1
|
Carbone E, Borges R, Eiden LE, García AG, Hernández-Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [PMID: 31688964 DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chromaffin cells (CCs) of the adrenal gland and the sympathetic nervous system produce the catecholamines (epinephrine and norepinephrine; EPI and NE) needed to coordinate the bodily "fight-or-flight" response to fear, stress, exercise, or conflict. EPI and NE release from CCs is regulated both neurogenically by splanchnic nerve fibers and nonneurogenically by hormones (histamine, corticosteroids, angiotensin, and others) and paracrine messengers [EPI, NE, adenosine triphosphate, opioids, γ-aminobutyric acid (GABA), etc.]. The "stimulus-secretion" coupling of CCs is a Ca2+ -dependent process regulated by Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ pumps, and exchangers and intracellular organelles (RE and mitochondria) and diffusible buffers that provide both Ca2+ -homeostasis and Ca2+ -signaling that ultimately trigger exocytosis. CCs also express Na+ and K+ channels and ionotropic (nAChR and GABAA ) and metabotropic receptors (mACh, PACAP, β-AR, 5-HT, histamine, angiotensin, and others) that make CCs excitable and responsive to autocrine and paracrine stimuli. To maintain high rates of E/NE secretion during stressful conditions, CCs possess a large number of secretory chromaffin granules (CGs) and members of the soluble NSF-attachment receptor complex protein family that allow docking, fusion, and exocytosis of CGs at the cell membrane, and their recycling. This article attempts to provide an updated account of well-established features of the molecular processes regulating CC function, and a survey of the as-yet-unsolved but important questions relating to CC function and dysfunction that have been the subject of intense research over the past 15 years. Examples of CCs as a model system to understand the molecular mechanisms associated with neurodegenerative diseases are also provided. Published 2019. Compr Physiol 9:1443-1502, 2019.
Collapse
Affiliation(s)
- Emilio Carbone
- Laboratory of Cellular and Molecular Neuroscience, Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Antonio G García
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva and Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
2
|
Eiden LE, Jiang SZ. What's New in Endocrinology: The Chromaffin Cell. Front Endocrinol (Lausanne) 2018; 9:711. [PMID: 30564193 PMCID: PMC6288183 DOI: 10.3389/fendo.2018.00711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Recent advances in understanding the intracellular and intercellular features of adrenal chromatin cells as stress transducers are reviewed here, along with their implications for endocrine function in other tissues and organs participating in endocrine regulation in the mammalian organism.
Collapse
|
3
|
Jenkins DE, Sreenivasan D, Carman F, Samal B, Eiden LE, Bunn SJ. Interleukin-6-mediated signaling in adrenal medullary chromaffin cells. J Neurochem 2016; 139:1138-1150. [PMID: 27770433 DOI: 10.1111/jnc.13870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
The pro-inflammatory cytokines, tumor necrosis factor-α, and interleukin-1β/α modulate catecholamine secretion, and long-term gene regulation, in chromaffin cells of the adrenal medulla. Since interleukin-6 (IL6) also plays a key integrative role during inflammation, we have examined its ability to affect both tyrosine hydroxylase activity and adrenomedullary gene transcription in cultured bovine chromaffin cells. IL6 caused acute tyrosine/threonine phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and serine/tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3). Consistent with ERK1/2 activation, IL6 rapidly increased tyrosine hydroxylase phosphorylation (serine-31) and activity, as well as up-regulated genes, encoding secreted proteins including galanin, vasoactive intestinal peptide, gastrin-releasing peptide, and parathyroid hormone-like hormone. The effects of IL6 on the entire bovine chromaffin cell transcriptome were compared to those generated by G-protein-coupled receptor (GPCR) agonists (histamine and pituitary adenylate cyclase-activating polypeptide) and the cytokine receptor agonists (interferon-α and tumor necrosis factor-α). Of 90 genes up-regulated by IL6, only 16 are known targets of IL6 in the immune system. Those remaining likely represent a combination of novel IL6/STAT3 targets, ERK1/2 targets and, potentially, IL6-dependent genes activated by IL6-induced transcription factors, such as hypoxia-inducible factor 1α. Notably, genes induced by IL6 include both neuroendocrine-specific genes activated by GPCR agonists, and transcripts also activated by the cytokines. These results suggest an integrative role for IL6 in the fine-tuning of the chromaffin cell response to a wide range of physiological and paraphysiological stressors, particularly when immune and endocrine stimuli converge.
Collapse
Affiliation(s)
- Danielle E Jenkins
- Department of Anatomy, Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Fiona Carman
- Department of Anatomy, Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Babru Samal
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, USA
| | - Stephen J Bunn
- Department of Anatomy, Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Sullivan JA, Rupnow HL, Cale JM, Magness RR, Bird IM. Pregnancy and Ovarian Steroid Regulation of Angiotensin II Type 1 and Type 2 Receptor Expression in Ovine Uterine Artery Endothelium and Vascular Smooth Muscle. ACTA ACUST UNITED AC 2009; 12:41-56. [PMID: 16036315 DOI: 10.1080/10623320590933752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although pregnancy is clearly associated with refractoriness to infused angiotensin II (AII) in the uteroplacental unit, there is still dispute over the mechanism by which angiotensin type 1 and type 2 receptors (AT1R and AT2R) may mediate this response in the uterine artery. This is in large part due to incomplete knowledge of levels of AT1R and AT2R expression and function in uterine artery endothelium (UA Endo) in the nonpregnant (NP) and pregnant (P) states, combined with the disagreement on whether AII may act through release of adrenomedullary catecholamines. The authors have previously described an increase in AT1R in UA Endo but not UA vascular smooth muscle (VSM) during pregnancy as compared to the nonpregnant intact ewe. Herein they report that the pregnancy-associated increase in AT(1)R expression in UA Endo is regulated by ovarian steroids. Using a recently developed antibody to AT2R, the authors now show there is no change in AT2R in UA Endo or VSM associated with ovarian function, and although AT2R is not changed in UA Endo by pregnancy, there is a significant decrease observed in UA VSM at that time. The authors also examined changes in receptors in UA Endo and VSM in estrogen (E2beta)-primed ewes in view of the common use of this model as a control for physiologic studies. In contrast to their findings in nonprimed nonpregnant or pregnant animals, the authors observed a significant increase in both AT1R and AT2R in UA Endo in response to the supraphysiologic priming with E2beta. In order to address the possible functionality of AT1R or AT2R in UA Endo, the authors used the uterine artery endothelial cell (UAEC) model of UA endothelial cells maintained in culture to passage 4. Differences in expression of AT1R or AT2R were normalized at passage 4 in P-UAECs and NP-UAECs. Treatment with AII activated phospholipase C (PLC) in both NP- and P-UAECs but signaling through the extracellular signal-regulated kinase (ERK) pathway was dramatically enhanced in P-UAECs compared to NP-UAECs. Surprisingly, both phosphoinositol turnover and ERK2 phosphorylation responses failed to display the expected dose-responses. Inhibition of AII-stimulated ERK2 phosphorylation with antagonists DUP 753 (AT1R, 10 microM) and PD 123319 (AT2R, 10 microM) failed to selectively inhibit ERK2 phosphorylation. The authors conclude that (a) the net effect of pregnancy may be an increase in the AT1R/AT2R ratio in both UA Endo and VSM but through apparently distinct mechanisms, (b) the ovariectomized animal model is similar to the luteal state for AT1R and AT2R expression, while the E2beta-primed model does not resemble the nonpregnant or pregnant state, and (c) there is a real possibility that AII may mediate its effects either through a complex AT1R-AT2R interaction or via an as-yet unidentified non-AT1, non-AT2 receptor.
Collapse
Affiliation(s)
- Jeremy A Sullivan
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | | | | |
Collapse
|
5
|
O'Connell GC, Douglas SA, Bunn SJ. The involvement of specific phospholipase C isozymes in catecholamine release from digitonin permeabilized bovine adrenal medullary chromaffin cells. Neurosci Lett 2003; 342:1-4. [PMID: 12727303 DOI: 10.1016/s0304-3940(03)00224-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The role of phospholipase C (PLC) in exocytosis has been investigated using digitonin permeabilized, [(3)H]noradrenaline ([(3)H]NA) loaded, bovine adrenal medullary chromaffin cells. The PLC inhibitor U-73122 caused a concentration-dependent suppression of Ca(2+)-evoked [(3)H]NA release but increased basal release (that occurring in the absence of Ca(2+)). Preincubation with antibodies against PLCgamma1 or PLCbeta3 (but not PLCdelta1, delta2, beta1 and beta2) also inhibited [(3)H]NA release evoked by Ca(2+) and increased basal release, indicating that only specific PLC isozymes are involved in these actions. Interestingly, PLCgamma1 (but not PLCbeta3) antibodies inhibited the ability of Ca(2+) to increase PLC activity in these permeabilized cells. These data therefore suggest that PLCgamma1 activity may have a specific role in regulating the exocytotic response from the adrenal chromaffin cell.
Collapse
Affiliation(s)
- Gail C O'Connell
- The Centre for Neuroendocrinology, Department of Anatomy and Structural Biology, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | | | | |
Collapse
|
6
|
Abstract
Many previous reports suggested that relatively high concentrations of neurotensin were required to exert its effects on neurotransmitter secretion. The neurotensin binding sites, which recognize high concentrations of neurotensin, were characterized in rat pheochromocytoma (PC12) cells. When PC12 cells were treated with neurotensin, [3H]norepinephrine secretion and elevation of cytosolic calcium were evoked at EC(50) values of 59+/-4 and 37+/-7 microM, respectively. Both calcium release and inositol 1,4,5-trisphosphate (IP(3)) production induced by neurotensin suggested involvement of phospholipase C. Experiments with simultaneous or sequential treatment with neurotensin and bradykinin suggested that neurotensin and bradykinin act on the same binding sites. Furthermore, both inhibition of bradykinin- and neurotensin-induced calcium rises by bradykinin receptor antagonists with similar IC(50) values and receptor binding analysis using [3H]bradykinin confirmed that neurotensin directly binds to B2 bradykinin receptors. The data suggest that neurotensin binds and activates the B2 bradykinin receptors.
Collapse
Affiliation(s)
- Tae-Ju Park
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | | |
Collapse
|
7
|
Roberts-Thomson EL, Saunders HI, Palmer SM, Powis DA, Dunkley PR, Bunn SJ. Ca(2+) influx stimulated phospholipase C activity in bovine adrenal chromaffin cells: responses to K(+) depolarization and histamine. Eur J Pharmacol 2000; 398:199-207. [PMID: 10854831 DOI: 10.1016/s0014-2999(00)00201-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The role of Ca(2+) influx in activating phospholipase C in bovine adrenal chromaffin cells has been investigated. Phospholipase C activity in response to K(+) depolarization (56 mM) was blocked by the L-type Ca(2+) channel antagonist nifedipine and partially inhibited by the omega-conotoxins GVIA and MVIIC. In contrast, phospholipase C activity in response to histamine receptor activation was unaffected by omega-conotoxin GVIA and partially inhibited by omega-conotoxin MVIIC or nifedipine. This response was however markedly inhibited by the non-selective Ca(2+) channel antagonists La(3+) or 1-[beta-[3-(4-Methoxyphenyl)propoxy]-4-methoyphenethyl]-H-imidazol e (SKF-96365). Despite this Ca(2+) dependence phospholipase C activity was not increased during periods of "capacitative" Ca(2+) inflow generated by histamine-, caffeine- or thapsigargin-mediated depletion of internal Ca(2+) stores. Thus, while Ca(2+) influx in response to K(+) depolarization or G-protein receptor activation can increase phospholipase C activity in these cells, in the latter case it appears to be ineffective unless there is concurrent agonist occupation of the receptor.
Collapse
Affiliation(s)
- E L Roberts-Thomson
- The Neuroscience Group, Faculty of Medicine and Health Sciences, University of Newcastle, Callaghan, New South Wales, Newcastle, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Tachikawa E, Kudo K, Harada K, Kashimoto T, Miyate Y, Kakizaki A, Takahashi E. Effects of ginseng saponins on responses induced by various receptor stimuli. Eur J Pharmacol 1999; 369:23-32. [PMID: 10204677 DOI: 10.1016/s0014-2999(99)00043-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We investigated the effects of four ginseng saponins, ginsenoside-Rb1, -Rg2, -Rg3 and -Ro, on the responses induced by receptor stimulation of various stimuli. Ginsenoside-Rg2 (1-100 microM) reduced the secretions of catecholamines from bovine adrenal chromaffin cells stimulated by acetylcholine and gamma-aminobutyric acid but not by angiotensin II, bradykinin, histamine and neurotensin. In guinea-pig, the ginsenoside also diminished the nicotine-induced secretion of catecholamines from the adrenal chromaffin cells, but it did not affect the muscarine- and the histamine-induced ileum contractions. On the other hand, ginsenoside-Rg3 (1-100 microM) reduced not only the acetylcholine-, the gamma-aminobutyric acid- and the neurotensin-induced secretions but also, at a higher concentration (100 microM), the angiotensin II-, the bradykinin- and the histamine-induced secretions from the bovine chromaffin cells. Furthermore, the saponin (3-100 microM) significantly inhibited the muscarine- and the histamine-induced ileum contractions of the guinea-pig. Ginsenoside-Rb1 and -Ro had no marked effect on their responses. These results strongly suggest that ginsenoside-Rg2 is a potent selective blocker of nicotinic acetylcholine and gamma-aminobutyric acid receptors (ionotropic receptors) and ginsenoside-Rg3 is not only a blocker of ionotropic receptors but also an antagonist of muscarinic or histamine receptors.
Collapse
Affiliation(s)
- E Tachikawa
- Department of Pharmacology, School of Medicine, Iwate Medical University, Morioka, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Since its discovery in 1973, the neuropeptide neurotensin has been demonstrated to be involved in the control of a broad variety of physiological activities in both the central nervous system and in the periphery. Pharmacological studies have shown that the biological effects elicited by neurotensin result from its specific binding to cell membrane neurotensin receptors that have been characterized in various tissue and in cell preparations. In addition, it is now well documented that most of these responses are subject to rapid desensitization. Such desensitization results in transient responses to sustained peptide applications, or to tachyphylaxis during successive stimulations in the same conditions. More recently, desensitization of neurotensin signalling was investigated at the cellular and molecular levels. In cultured cells, regulation at the second messenger level, receptor internalization, and receptor down-regulation processes have been reported. These are proposed to play a critical role in the control of cell responsiveness to neurotensin. This review aims to compile recent data on the different biochemical processes involved in the regulation of the neurotensin receptor and to discuss the physiological consequences of this regulation in vivo.
Collapse
Affiliation(s)
- E Hermans
- Laboratory of Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
10
|
Kim SJ, Kim J. Relation of exocytosis and Ca2+-activated K+ current during Ca2+ release from intracellular stores in individual rat chromaffin cells. Brain Res 1998; 799:197-206. [PMID: 9675279 DOI: 10.1016/s0006-8993(98)00413-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Measurement of the change in cell membrane capacitance (Cm) along with the change in IK(Ca) was used to investigate the effects of bradykinin and caffeine on the secretory process in rat adrenal chromaffin cells. In a Ca2+-free external solution, bradykinin (100 nM) caused a transient increase in Cm with a concurrent change in IK(Ca). Extracellular application of neomycin as an inhibitor of phospholipase C activity reversibly inhibited the bradykinin-activated event, implying an IP3-mediated increase of submembrane-free Ca2+. The increases in Cm and IK(Ca) caused by bradykinin were transient even with the sustained application of bradykinin. Caffeine also caused exocytosis in the Ca2+-free solution, and this was irreversibly blocked by ryanodine (1 microM) in a use-dependent manner. Caffeine-sensitive intracellular Ca2+ stores were also depleted in several seconds and recovered by an influx of external Ca2+. The sequential application of bradykinin and caffeine showed that these are likely to activate Ca2+ release from the same or distinct but rapidly equilibrating intracellular Ca2+ stores. The single cell assay of exocytosis and the increase in IK(Ca) revealed cell-to-cell variability in bradykinin- and caffeine-induced exocytotic response. Our results suggest that Ca2+ release from intracellular stores potentially increases submembrane Ca2+ concentration and modulates simultaneously two submembrane Ca2+-dependent processes, exocytosis and IK(Ca), in rat adrenal chromaffin cells.
Collapse
Affiliation(s)
- S J Kim
- Department of Physiology and Biophysics, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-799, South Korea.
| | | |
Collapse
|
11
|
Modulation of hypothalamic-pituitary-adrenal function by transgenic expression of interleukin-6 in the CNS of mice. J Neurosci 1998. [PMID: 9391003 DOI: 10.1523/jneurosci.17-24-09473.1997] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interleukin-6 (IL-6) and IL-6 receptor mRNA and protein have been reported in different brain regions under normal and pathophysiological conditions. Although much is known about the hypothalamic-pituitary-adrenal (HPA) axis stimulation after acute administration, less is known about the chronic effects of IL-6 on the function of the HPA axis. In the present study, we examined the function of the HPA axis in transgenic mice in which constitutive expression of IL-6 under the control of the glial fibrillary acidic protein (GFAP) promoter was targeted to astrocytes in the CNS. GFAP-IL6 mice heterozygous or homozygous for the IL-6 transgene had normal basal plasma corticosterone levels but, after restraint stress, showed abnormally increased levels in a gene dose-dependent manner. The increased plasma corticosterone levels in the IL-6 transgenic mice were associated with increased adrenal corticosterone content and hyperplasia of both adrenal cortex and medulla. Notably, plasma adrenocorticotrophic hormone (ACTH) levels and pituitary ACTH content were either not changed or decreased in these mice, whereas plasma arginine vasopressin (AVP) was increased, supporting a role for AVP in response to acute immobilization stress. The reduced ACTH response together with the adrenal hyperplasia in the IL-6 transgenic mice suggests direct activation at the level of the adrenal gland that may be directly activated by AVP or sensitized to ACTH. A similar mechanism may play a role in the blunted ACTH response and elevated corticosterone levels under pathophysiological conditions observed in humans with high brain levels of IL-6.
Collapse
|
12
|
Bunn SJ, Dunkley PR. Histamine-stimulated phospholipase C signalling in the adrenal chromaffin cell: effects on inositol phospholipid metabolism and tyrosine hydroxylase phosphorylation. Clin Exp Pharmacol Physiol 1997; 24:624-31. [PMID: 9269539 DOI: 10.1111/j.1440-1681.1997.tb02103.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. The present report gives a detailed account of histamine-stimulated phospholipase C (PLC) activity in bovine adrenal chromaffin cells. 2. Histamine activation of H1 receptors stimulates PLC with a biphasic sensitivity to extracellular Ca2+. The initial response (the first 15 s stimulation) was not reduced by the removal of extracellular Ca2+, whereas the maintenance of PLC activity beyond this time required Ca2+ influx. 3. Phospholipase C activity in response to a 10 min incubation with histamine was inhibited by La3+ (3 mmol/L) or SKF96365 (10 mumol/L). Nifedipine (10 mumol/L), but not omega-agatoxin IVA (100 nmol/L) or omega-conotoxin GVIA (300 nmol/L), produced a partial inhibition of PLC activity. The response was also partially inhibited by a reduction in the extracellular Cl- concentration (40 mmol/L) or by the inclusion of the Cl- channel blocker N-phenylanthranilic acid (300 mumol/L). 4. Kinetic analysis of the rate of turnover of the various inositol phosphate isomers in response to histamine suggested that the inositol monophosphates were being produced from a source in addition to inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) metabolism. This conclusion was supported by the differential action of pertussis toxin and neomycin on Ins(1,4,5)P3 formation compared with inositol monophosphate formation. 5. We have attempted to identify a defined role for the intracellular Ca2+ mobilized in these cells in response to histamine. After short incubations (up to 3 min), histamine was able to regulate the site-specific phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis. This observation has important implications for a possible role for the PLC signalling pathway in controlling the rate of catecholamine biosynthesis.
Collapse
Affiliation(s)
- S J Bunn
- Neuroscience Group, Faculty of Medicine and Health Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
| | | |
Collapse
|
13
|
Patwardhan AV, Ataai MM. Site accessibility and the pH dependence of the saturation capacity of a highly cross-linked matrix. Immobilized metal affinity chromatography of bovine serum albumin on chelating Superose. J Chromatogr A 1997; 767:11-23. [PMID: 9177004 DOI: 10.1016/s0021-9673(97)00013-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immobilized metal ion affinity chromatography has shown promise for isolating desired proteins from a mixture based on their affinity for chelated metal ions. Using frontal analysis, the pH dependence of the saturation capacity of chelating Superose matrix for bovine serum albumin (BSA) is examined over a broad pH range. A significant increase in the capacity was observed near the elution pH of BSA (pH 4.5) from a Cu-imminodiacetic acid column. The results of several experiments indicated that this apparently abnormal variation may reflect the low degree of accessibility of a large portion of copper sites inside chelating Superose. In a broader sense, these results suggest that during frontal analysis, the assumption of column saturation based on a plateau in the exit concentration that is almost at the same level as the input concentration could be misleading for highly cross-linked matrices and relatively large sized proteins. That is, the relatively less accessible copper sites may become difficult to be reached due to high levels of protein adsorption in the more accessible regions and thus give the appearance of a plateau in the breakthrough curve prior to complete column saturation. This is likely to be the case at high pH where BSA demonstrates very high affinity for immobilized copper or at high input concentrations where the equilibrium coverage is expected to be high. The results demonstrate that the estimated saturation capacity could be significantly smaller than the actual capacity.
Collapse
Affiliation(s)
- A V Patwardhan
- Department of Chemical Engineering, University of Pittsburgh, PA 15219, USA
| | | |
Collapse
|
14
|
Bunn SJ, Brent PJ, O'Malley SR. The sigma compounds 1,3-di-o-tolylguanidine and N-allylnormetazocine inhibit agonist-stimulated inositol phospholipid metabolism in bovine adrenal medullary cells. Neurochem Res 1994; 19:709-12. [PMID: 8065528 DOI: 10.1007/bf00967710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Muscarine stimulated a concentration-dependent accumulation of [3H]inositol phosphates in bovine adrenal medullary cells preloaded with [3H]inositol. This muscarinic activation of inositol phospholipid metabolism was fully inhibited by the sigma-ligand 1,3-di-o-tolylguanidine (DTG) with an IC50 of approximately 45 microM. Higher concentrations (100 microM) of (+) N-allylnormetazocine (SKF-10047) also partially inhibited this response. A concentration of DTG sufficient to fully inhibit the muscarinic response also produced a significant partial inhibition of [3H]inositol phosphate accumulation in response to histamine but not to angiotensin II. These data demonstrate that sigma-compounds inhibit agonist-stimulated inositol phospholipid metabolism in bovine adrenal medullary cells, with a degree of selectivity towards the muscarinic response.
Collapse
Affiliation(s)
- S J Bunn
- Neuroscience Group, Faculty of Medicine, University of Newcastle, Callaghan, NSW, Australia
| | | | | |
Collapse
|
15
|
Nardone J, Gerald C, Rimawi L, Song L, Hogan PG. Identification of a B2 bradykinin receptor expressed by PC12 pheochromocytoma cells. Proc Natl Acad Sci U S A 1994; 91:4412-6. [PMID: 8183922 PMCID: PMC43795 DOI: 10.1073/pnas.91.10.4412] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have used rat PC12 pheochromocytoma cells, a clonal cell line closely related to sympathetic neurons, to investigate reports that the bradykinin receptor expressed in the peripheral nervous system is distinct from the well-characterized B2 bradykinin receptor of smooth muscle. Although there have been reports that [Thi5,8,D-Phe7]bradykinin [where Thi is beta-(2-thienyl)alanine] is a full agonist at some sites in the peripheral nervous system, we find that in PC12 cells [Thi5,8,D-Phe7]bradykinin behaves as a competitive antagonist of bradykinin-stimulated phosphatidylinositol turnover. In particular, sufficient concentrations of [Thi5,8,D-Phe7]bradykinin completely block the increase in inositol bisphosphate and trisphosphate in response to 100 nM bradykinin; [Thi5,8,D-Phe7]bradykinin alone, at up to 10 microM, does not appreciably increase inositol bisphosphate and trisphosphate. In contrast to the absence of evidence for a distinctive neuronal receptor, we have found convincing evidence that the bradykinin receptor previously identified in smooth muscle is present in PC12 cells. Using the polymerase chain reaction, we have isolated a full-length cDNA encoding a bradykinin receptor that is expressed in PC12 cells and verified that its nucleotide sequence is identical except at a single position to that of the rat uterine B2 bradykinin receptor. When expressed in COS cells this uterine bradykinin receptor exhibits the same high affinity for [3H]bradykinin (Kd 4.4 nM), the same relative affinities for a series of kinin antagonists, and the same efficient coupling to phosphatidylinositol turnover (EC50 2.5 nM) as the receptor in PC12 cells. We interpret our data, and the findings of a number of pharmacological studies, as strengthening the view that the B2 receptor expressed in PC12 cells and in certain cells of the peripheral nervous system is identical to the receptor in rat uterine smooth muscle.
Collapse
Affiliation(s)
- J Nardone
- Department of Neurobiology, Harvard Medical School, Boston, MA 02215
| | | | | | | | | |
Collapse
|
16
|
Choi AY, Cahill AL, Perry BD, Perlman RL. Histamine evokes greater increases in phosphatidylinositol metabolism and catecholamine secretion in epinephrine-containing than in norepinephrine-containing chromaffin cells. J Neurochem 1993; 61:541-9. [PMID: 8336141 DOI: 10.1111/j.1471-4159.1993.tb02157.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chromaffin cells have H1 histamine receptors. Histamine, acting at these receptors, increases the metabolism of inositol-containing phospholipids and stimulates catecholamine secretion from chromaffin cells. We have investigated the effects of histamine and other agents on the accumulation of inositol monophosphate (InsP1) and catecholamine secretion in purified cultures of norepinephrine-containing and epinephrine-containing bovine chromaffin cells. Histamine-stimulated InsP1 accumulation in epinephrine cells was three times greater than that in norepinephrine cells. In contrast, bradykinin caused roughly equivalent increases in InsP1 accumulation in the two chromaffin cell subtypes. Histamine-stimulated catecholamine secretion was also greater in epinephrine cells than in norepinephrine cells, whereas high K+, bradykinin, phorbol 12,13-dibutyrate, and angiotensin II all caused greater secretion from norepinephrine cells than from epinephrine cells. The density of H1 receptors in epinephrine cells was approximately three times greater than that in norepinephrine cells. The greater density of H1 receptors on epinephrine cells may account for the greater effects of histamine on InsP1 accumulation and catecholamine secretion in these cells.
Collapse
Affiliation(s)
- A Y Choi
- Department of Pharmacological Science, University of Chicago, Illinois 60637
| | | | | | | |
Collapse
|
17
|
Bauer J, Kirchmair R, Egger C, Fischer-Colbrie R. Histamine induces a gene-specific synthesis regulation of secretogranin II but not of chromogranin A and B in chromaffin cells in a calcium-dependent manner. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53893-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Fischer-Colbrie R, Eskay RL, Eiden LE, Maas D. Transsynaptic regulation of galanin, neurotensin, and substance P in the adrenal medulla: combinatorial control by second-messenger signaling pathways. J Neurochem 1992; 59:780-3. [PMID: 1378491 DOI: 10.1111/j.1471-4159.1992.tb09440.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The adrenomedullary content of neurotensin and substance P was examined 1, 6, and 12 days after hypoglycemic shock. The neurotensin content was increased 60-fold within 24 h and remained elevated for up to 12 days, whereas the substance P content was increased approximately sevenfold within 24 h of insulin treatment and returned to control levels by 12 days poststimulation. Because protein kinase A, protein kinase C, and calcium influx in the rat adrenal medulla are all stimulated following splanchnic nerve stimulation, the differential regulation of neurotensin and substance P biosynthesis following stimulation of these three pathways was examined in bovine chromaffin cells in vitro. Neurotensin levels were up-regulated by elevated potassium, forskolin, and phorbol ester in bovine chromaffin cells. Substance P levels were up-regulated by elevated potassium and forskolin but not by phorbol ester treatment. When chromaffin cells were treated with phorbol ester in combination with forskolin, neurotensin levels were increased in a synergistic fashion, whereas phorbol ester antagonized the forskolin-induced elevation of substance P levels. Earlier, it was reported that galanin biosynthesis, like neurotensin biosynthesis, is upregulated by depolarization, phorbol ester stimulation, and forskolin treatment in chromaffin cells in vitro. Here we report that galanin is also, like neurotensin, increased greater than 60-fold after stimulation of the rat adrenal medulla in vivo. Neuropeptide-specific combinatorial effects of stimulating the calcium, protein kinase A, and protein kinase C signaling pathways may underlie the quantitative differences between galanin and neurotensin compared with substance P up-regulation in rat adrenal medulla after splanchnic nerve stimulation in vivo.
Collapse
|
19
|
McMillian MK, Tuominen RK, Hudson PM, Suh HH, Hong JS. Angiotensin II receptors are coupled to omega-conotoxin-sensitive calcium influx in bovine adrenal medullary chromaffin cells. J Neurochem 1992; 58:1285-91. [PMID: 1548465 DOI: 10.1111/j.1471-4159.1992.tb11340.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contribution of an omega-conotoxin GVIA (omega Cgtx)-sensitive Ca2+ influx pathway to the effects of angiotensin II (AII) receptor activation was examined in bovine adrenal medullary (BAM) cells. Pretreatment of BAM cells with 10(-6) M omega Cgtx blocked stimulation of exocytosis by the degradation-resistant analogue, sarcosine1-angiotensin II (S1-AII). In contrast, omega Cgtx had no effect on basal secretion, nor did it inhibit [3H]norepinephrine and [32P]ATP release in response to bradykinin, another phospholipase C-linked receptor agonist. Similarly, omega Cgtx pretreatment inhibited the stimulation of 45Ca2+ uptake by S1-AII, but did not affect the response to bradykinin. This selective inhibition did not appear to be due to blockade of AII receptors by omega Cgtx, as the accumulation of 3H-labeled inositol phosphates in response to S1-AII was not inhibited. The peak S1-AII-stimulated increase in the intracellular free Ca2+ concentration (Cai) in fura 2-loaded BAM cells also was not significantly reduced by omega Cgtx (or by stimulating in nominally Ca(2+)-free buffer), indicating that this response is dependent on intracellular Ca2+ pools. However, a small omega Cgtx-sensitive Cai response was detected after depletion of intracellular Ca2+ pools with ionomycin. This study shows that AII receptors, but not bradykinin receptors, are linked to an omega Cgtx-sensitive Ca2+ influx pathway in BAM cells.
Collapse
Affiliation(s)
- M K McMillian
- Neuropharmacology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | | | | | | | |
Collapse
|
20
|
Marley PD, Thomson KA, Jachno K, Johnston MJ. Histamine-induced increases in cyclic AMP levels in bovine adrenal medullary cells. Br J Pharmacol 1991; 104:839-46. [PMID: 1725765 PMCID: PMC1908824 DOI: 10.1111/j.1476-5381.1991.tb12515.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. The effect of histamine on cellular cyclic AMP levels in cultured bovine adrenal medullary cells has been studied. 2. Histamine (0.3-30 microM) increased cyclic AMP levels transiently, with a maximal response after 5 min, a smaller response after 20 min, and no increase seen after 80 or 180 min. The EC50 at 5 min was approximately 2 microM. Histamine had no effect on cyclic AMP release from the cells over 5 min, but increased it after 90 min. 3. The cyclic AMP response to 5 microM histamine was reduced by 45% by 1 microM mepyramine and by almost 30% by 1 microM cimetidine, and was abolished by the combination of both antagonists. Cimetidine at 100 microM did not inhibit the response to histamine more than 1 microM cimetidine. The H3-receptor antagonist, thioperamide (1 microM), had no effect on the response to histamine. 4. The H1-receptor agonist, 2-thiazolyethylamine (5-100 microM) and the H2-receptor agonist, dimaprit (5-100 microM), each induced a cyclic AMP response, and gave more-than-additive responses when combined. The H3 agonist (R) alpha-methylhistamine (100 microM) had no effect either on its own or in combination with either the H1 or the H2 agonist. The response to 100 microM 2-thiazolylethylamine was unaffected by cimetidine (100 microM). 5. The cyclic AMP responses to 5 microM histamine, 100 microM thiazolylethylamine and 100 microM dimaprit were each weakly enhanced in the presence of 1 mM 3-isobutyl-1-methylxanthine. The response to dimaprit was enhanced more than 10 fold in the presence of 0.3 microM forskolin, while the responses to histamine and thiazolylethylamine were weakly enhanced.6. The cyclic AMP response to 5 microM histamine was partially reduced in the absence of extracellular Ca2 and the residual response was fully antagonized by 1 microM cimetidine and was unaffected by 1 microM mepyramine.In the absence of Ca2 , the cyclic AMP response to 100 microM thiazolylethylamine was abolished, while that to 100 microM dimaprit was unaffected.7. Reincubation of 5 microM histamine solutions with a second set of chromaffin cells, following prior incubation with another set of cells, induced a cyclic AMP response in the fresh cells. This response was reduced by a combination of mepyramine and cimetidine to the same degree as the response to fresh 5 microm histamine solutions.8. The results indicate that histamine increases cellular cyclic AMP levels in bovine chromaffin cells by three mechanisms: by acting on H1 receptors, by acting on H2 receptors, and by an interaction between H, and H2 receptors. The H1 response does not require concomitant activation of H2 receptors, is fully dependent on extracellular Ca2 +, does not depend on secreted chromaffin cell products, and is not due to reduced cyclic AMP degradation or export. The H2 cyclic AMP response is the first functional response reported for H2 receptors on chromaffin cells, is independent of Ca2 , is not due to reduced cyclic AMP export or degradation, and is likely to be mediated via a direct action through Gs. The role of these different mechanisms in the regulation of cyclic AMP-dependent processes in chromaffin cells by histamine is under investigation.
Collapse
Affiliation(s)
- P D Marley
- Department of Biochemistry, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- B G Livett
- Department of Biochemistry, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
22
|
Zhou XF, Marley PD, Livett BG. Substance P modulates the time course of nicotinic but not muscarinic catecholamine secretion from perfused adrenal glands of rat. Br J Pharmacol 1991; 104:159-65. [PMID: 1723914 PMCID: PMC1908299 DOI: 10.1111/j.1476-5381.1991.tb12401.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. Substance P (SP) and acetylcholine (ACh) are contained within the splanchnic nerve terminals in the adrenal gland and can be released in response to stress. In the rat, the release of aCh brings about secretion of catecholamines (CA) by acting on nicotinic and muscarinic receptors on the adrenal chromaffin cells. 2. In the present study, we have used a rat isolated adrenal gland preparation to investigate the effects of SP, perfused at different concentrations, on CA secretion evoked by 10(-5) M nicotine and 10(-4) M muscarine. 3. In the first 10 min stimulation period (S1), in the absence of SP, nicotine (10(-5) M) evoked substantial and equal secretion of noradrenaline (NA) and adrenaline (Ad). In a second 10 min stimulation period (S2), carried out 18 min after S1, the nicotinic response was desensitized. In contrast, the muscarinic response, which preferentially evoked Ad secretion in S1 (Ad/NA: 8.7/1), was well maintained in S2. 4. SP present in S1 had no effect on desensitization of the subsequent nicotinic response in S2. 5. At low concentrations (10(-7)-10(-10) M), SP changed the time course of nicotine-induced CA secretion during S1 by enhancing CA secretion in the first 4 min and inhibiting CA secretion thereafter. The maximal effect occurred at 10(-9) M SP. 6. At a higher concentration (10(-5) M), SP inhibited total nicotinic CA secretion throughout S1 and produced a biphasic secretion of CA (depressed in the presence of SP and enhanced after wash out of SP). Pre-exposure of adrenal glands to SP (10-' to 10- M) for 10min produced marked inhibition of the nicotine-induced CA secretion. 7. In contrast to the effect of SP on the nicotinic response, SP from 10- to 10-SM had no effect on muscarinic CA secretion. 8. This difference in sensitivity of the nicotinic and muscarinic responses to SP points to a diversity of mechanisms available for control of adrenal catecholamine secretion. In addition to the ability of SP to increase or decrease the total amount of adrenal CA secretion, dependent on the concentration of SP, the present study shows that SP can change the time-course of nicotinic CA secretion. These results with the rat adrenal gland perfused in vitro suggests both a quantitative and temporal role for SP as a novel modulator of adrenal CA secretion.
Collapse
Affiliation(s)
- X F Zhou
- Department of Biochemistry, University of Melbourne, Parkville, Vic., Australia
| | | | | |
Collapse
|