic implant material and the findings of this study provide insights into the biological performance of the elemental metals. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 148-158, 2017.
Collapse
Affiliation(s)
- Dongmei Zhang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3217, Australia
| | - Cynthia S Wong
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3217, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
23
|
Du Z, Xiao Y, Hashimi S, Hamlet SM, Ivanovski S. The effects of implant topography on osseointegration under estrogen deficiency induced osteoporotic conditions: Histomorphometric, transcriptional and ultrastructural analysis. Acta Biomater 2016; 42:351-363. [PMID: 27375286 DOI: 10.1016/j.actbio.2016.06.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 01/07/2023]
Abstract
UNLABELLED Compromised bone quality and/or healing in osteoporosis are recognised risk factors for impaired dental implant osseointegration. This study examined the effects of (1) experimentally induced osteoporosis on titanium implant osseointegration and (2) the effect of modified implant surface topography on osseointegration under osteoporosis-like conditions. Machined and micro-roughened surface implants were placed into the maxillary first molar root socket of 64 ovariectomised and sham-operated Sprague-Dawley rats. Subsequent histological and SEM observations showed tissue maturation on the micro-rough surfaced implants in ovariectomised animals as early as 3days post-implantation. The degree of osseointegration was also significantly higher around the micro-rough implants in ovariectomised animals after 14days of healing although by day 28, similar levels of osseointegration were found for all test groups. The micro-rough implants significantly increased the early (day 3) gene expression of alkaline phosphatase, osteocalcin, receptor activator of nuclear factor kappa-B ligand and dentin matrix protein 1 in implant adherent cells. By day 7, the expression of inflammatory genes decreased while the expression of the osteogenic markers increased further although there were few statistically significant differences between the micro-rough and machined surfaces. Osteocyte morphology was also affected by estrogen deficiency with the size of the cells being reduced in trabecular bone. In conclusion, estrogen deficiency induced osteoporotic conditions negatively influenced the early osseointegration of machined implants while micro-rough implants compensated for these deleterious effects by enhancing osteogenic cell differentiation on the implant surface. STATEMENT OF SIGNIFICANCE Lower bone density, poor bone quality and osseous microstructural changes are all features characteristic of osteoporosis that may impair the osseointegration of dental implants. Using a clinically relevant trabecular bone model in the rat maxilla, we demonstrated histologically that the negative effects of surgically-induced osteoporosis on osseointegration could be ameliorated by the biomaterial's surface topography. Furthermore, gene expression analysis suggests this may be a result of enhanced osteogenic cell differentiation on the implant surface.
Collapse
|
24
|
Ritz U, Nusselt T, Sewing A, Ziebart T, Kaufmann K, Baranowski A, Rommens PM, Hofmann A. The effect of different collagen modifications for titanium and titanium nitrite surfaces on functions of gingival fibroblasts. Clin Oral Investig 2016; 21:255-265. [PMID: 26969500 DOI: 10.1007/s00784-016-1784-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/03/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Targeted modifications of the bulk implant surfaces using bioactive agents provide a promising tool for improvement of the long-term bony and soft tissue integration of dental implants. In this study, we assessed the cellular responses of primary human gingival fibroblasts (HGF) to different surface modifications of titanium (Ti) and titanium nitride (TiN) alloys with type I collagen or cyclic-RGDfK-peptide in order to define a modification improving long-term implants in dental medicine. MATERIALS AND METHODS Employing Ti and TiN implants, we compared the performance of simple dip coating and anodic immobilization of type I collagen that provided collagen layers of two different thicknesses. HGF were seeded on the different coated implants, and adhesion, proliferation, and gene expression were analyzed. RESULTS Although there were no strong differences in initial cell adhesion between the groups at 2 and 4 hours, we found that all surface modifications induced higher proliferation rates as compared to the unmodified controls. Consistently, gene expression levels of cell adhesion markers (focal adhesion kinase (FAK), integrin beta1, and vinculin), cell differentiation markers (FGFR1, TGFb-R1), extracellular protein markers (type I collagen, vimentin), and cytoskeletal protein marker aktinin-1 were consistently higher in all surface modification groups at two different time points of investigation as compared to the unmodified controls. CONCLUSION Our results indicate that simple dip coating of Ti and TiN with collagen is sufficient to induce in vitro cellular responses that are comparable to those of more reliable coating methods like anodic adsorption, chemical cross-linking, or RGD coating. TiN alloys do not possess any positive or adverse effects on HGF. CLINICAL RELEVANCE Our results demonstrate a simple, yet effective, method for collagen coating on titanium implants to improve the long term integration and stability of dental implants.
Collapse
Affiliation(s)
- U Ritz
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - T Nusselt
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - A Sewing
- Biomet Deutschland GmbH, Berlin, Germany
| | - T Ziebart
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | | | - A Baranowski
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - P M Rommens
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
25
|
Felgueiras HP, Evans MD, Migonney V. Contribution of fibronectin and vitronectin to the adhesion and morphology of MC3T3-E1 osteoblastic cells to poly(NaSS) grafted Ti6Al4V. Acta Biomater 2015; 28:225-233. [PMID: 26415777 DOI: 10.1016/j.actbio.2015.09.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/27/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
This study is focused on understanding the underlying mechanisms involved in the improved in vitro and in vivo responses of osteoblasts on poly(sodium styrene sulfonate) (poly(NaSS)) functionalized Ti6Al4V surfaces. We probed the contribution of cell-adhesive glycoproteins fibronectin (Fn) and vitronectin (Vn) in the initial adhesion of MC3T3-E1 osteoblastic cells to poly(NaSS) functionalized and control Ti6Al4V surfaces. Firstly, culture media containing serum depleted of Fn and Vn (DD) were used to establish the contribution of Fn and Vn in the adhesion and spreading of cells on poly(NaSS) grafted and control surfaces. Compared to ungrafted surfaces, poly(NaSS) grafted surfaces enhanced the levels of cell adhesion, cell spreading and the formation of intracellular actin cytoskeleton and focal contacts in serum treatments where Fn or Vn were present (FBS, DD+Fn, DD+Vn). Cell responses to Fn were more significant than to Vn. Secondly, blocking Fn and Vn integrin receptors using antibodies to α5β1 (Fn) and αvβ1 (Vn) showed that adhesion of cells to poly(NaSS) grafted surfaces principally involved the Fn integrin receptor α5β1. Thirdly, blocking of the heparin and cell-binding regions of Fn molecule (RGD, C-HB, N-HB) showed that grafting with poly(NaSS) altered the conformation of Fn. Together these outcomes explained why the presence of sulfonate (SO3(-)) groups grafted on the Ti6Al4V surface enhanced the early cell adhesion and spreading processes which determine clinical success for applications that require osseointegration. STATEMENT OF SIGNIFICANCE This study is devoted to the basic analysis of the mechanism at the origin of the improved in vitro and in vivo osteoblast cell responses exhibited by poly(sodium styrene sulfonate) (poly(NaSS)) functionalized Ti6Al4V surfaces. The aim was to probe the contribution of cell adhesive glycoproteins fibronectin and vitronectin in the initial adhesion of MC3T3-E1 osteoblastic cells to poly(NaSS) functionalized Ti6Al4V surfaces. The outcomes of this research explained why the presence of SO3(-) (sulfonate) groups grafted on the Ti6Al4V surface enhanced the early cell adhesion and spreading processes which determine clinical success for applications that require osseointegration. This work is a step further in the research of poly(NaSS), a very promising bioactive polymer with potential to the orthopedic and dental fields.
Collapse
|
26
|
Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:5-10. [DOI: 10.1016/j.msec.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 11/01/2014] [Accepted: 11/05/2014] [Indexed: 11/22/2022]
|
27
|
Shibata Y, Tanimoto Y. A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration. J Prosthodont Res 2015; 59:20-33. [DOI: 10.1016/j.jpor.2014.11.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/05/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
|
28
|
Böke F, Schickle K, Fischer H. Biological Activation of Inert Ceramics: Recent Advances Using Tailored Self-Assembled Monolayers on Implant Ceramic Surfaces. MATERIALS (BASEL, SWITZERLAND) 2014; 7:4473-4492. [PMID: 28788687 PMCID: PMC5455923 DOI: 10.3390/ma7064473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/20/2014] [Accepted: 06/05/2014] [Indexed: 11/16/2022]
Abstract
High-strength ceramics as materials for medical implants have a long, research-intensive history. Yet, especially on applications where the ceramic components are in direct contact with the surrounding tissue, an unresolved issue is its inherent property of biological inertness. To combat this, several strategies have been investigated over the last couple of years. One promising approach investigates the technique of Self-Assembled Monolayers (SAM) and subsequent chemical functionalization to create a biologically active tissue-facing surface layer. Implementation of this would have a beneficial impact on several fields in modern implant medicine such as hip and knee arthroplasty, dental applications and related fields. This review aims to give a summarizing overview of the latest advances in this recently emerging field, along with thorough introductions of the underlying mechanism of SAMs and surface cell attachment mechanics on the cell side.
Collapse
Affiliation(s)
- Frederik Böke
- Department of Dental Materials and Biomaterial Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Karolina Schickle
- Department of Dental Materials and Biomaterial Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Horst Fischer
- Department of Dental Materials and Biomaterial Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
29
|
de Peppo GM, Agheli H, Karlsson C, Ekström K, Brisby H, Lennerås M, Gustafsson S, Sjövall P, Johansson A, Olsson E, Lausmaa J, Thomsen P, Petronis S. Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro. Int J Nanomedicine 2014; 9:2499-515. [PMID: 24904210 PMCID: PMC4039423 DOI: 10.2147/ijn.s58805] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patterning medical devices at the nanoscale level enables the manipulation of cell behavior and tissue regeneration, with topographic features recognized as playing a significant role in the osseointegration of implantable devices. METHODS In this study, we assessed the ability of titanium-coated hemisphere-like topographic nanostructures of different sizes (approximately 50, 100, and 200 nm) to influence the morphology, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs). RESULTS We found that the proliferation and osteogenic differentiation of hMSCs was influenced by the size of the underlying structures, suggesting that size variations in topographic features at the nanoscale level, independently of chemistry, can be exploited to control hMSC behavior in a size-dependent fashion. CONCLUSION Our studies demonstrate that colloidal lithography, in combination with coating technologies, can be exploited to investigate the cell response to well defined nanoscale topography and to develop next-generation surfaces that guide tissue regeneration and promote implant integration.
Collapse
Affiliation(s)
- Giuseppe Maria de Peppo
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Hossein Agheli
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Camilla Karlsson
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Karin Ekström
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Helena Brisby
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
- Department of Orthopaedics, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Maria Lennerås
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Stefan Gustafsson
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
- Applied Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Peter Sjövall
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
- Applied Physics, Chalmers University of Technology, Göteborg, Sweden
- Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden
| | - Anna Johansson
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Eva Olsson
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
- Applied Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Jukka Lausmaa
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
- Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Sarunas Petronis
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
- Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden
| |
Collapse
|
30
|
Nakajo K, Takahashi M, Kikuchi M, Takada Y, Okuno O, Sasaki K, Takahashi N. Inhibitory effect of Ti-Ag alloy on artificial biofilm formation. Dent Mater J 2014; 33:389-93. [PMID: 24786344 DOI: 10.4012/dmj.2013-334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Titanium-silver (Ti-Ag) alloy has been improved for machinability and mechanical properties, but its anti-biofilm properties have not been elucidated yet. Thus, this study aimed to evaluate the effects of Ti-Ag alloy on biofilm formation and bacterial viability in comparison with pure Ti, pure Ag and silver-palladium (Ag-Pd) alloy. Biofilm formation on the metal plates was evaluated by growing Streptococcus mutans and Streptococcus sobrinus in the presence of metal plates. Bactericidal activity was evaluated using a film contact method. There were no significant differences in biofilm formation between pure Ti, pure Ag and Ag-Pd alloy, while biofilm amounts on Ti-20% Ag and Ti-25% Ag alloys were significantly lower (p<0.05). In addition, Ti-Ag alloys and pure Ti were not bactericidal, although pure Ag and Ag-Pd alloy killed bacteria. These results suggest that Ti-20% Ag and Ti-25% Ag alloys are suitable for dental material that suppresses biofilm formation without disturbing healthy oral microflora.
Collapse
Affiliation(s)
- Kazuko Nakajo
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry
| | | | | | | | | | | | | |
Collapse
|
31
|
Hayes JS, Richards RG. Surfaces to control tissue adhesion for osteosynthesis with metal implants:in vitroandin vivostudies to bring solutions to the patient. Expert Rev Med Devices 2014; 7:131-42. [DOI: 10.1586/erd.09.55] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
HAN JM, HONG G, MATSUI H, SHIMIZU Y, ZHENG G, LIN H, SASAKI K. The surface characterization and bioactivity of NANOZR in vitro. Dent Mater J 2014; 33:210-9. [DOI: 10.4012/dmj.2013-188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Rivera-Chacon DM, Alvarado-Velez M, Acevedo-Morantes CY, Singh SP, Gultepe E, Nagesha D, Sridhar S, Ramirez-Vick JE. Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces. J Biomed Nanotechnol 2013; 9:1092-7. [PMID: 23858975 DOI: 10.1166/jbn.2013.1601] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Improvements in osteoconduction of implant biomaterials require focusing on the bone-implant interface, which is a complex multifactorial system. Surface topography of implants plays a crucial role at this interface. Nanostructured surfaces have been shown to promote serum protein adsorption and osteoblast adhesion when compared to micro-structured surfaces for bone-implant materials. We studied the influence of the serum proteins fibronectin and vitronectin on the attachment and proliferation of osteoblasts onto nanostructured titania surfaces. Human fetal osteoblastic cells hFOB 1.19 were used as model osteoblasts and were grown on nanoporous TiO2 templates, using Ti6AI4V and commercially pure Ti substrates as controls. Results show a significant increase in cell proliferation'on nanoporous TiO2 over flat substrates. Initial cell attachment data exhibited a significant effect by either fibronectin or vitronectin on cell adhesion at the surface of any of the tested materials. In addition, the extent of cell adhesion was significantly different between the nanoporous TiO2 and both Ti6AI4V and commercially pure Ti substrates, with the first showing the highest surface coverage. There was no significant difference on osteoblast attachment or proliferation between the presence of fibronectin or vitronectin using any of the material substrates. Taken together, these results suggest that the increase in osteoblast attachment and proliferation shown on the nanoporous TiO2 is due to an increase in the adsorption of fibronectin and vitronectin because of the higher surface area and to an enhanced protein unfolding, which allows access to osteoblast binding motifs within these proteins.
Collapse
Affiliation(s)
- D M Rivera-Chacon
- Department of Physics, University of Puerto Rico, Mayaguez, PR 00680
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kato K, Yamamoto A, Ochiai S, Wada M, Daigo Y, Kita K, Omori K. Cytocompatibility and mechanical properties of novel porous 316L stainless steel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2736-43. [DOI: 10.1016/j.msec.2013.02.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/15/2013] [Accepted: 02/20/2013] [Indexed: 11/24/2022]
|
35
|
Zhuang Z, Fujimi TJ, Nakamura M, Konishi T, Yoshimura H, Aizawa M. Development of a,b-plane-oriented hydroxyapatite ceramics as models for living bones and their cell adhesion behavior. Acta Biomater 2013; 9:6732-40. [PMID: 23403169 DOI: 10.1016/j.actbio.2013.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/24/2013] [Accepted: 02/01/2013] [Indexed: 12/26/2022]
Abstract
In vertebrate bones and tooth enamel surfaces, the respective a,b-planes and c-planes of hydroxyapatite (HAp) crystals are preferentially exposed. However, the reason why the HAp crystals show different orientations depending on the type of hard tissues is not yet understood. To clarify this question, appropriate ceramic models with highly preferred orientation are necessary. In the present study, dense HAp ceramic models which have the same orientation as living bones were fabricated using composite powders of c-axis-oriented single-crystal apatite fibers (AF) and wet-synthesized apatite gels (AG). The results of crystalline identification and ultrastructural observation showed that the resulting HAp ceramics maintained the c-axis orientation of the AF particles, and their high a,b-plane orientation degrees could be maintained with small additive amounts of AG; however, when the AG content was over 30 mass%, this value decreased. The influence of orientation degree on the surface characteristics was investigated by evaluating the surface zeta-potential and wettability. These results show that increasing the a,b-plane orientation degree shifted the surface charge from negative to positive, and decreased the surface wettability. Initial cell-attachment assays were performed on these resulting ceramics using MC3T3-E1 cells as models of osteoblasts. The results show that the cell-attachment efficiency decreased with increasing a,b-plane orientation degree.
Collapse
Affiliation(s)
- Zhi Zhuang
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Tama-ku, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Kim M, Kim G. Electrospun PCL/phlorotannin nanofibres for tissue engineering: physical properties and cellular activities. Carbohydr Polym 2012; 90:592-601. [PMID: 24751081 DOI: 10.1016/j.carbpol.2012.05.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/14/2012] [Accepted: 05/22/2012] [Indexed: 11/29/2022]
Abstract
Micro/nanofibrous substrates have been widely used for tissue regeneration because of their similarities to extracellular matrix components and their high surface area, which facilitates attachment and proliferation of cells. Phlorotannin, the main component of the brown alga Ecklonia cava, contains various growth factors that promote the regeneration of various tissues, including bone, by stimulating alkaline phosphatase (ALP) activity and inducing calcium deposition. Despite the benefits of phlorotannin in tissue regeneration, the activity of phlorotannin as a component of micro/nanofibres of various compositions has not yet been investigated. Here, we fabricated electrospun polycaprolactone (PCL)/phlorotannin micro/nanofibres containing different phlorotannin concentrations (1, 3, and 5 wt%) and determined their physical properties, including water contact angle, water absorption, and mechanical properties. Owing to their hydrophilicity and water absorption ability, phlorotannin-containing fibrous mats exhibited outstanding wettability compared with pure PCL fibrous mats. The biocompatibility of the mats was examined in vitro using osteoblast-like cells (MG63). Cell viability, ALP activity, and calcium deposition were assessed. The cells distributed more widely and proliferated to a greater degree on PCL/phlorotannin mats compared with pure PCL mats. In addition, cell viability (at 5 wt% phlorotannin), total protein content, ALP activity, and calcium deposition were higher with PCL/phlorotannin mats than with pure PCL mats. These results suggest that electrospun PCL/phlorotannin is a promising bioactive material for enhancing bone tissue growth.
Collapse
Affiliation(s)
- Minseong Kim
- Bio/Nanofluidics Lab, Department of Mechanical Engineering, Chosun University, Gwangju 501-759, South Korea; School of Medicine, Chosun University, Gwangju 501-759, South Korea
| | - GeunHyung Kim
- Bio/Nanofluidics Lab, Department of Mechanical Engineering, Chosun University, Gwangju 501-759, South Korea
| |
Collapse
|
37
|
Shin SH, Yoo JJ, Kim HN, Nam J, Kim HJ. Enhanced cellular responses of human bone marrow stromal cells cultured on pretreated surface with allogenic platelet-rich plasma. Connect Tissue Res 2012; 53:318-26. [PMID: 22329757 DOI: 10.3109/03008207.2012.656859] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The principal objective of this study was to evaluate the effects of surface pretreatment with platelet-rich plasma (PRP) on the cellular functions of human bone marrow stromal cells (hBMSCs). The surfaces of tissue culture plates (TCPs) were pretreated by adding PRP followed by centrifugation to bring platelets closer to the surface, followed by incubation for 60 min at 37°C. Then, hBMSCs were seeded onto TCP and TCP pretreated with PRP (TCP-PRP), followed by culture in osteogenic medium. Cell attachment, proliferation, and osteogenic differentiation were evaluated. Field emission scanning electron microscope (FE-SEM; JSM-7401F, JEOL Ltd., Japan) observations were conducted. The attachment of hBMSCs was significantly lower on TCP-PRP than on TCP. However, when the cell numbers were normalized with those observed on day 1 of culture, cellular proliferation on 5 days was significantly higher on TCP-PRP. Alkaline phosphatase activity, an index of early phase of osteoblastic differentiation, was significantly higher on TCP-PRP on day 14. Calcium deposition amount, an index of terminal osteoblastic differentiation, was also significantly higher on TCP-PRP on days 14 and 21. The results of von Kossa staining confirmed that, on day 21, the area of mineralized nodules was significantly larger on TCP-PRP. FE-SEM observation demonstrated that activated platelets and fibrin network covered the surface after PRP treatment. An increase in the number of hBMSCs and their cellular products was evident on the FE-SEM observation, and the fibrin network remained on day 21. Our results demonstrate that a PRP-treated surface enhanced early proliferation and late osteogenic differentiation of hBMSCs.
Collapse
Affiliation(s)
- Seung Han Shin
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, Jongno-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
38
|
Hara T, Matsuoka K, Matsuzaka K, Yoshinari M, Inoue T. Effect of Surface Roughness of Titanium Dental Implant Placed under Periosteum on Gene Expression of Bone Morphogenic Markers in Rat. THE BULLETIN OF TOKYO DENTAL COLLEGE 2012; 53:45-50. [DOI: 10.2209/tdcpublication.53.45] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Wu CC, Huang ST, Lin HC, Tseng TW, Rao QL, Chen MY. Expression of osteopontin and type I collagen of hFOB 1.19 cells on sintered fluoridated hydroxyapatite composite bone graft materials. IMPLANT DENT 2011; 19:487-97. [PMID: 21119353 DOI: 10.1097/id.0b013e3181f57525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The biological effect of fluoridated hydroxyapatite (FHA) graft materials has been attributed to their fluoride ion content; but, only few studies have been conducted to explore the osteoblastic cellular response to physicochemical characteristics of them. We hypothesized that the effect of varied sintered FHA composites on osteoblastic behavior would attribute certain specified physicochemical characteristics of apatites. MATERIALS Sintered FHA composites were prepared by sintering method with varied gravity percentages of calcium fluoride and hydroxyapatite. Scanning electron microscopic, x-ray diffraction, and Fourier-transform infrared analysis were recorded. The human fetal-osteoblast (hFOB 1.19) cells were seeded on the apatites and tissue culture plates. Responses to the apatites were assessed in terms of osteopontin (OPN) and type I collagen, COL I, gene differentiation. RESULTS We observed the calcined hydroxyapatite (OHAp), sintered F- OHAps, and hydroxy fluorapatites (OH-FAps) with different physicochemical characteristics. The x-ray diffraction analysis showed sintered apatites to be fluorapatites. Otherwise, Fourier-transform infrared spectral patterns could differentiate the sintered F-OHAps from OH-FAps by the existence of OH, OH···F, or OH···F···OH bands. With ≤ 1 wt% CaF2 added, sintered F-OHAp composites expressed both OH and OH···F bands. With >1 wt% CaF2 added, sintered OH-FAp composites expressed both OH···F and OH···F···OH bands. Sintered F-OHAp composites could enhance OPN and COL I gene expression after 6-day culture (P ≤ 0.05). Otherwise, sintered OH-FAp composites inhibited the expression. CONCLUSION The results revealed that sintered F-OHAp composites with both OH and OH···F bands were bioactive bone graft materials.
Collapse
Affiliation(s)
- Cheng-Chei Wu
- College of Dental Science, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Hayes JS, Czekanska EM, Richards RG. The Cell–Surface Interaction. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 126:1-31. [DOI: 10.1007/10_2011_110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Nakaoka R, Yamakoshi Y, Isama K, Tsuchiya T. Effects of surface chemistry prepared by self-assembled monolayers on osteoblast behavior. J Biomed Mater Res A 2010; 94:524-32. [PMID: 20186768 DOI: 10.1002/jbm.a.32714] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A surface of biomaterials is known to affect the behavior of cells after their adhesion on the surface, indicating that surface characteristics of biomaterials play an important role in cell adhesion, proliferation, and differentiation. To assess the effects of functional groups on biomaterial surface, normal human osteoblasts (NHOsts) were cultured on surfaces coated with self-assembled monolayers (SAMs) containing various functional groups, and the adhesion, proliferation, differentiation, and gap junctional intercellular communication (GJIC) of the NHOsts were investigated. In the case of SAM with terminal methyl groups (hydrophobic surface), NHOst adhesion and proliferation was less prevalent. In contrast, NHOsts were adhered well on SAMs with hydroxyl, carboxyl, amino, phosphate, and sulfate group, which are relatively hydrophilic, their proliferation and differentiation level were dependent on the type of functional groups. Especially, when they were cultured on either SAMs with phosphate or sulfate group, both their alkaline phosphate activity and the calcium deposition by them were enhanced more than those cultured on a collagen-coated dish. More interestingly, GJIC of NHOsts, which has been reported to play a role in cell differentiation as well as homeostasis of cells, were not significantly different among the SAM surfaces tested. These suggest that a specific functional group on a material surface can regulate NHOst adhesion, proliferation, and differentiation via cell-functional group interaction without influencing their homeostasis.
Collapse
Affiliation(s)
- Ryusuke Nakaoka
- Division of Medical Devices, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | |
Collapse
|
42
|
Velasco-Ortega E, Jos A, Cameán AM, Pato-Mourelo J, Segura-Egea JJ. In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 702:17-23. [DOI: 10.1016/j.mrgentox.2010.06.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/01/2010] [Accepted: 06/20/2010] [Indexed: 12/01/2022]
|
43
|
Graham LD, Danon SJ, Johnson G, Braybrook C, Hart NK, Varley RJ, Evans MDM, McFarland GA, Tyler MJ, Werkmeister JA, Ramshaw JAM. Biocompatibility and modification of the protein-based adhesive secreted by the Australian frog Notaden bennetti. J Biomed Mater Res A 2010; 93:429-41. [PMID: 19569213 DOI: 10.1002/jbm.a.32559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
When provoked, Notaden bennetti frogs secrete a proteinaceous exudate, which rapidly forms a tacky and elastic glue. This material has potential in biomedical applications. Cultured cells attached and proliferated well on glue-coated tissue culture polystyrene, but migrated somewhat slower than on uncoated surfaces. In organ culture, dissolved glue successfully adhered collagen-coated perfluoropolyether lenses to debrided bovine corneas and supported epithelial regrowth. Small pellets of glue implanted subcutaneously into mice were resorbed by surrounding tissues, and all of the animals made a full recovery. An initial but transient skin necrosis at the implant site was probably caused by some of the potentially toxic metabolites present in the frog secretion; these include sterols and carotenoids, as well as fatty alcohols, aldehydes, ketones, acids, and aromatic compounds. Removal of the carotenoid pigments did not significantly alter the glue's material properties. In contrast, peroxidase treatment of dissolved glue introduced unnatural crosslinks between molecules of the major protein (Nb-1R) and resulted in the formation of a soft hydrogel, which was very different to the original material.
Collapse
Affiliation(s)
- Lloyd D Graham
- CSIRO Molecular and Health Technologies, Sydney Laboratory, P.O. Box 184, North Ryde, New South Wales 1670, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liao J, Anchun M, Zhu Z, Quan Y. Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. Int J Nanomedicine 2010; 5:337-42. [PMID: 20517478 PMCID: PMC2875727 DOI: 10.2147/ijn.s9518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Microbial colonization and biofilm formation on the surface of implant devices may cause peri-implantitis and lead to bone loss. The aim of this study was to develop a novel antibacterial titanium implant surface and to test its biological performance. In a previous study, we demonstrated that titanium plates deposited by nanosilver acquired antibacterial activity to Staphylococcus aureus and Escherichia coli. While antibacterial activity is important, biomaterial surfaces should be modified to achieve excellent cell compatibility as well. In the present study, using the MTT assay, fluorescence microscopy, and scanning electron microscopy, we assessed cell viability, cytoskeletal architecture and cell attachment, respectively, on our silver nanoparticle-modified titanium (Ti-nAg) plate. The results demonstrate that the Ti-nAg do not show any cytotoxicity to the human gingival fibroblasts. Our data indicate that Ti-nAg is a novel material with both good antibacterial properties and uncompromised cytocompatibility, which can be used as an implanted biomaterial.
Collapse
Affiliation(s)
- Juan Liao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, PR China
| | | | | | | |
Collapse
|
45
|
Chai F, Ochsenbein A, Traisnel M, Busch R, Breme J, Hildebrand HF. Improving endothelial cell adhesion and proliferation on titanium by sol-gel derived oxide coating. J Biomed Mater Res A 2010; 92:754-65. [PMID: 19274713 DOI: 10.1002/jbm.a.32399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In-stent restenosis becomes increasingly prevalent as a difficult-to-treat disease. An alternative therapeutic strategy is enhancing endothelialization on metallic stent surfaces. This study attempted to modify surface chemistry and topography of commercial pure titanium (cp-Ti) by different sol-gel derived oxide coatings (TiO(2), SiO(2), SiO(2)/TiO(2), and Nb(2)O(5)) to improve endothelialization. The physiochemical properties of the modified surfaces were characterized by ellipsometry, atomic force microscope, and sessile-drop method. The cell adhesion/proliferation quantity, cell adhesion morphology, and focal adhesion protein expression were evaluated with human pulmonary microvascular endothelial cell line. The thickness of oxide coatings approximates to 100 nm; significantly rougher nanoporous structure was found in the TiO(2) and Nb(2)O(5) coatings than that of cp-Ti. SiO(2) coating possesses the highest surface energy (75.1 mJ/m(2)) and the lowest was for cp-Ti (45.7 mJ/m(2)). TiO(2) coating showed significantly higher endothelial cell adhesion rate than others; TiO(2), Nb(2)O(5), and TiO(2)/SiO(2) coatings exhibited higher endothelial proliferation in 3-day assays than noncoated Ti. In hemocompatible test, they also showed good hemocompatibility. These results offer the insight into that certain oxide coatings on titanium could significantly improve endothelial cell adhesion and proliferation especially in early period, which will favor reaching the endothelialization rapidly and suitable as matrix for "endothelial seeding" stent.
Collapse
Affiliation(s)
- Feng Chai
- Groupe de Recherche sur les Biomatériaux, Laboratoire de Biophysique UPRES EA 1049, Faculté de Médecine, Université de Lille-2 59045 Lille, France
| | | | | | | | | | | |
Collapse
|
46
|
Kim YH, Anirban JM, Song HY, Seo HS, Lee BT. In Vitro and In Vivo Evaluations of 3D Porous TCP-coated and Non-coated Alumina Scaffolds. J Biomater Appl 2010; 25:539-58. [DOI: 10.1177/0885328209356945] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both tricalcium phosphate (TCP) and alumina have been extensively studied and shown to have high biocompatibility. Tricalcium phosphate has improved biodegradability and a higher solubility than hydroxyapatite. In contrast, alumina (Al2O3) is almost completely inert at physiological conditions and has been used as a biomaterial due to its wear resistance, high surface finish, and excellent hardness. Thus, the combination of these two implants would result in greater biocompatibility and phenotype maintenance. A polyurethane (PU) foam replica method was employed in this study to coat TCP on an alumina scaffold. The TCP-coated alumina scaffold was then sintered to generate a porous surface morphology. The pore sizes obtained using this approach ranged between 100—600 µm, which is ideal for cellular proliferation. The cytotoxicity, cellular proliferation, differentiation, and ECM deposition on the coated scaffold resulted in longer-term viability of osteogenic markers compared to the non-coated scaffold. Moreover, the osteogenic properties of porous TCP-coated Al2O3 scaffolds were reported in this study using rabbit models. The TCP/Al2O 3 scaffold and control Al2O3 scaffolds were implanted in the rabbit femur. The bone tissue response was analyzed with micro-computed tomography (micro CT) at 12 and 24 weeks after implantation. The porous scaffolds exhibited favorable hard and soft tissue responses at both time points. At 24 weeks, a three-fold increase in bone tissue ingrowth was observed in defects containing TCP-coated Al2O3 scaffolds compared to control Al2O3 scaffolds.
Collapse
Affiliation(s)
- Young-Hee Kim
- Department of Immunology, School of Medicine, Soonchunhyang University 366-1, Ssangyoung-dong, Cheonan City, Chungnam, 330-090, South Korea
| | - Jyoti M. Anirban
- Department of Immunology, School of Medicine, Soonchunhyang University 366-1, Ssangyoung-dong, Cheonan City, Chungnam, 330-090, South Korea
| | - Ho-Yeon Song
- Department of Immunology, School of Medicine, Soonchunhyang University 366-1, Ssangyoung-dong, Cheonan City, Chungnam, 330-090, South Korea,
| | - Hyung-Seok Seo
- Collage of Health Industry, Konyang University, 26, Nae-dong Nonsan City, Chungnam, 320-711, South Korea
| | - Byong-Taek Lee
- Department of Biomedical Engineering and Materials Soonchunhyang University, 366-1, Ssangyoung-dong, Cheonan City Chungnam, 330-090, South Korea
| |
Collapse
|
47
|
Hirata E, Uo M, Nodasaka Y, Takita H, Ushijima N, Akasaka T, Watari F, Yokoyama A. 3D collagen scaffolds coated with multiwalled carbon nanotubes: Initial cell attachment to internal surface. J Biomed Mater Res B Appl Biomater 2010; 93:544-50. [DOI: 10.1002/jbm.b.31613] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Materials Surface Effects on Biological Interactions. ADVANCES IN REGENERATIVE MEDICINE: ROLE OF NANOTECHNOLOGY, AND ENGINEERING PRINCIPLES 2010. [DOI: 10.1007/978-90-481-8790-4_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Kim EJ, Boehm CA, Mata A, Fleischman AJ, Muschler GF, Roy S. Post microtextures accelerate cell proliferation and osteogenesis. Acta Biomater 2010; 6:160-9. [PMID: 19539062 DOI: 10.1016/j.actbio.2009.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 05/08/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
The influence of surface microtexture on osteogenesis was investigated in vitro by examining the proliferation and differentiation characteristics of a class of adult stem cells and their progeny, collectively known as connective tissue progenitor cells (CTPs). Human bone marrow-derived CTPs were cultured for up to 60 days on smooth polydimethylsiloxane (PDMS) surfaces and on PDMS with post microtextures that were 10 microm in diameter and 6 microm in height, with 10 microm separation. DNA quantification revealed that the numbers of CTPs initially attached to both substrates were similar. However, cells on microtextured PDMS transitioned from lag phase after 4 days of culture, in contrast to 6 days for cells on smooth surfaces. By day 9 cells on the smooth surfaces exhibited arbitrary flattened shapes and migrated without any preferred orientation. In contrast, cells on the microtextured PDMS grew along the array of posts in an orthogonal manner. By days 30 and 60 cells grew and covered all surfaces with extracellular matrix. Western blot analysis revealed that the expression of integrin alpha5 was greater on the microtextured PDMS compared with smooth surfaces. Real time reverse transcription-polymerase chain reaction revealed that gene expression of alkaline phosphatase had decreased by days 30 and 60, compared with that on day 9, for both substrates. Gene expression of collagen I and osteocalcin was consistently greater on post microtextures relative to smooth surfaces at all time points.
Collapse
|
50
|
Faghihi S, Azari F, Szpunar JA, Vali H, Tabrizian M. Titanium crystal orientation as a tool for the improved and regulated cell attachment. J Biomed Mater Res A 2009; 91:656-62. [DOI: 10.1002/jbm.a.32275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|