1
|
Wu M, Yang Y, Wang M, Zeng F, Li Q, Liu W, Guo S, He M, Wang Y, Huang J, Zhou L, Li Y, Hu J, Gong W, Zhang Z. Exogenous Pancreatic Kallikrein Improves Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetes. Front Pharmacol 2018; 9:855. [PMID: 30131697 PMCID: PMC6091235 DOI: 10.3389/fphar.2018.00855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
Aims: To evaluate the protective effects of exogenous pancreatic kallikrein (PKK) treatment on diabetic cardiomyopathy (DCM) and explore the underlying mechanisms. Methods and Results: Streptozotocin (STZ)-induced diabetic rats, a type 1 diabetic model, were treated with either PKK or saline for 12 weeks. Non-diabetic rats were used as controls. PKK administration attenuated the mitochondria swelling, Z line misalignments, myofibrosis and interstitial collagen accumulation in diabetic myocardial tissue. The oxidative stress imbalance including increased nitrotyrosine, decreased anti-oxidative components such as nuclear receptor nuclear factor like 2 (Nrf2), glutathione peroxidase 1(GPx-1), catalase (CAT) and superoxide dismutase (SOD), were recovered in the heart of PKK-treated diabetic rats. In diabetic rats, protein expression of TGF-β1 and accumulation of collagen I in the heart tissues was decreased after PKK administration. Markers for inflammation were decreased in diabetic rats by PKK treatment. Compared to diabetic rats, PKK reversed the degradation of IκB-α, an inhibitive element of heterotrimer nuclear factor kappa B (NF-κB). The endothelial nitric oxide synthase (eNOS) protein and myocardial nitrate/nitrite were impaired in the heart of diabetic rats, which, however, were restored after PKK treatment. The sarcoplasmic reticulum Ca2+-ATPase 2 (SERCA2) and phospholamban (PLN) were mishandled in diabetic rats, while were rectified in PKK-treated diabetic rats. The plasma NT-proBNP level was increased in diabetic rats while was reduced with PKK treatment. Conclusion: PKK protects against DCM via reducing fibrosis, inflammation, and oxidative stress, promoting nitric oxide production, as well as restoring the function of the calcium channel.
Collapse
Affiliation(s)
- Meng Wu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Yeping Yang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Meng Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangfang Zeng
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Qin Li
- Division of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Liu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Shizhe Guo
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Min He
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Yi Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- Changzhou Qianhong Biopharma Co., Ltd., Changzhou, China
| | - Linuo Zhou
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiming Li
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Wei Gong
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaoyun Zhang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Simeonova R, Vitcheva V, Krasteva I, Zdraveva P, Konstantinov S, Ionkova I. Antidiabetic and antioxidant effects of saponarin from Gypsophila trichotoma on streptozotocin-induced diabetic normotensive and hypertensive rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:483-90. [PMID: 27064007 DOI: 10.1016/j.phymed.2016.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND Diabetes and hypertension are diseases that often coexist, which increases the risk of chronic organ damages and cardiovascular complications. PURPOSE To evaluate the effects of saponarin, isolated from Gypsophila trichotoma Wend, on blood pressure, glycemia, body weight, and liver biochemical parameters related to oxidative stress in diabetic normotensive Wistar Kyoto rats (NTR) and spontaneously hypertensive rats (SHR). METHODS Diabetes was induced by administration of streptozotocin (40 mg/kg, i.p.). The following biochemical parameters: reduced glutathione (GSH), malondialdehyde (MDA), total cytochrome P450, aniline hydroxylase (AH) activity, as well as the activities of antioxidant enzymes such as glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) were measured in the livers of euthanized rats. RESULTS Saponarin exerted slight antihypertensive activity in non-diabetic SHR, judged by 19% (p<0.05) decrease of the initial blood pressure. However, such effect was not observed in streptozotocin-induced diabetic SHR (SHR-D). Streptozotocin-induced diabetes was evidenced by 78% (p<0.05) and by 171% (p<0.05) increase in blood glucose level in NTR and SHR, respectively. In non-diabetic SHR the initial MDA quantity was by 36% (p<0.05) higher and the initial GSH levels were by 28% (p<0.05) lower in comparison to non-diabetic NTR. Significant decrease in the activities of GPx, GR, and GST was measured in the livers of all diabetic rats. Treatment with saponarin ameliorated the above mentioned liver parameters in both diabetic strains, however its effects were less pronounced in the diabetic SHR group. CONCLUSION Taken together our data indicate that diabetes and hypertension in combination are more difficult to be modulated by saponarin.
Collapse
Affiliation(s)
- Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria
| | - Vessela Vitcheva
- Department of Pharmacology, Pharmacotherapy and Toxicology Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria
| | - Ilina Krasteva
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria.
| | - Petranka Zdraveva
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria
| | - Spiro Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria
| | - Iliana Ionkova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria
| |
Collapse
|
3
|
Sharma JN. The kinin system in hypertensive pathophysiology. Inflammopharmacology 2012; 21:1-9. [DOI: 10.1007/s10787-012-0137-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/03/2012] [Indexed: 11/30/2022]
|
4
|
Sharma J, Kesavarao U. The Effects of Captopril on Cardiac Regression, Blood Pressure and Bradykinin Components in Diabetic Wistar Kyoto Rats. Int J Immunopathol Pharmacol 2011; 24:337-43. [DOI: 10.1177/039463201102400207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The present study examined the left ventricular wall thickness (LVWT), total urinary kallikrein, total plasma kininogen and mean arterial blood pressure (MABP) in diabetic and non-diabetic Wistar Kyoto (WKY) rats. The MABP was significantly raised (P<0.01) in diabetic WKY rats compared to the respective controls. The LVWT was also significantly (P<0.01) increased in diabetic WKY rats than that of control WKY rats. The mean total urinary kallikrein level and the mean total plasma kininogen level were higher (P<0.01) in diabetic WKY rats, when these rats were treated with captopril (40 mg/kg and 80 mg/kg) against the mean value obtained from control WKY rats. In conclusion, this investigation suggests that diabetes induced in these rats can cause hypertension, increased LVWT and changes in the BK-forming components. Captopril treatment caused reduction in MABP, regression of LVWT and alterations in bradykinin (BK)-forming components. The possible significance of these observations is discussed.
Collapse
Affiliation(s)
- J.N. Sharma
- Department of Applied Therapeutics, Faculty of Pharmacy, Health Sciences Centre Kuwait University, Safat, Kuwait
| | | |
Collapse
|
5
|
Erejuwa OO, Sulaiman SA, Wahab MSA, Sirajudeen KNS, Salleh MSM, Gurtu S. Differential responses to blood pressure and oxidative stress in streptozotocin-induced diabetic Wistar-Kyoto rats and spontaneously hypertensive rats: effects of antioxidant (honey) treatment. Int J Mol Sci 2011; 12:1888-907. [PMID: 21673929 PMCID: PMC3111640 DOI: 10.3390/ijms12031888] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 12/29/2010] [Accepted: 01/05/2011] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress is implicated in the pathogenesis and/or complications of hypertension and/or diabetes mellitus. A combination of these disorders increases the risk of developing cardiovascular events. This study investigated the effects of streptozotocin (60 mg/kg; ip)-induced diabetes on blood pressure, oxidative stress and effects of honey on these parameters in the kidneys of streptozotocin-induced diabetic Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Diabetic WKY and SHR were randomized into four groups and received distilled water (0.5 mL) and honey (1.0 g/kg) orally once daily for three weeks. Control SHR had reduced malondialdehyde (MDA) and increased systolic blood pressure (SBP), catalase (CAT) activity, and total antioxidant status (TAS). SBP, activities of glutathione peroxidase (GPx) and glutathione reductase (GR) were elevated while TAS was reduced in diabetic WKY. In contrast, SBP, TAS, activities of GPx and GR were reduced in diabetic SHR. Antioxidant (honey) treatment further reduced SBP in diabetic SHR but not in diabetic WKY. It also increased TAS, GSH, reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, activities of GPx and GR in diabetic SHR. These data suggest that differences in types, severity, and complications of diseases as well as strains may influence responses to blood pressure and oxidative stress.
Collapse
Affiliation(s)
- Omotayo O. Erejuwa
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; E-Mails: (S.A.S.); (M.S.A.W.)
| | - Siti A. Sulaiman
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; E-Mails: (S.A.S.); (M.S.A.W.)
| | - Mohd Suhaimi Ab Wahab
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; E-Mails: (S.A.S.); (M.S.A.W.)
| | - Kuttulebbai N. S. Sirajudeen
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; E-Mail:
| | - Md Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; E-Mail:
| | - Sunil Gurtu
- Monash University Sunway Campus, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, 46150, Bandar Sunway, Selangor, Malaysia; E-Mail:
| |
Collapse
|
6
|
Westermann D, Walther T, Savvatis K, Escher F, Sobirey M, Riad A, Bader M, Schultheiss HP, Tschöpe C. Gene deletion of the kinin receptor B1 attenuates cardiac inflammation and fibrosis during the development of experimental diabetic cardiomyopathy. Diabetes 2009; 58:1373-81. [PMID: 19276445 PMCID: PMC2682670 DOI: 10.2337/db08-0329] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Diabetic cardiomyopathy is associated with increased mortality in patients with diabetes. The underlying pathology of this disease is still under discussion. We studied the role of the kinin B1 receptor on the development of experimental diabetic cardiomyopathy. RESEARCH DESIGN AND METHODS We utilized B1 receptor knockout mice and investigated cardiac inflammation, fibrosis, and oxidative stress after induction of streptozotocin (STZ)-induced diabetes. Furthermore, the left ventricular function was measured by pressure-volume loops after 8 weeks of diabetes. RESULTS B1 receptor knockout mice showed an attenuation of diabetic cardiomyopathy with improved systolic and diastolic function in comparison with diabetic control mice. This was associated with a decreased activation state of the mitogen-activated protein kinase p38, less oxidative stress, as well as normalized cardiac inflammation, shown by fewer invading cells and no increase in matrix metalloproteinase-9 as well as the chemokine CXCL-5. Furthermore, the profibrotic connective tissue growth factor was normalized, leading to a reduction in cardiac fibrosis despite severe hyperglycemia in mice lacking the B1 receptor. CONCLUSIONS These findings suggest that the B1 receptor is detrimental in diabetic cardiomyopathy in that it mediates inflammatory and fibrotic processes. These insights might have useful implications on future studies utilizing B1 receptor antagonists for treatment of human diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Dirk Westermann
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Thomas Walther
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Konstantinos Savvatis
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Felcicitas Escher
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Meike Sobirey
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Alexander Riad
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Heinz-Peter Schultheiss
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carsten Tschöpe
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Corresponding author: Carsten Tschöpe,
| |
Collapse
|
7
|
Abstract
Angioedema is an underestimated clinical problem. Many cases are nonallergic reactions, e.g. bradykinin-induced angioedema caused by genetic defects and angiotensin-converting enzyme (ACE) inhibitors. This difference is crucial for successful therapy, in particular when complete emergency care is not available. Five important forms of nonallergic angioedema can be distinguished: hereditary (HAE), acquired (AAE), renin-angiotensin-aldosterone system (RAAS)-blocker-induced (RAE), pseudoallergic angioedema (PAE) and idiopathic angioedema (IAE). Some angioedema are present in the larynx and may cause death. A vast majority of nonallergic angioedema are RAE, particularly those caused by ACE inhibitors. It appears important to emphasize that in patients with complete intolerance to RAAS-blockers, cessation of RAAS-blockers is likely to be associated with increased cardiovascular risk. Currently, there is no published algorithm for diagnosis and treatment. Angioedema is usually treated by a conservative clinical approach using artificial ventilation, glucocorticoids and antihistamines. Today, a plasma pool C1-esterase inhibitor (C1-INH) concentrate is the therapy of choice in HAE. The current pharmacotherapy of nonallergic angioedema is not satisfactory, thus requiring the identification of effective agents in clinical trials. Recently, several new drugs were developed: a recombinant C1-INH, a kallikrein inhibitor (ecallantide) and a specific bradykinin-B2-receptor antagonist (icatibant). According to currently available reports, these drugs may improve the treatment of kinin-induced angioedema.
Collapse
Affiliation(s)
- M Bas
- Hals-, Nasen- und Ohrenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Sharma JN. Role of tissue kallikrein-kininogen-kinin pathways in the cardiovascular system. Arch Med Res 2006; 37:299-306. [PMID: 16513476 DOI: 10.1016/j.arcmed.2005.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 08/29/2005] [Indexed: 12/11/2022]
Abstract
All the components of the kallikrein-kinin system are located in the cardiac muscle, and its deficiency may lead to cardiac dysfunction. In recent years, numerous observations obtained from clinical and experimental models of diabetes, hypertension, cardiac failure, ischemia, myocardial infarction and left ventricular hypertrophy have suggested that the reduced activity of the local kallikrein-kinin system may be instrumental for the induction of cardiovascular-related diseases. The cardioprotective property of the angiotensin converting enzyme inhibitors is primarily mediated via kinin-releasing pathway, which may cause regression of the left ventricular hypertrophy in hypertensive situations. The ability of kallikrein gene delivery to produce a wide spectrum of beneficial effects makes it an excellent candidate in treating hypertension, cardiovascular and renal diseases. In addition, stable kinin agonists may also be available in the future as therapeutic agents for cardiovascular and renal disorders.
Collapse
Affiliation(s)
- Jagdish N Sharma
- Department of Applied Therapeutics, Faculty of Pharmacy, Health Sciences Center, Safat, Kuwait.
| |
Collapse
|
9
|
Montanari D, Yin H, Dobrzynski E, Agata J, Yoshida H, Chao J, Chao L. Kallikrein gene delivery improves serum glucose and lipid profiles and cardiac function in streptozotocin-induced diabetic rats. Diabetes 2005; 54:1573-80. [PMID: 15855348 DOI: 10.2337/diabetes.54.5.1573] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigated the role of the kallikrein-kinin system in cardiac function and glucose utilization in the streptozotocin (STZ)-induced diabetic rat model using a gene transfer approach. Adenovirus harboring the human tissue kallikrein gene was administered to rats by intravenous injection at 1 week after STZ treatment. Human kallikrein transgene expression was detected in the serum and urine of STZ-induced diabetic rats after gene transfer. Kallikrein gene delivery significantly reduced blood glucose levels and cardiac glycogen accumulation in STZ-induced diabetic rats. Kallikrein gene transfer also significantly attenuated elevated plasma triglyceride and cholesterol levels, food and water intake, and loss of body weight gain, epididymal fat pad, and gastrocnemius muscle weight in STZ-induced diabetic rats. However, these effects were blocked by icatibant, a kinin B2 receptor antagonist. Cardiac function was significantly improved after kallikrein gene transfer as evidenced by increased cardiac output and +/-delta P/delta t (maximum speed of contraction/relaxation), along with elevated cardiac sarco(endo)plasmic reticulum (Ca2+ + Mg2+)-ATPase (SERCA)-2a, phosphorylated phospholamban, NOx and cAMP levels, and GLUT4 translocation into plasma membranes of cardiac and skeletal muscle. Kallikrein gene delivery also increased Akt and glycogen synthase kinase (GSK)-3beta phosphorylation, resulting in decreased GSK-3beta activity in the heart. These results indicate that kallikrein through kinin formation protects against diabetic cardiomyopathy by improving cardiac function and promoting glucose utilization and lipid metabolism.
Collapse
Affiliation(s)
- David Montanari
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425-2211, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Tschöpe C, Spillmann F, Rehfeld U, Koch M, Westermann D, Altmann C, Dendorfer A, Walther T, Bader M, Paul M, Schultheiss HP, Vetter R. Improvement of defective sarcoplasmic reticulum Ca2+transport in diabetic heart of transgenic rats expressing the human kallikrein‐1 gene. FASEB J 2004; 18:1967-9. [PMID: 15448111 DOI: 10.1096/fj.04-1614fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The bradykinin-forming enzyme kallikrein-1 is expressed in the heart. To examine whether contractile performance and sarcoplasmic reticulum Ca2+ transport of the diabetic heart can be rescued by targeting the kallikrein-kinin system, we studied left ventricular function and sarcoplasmic reticular Ca2+ uptake after induction of streptozotocin-induced diabetes mellitus in transgenic rats expressing the human tissue kallikrein-1 gene. Six weeks after a single injection of either streptozotocin (70 mg/kg ip) or vehicle, left ventricular performance was determined using a Millar-Tip catheter system. The Ca2+-transporting activity of reticulum-derived membrane vesicles was determined in left ventricular homogenates as oxalate-supported 45Ca2+ uptake. Western blot analysis was used to quantify the reticular Ca2+-ATPase SERCA2a, phospholamban, and the phosphorylation status of the latter. Contractile performance and Ca2+ uptake activity were similar in nondiabetic wild-type and transgenic rats. Severely diabetic wild-type animals exhibited impaired left ventricular performance and decreased reticular Ca2+ uptake (-39% vs. wild-type rats, P<0.05, respectively). These changes were attenuated in diabetic transgenic rats that, in addition, exhibited a markedly increased phospholamban phosphorylation at the Ca2+/calmodulin kinase-specific site threonine17 (2.2-fold vs. diabetic wild-type rats, P<0.05). These transgene-related effects were abolished after treatment with the bradykinin B2 receptor antagonist icatibant (Hoe 140). The SERCA2-to-phospholamban ratio, phosphoserine16-phospholamban levels, and the apparent affinity for Ca2+ of the uptake reaction did not differ between the groups. Increasing the activity of the kallikrein-kinin system by expressing a human kallikrein-1 transgene protects rat heart against diabetes-induced contractile and reticular Ca2+ transport dysfunctions. An increased phosphorylation of the SERCA2 regulatory protein phospholamban at threonine17 via a B2 receptor-mediated mechanism is thereby involved.
Collapse
Affiliation(s)
- Carsten Tschöpe
- Department of Cardiology and Pneumology, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12220 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sharma JN, Abbas SA, Yusof APM, Shah RP, Gan EK. Tissue kallikrein increases duration of survival after prolonged coronary artery ligation in hypertensive rats. Pharmacology 2004; 70:201-5. [PMID: 15001821 DOI: 10.1159/000075549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 09/25/2003] [Indexed: 11/19/2022]
Abstract
There is evidence that the kallikrein-kinin system (KKS) is an important mediator in the regulation of blood pressure, and cardiac and renal hemodynamics. The present study was designed to examine the effect of tissue kallikrein and Trasylol, an inhibitor of tissue kallikrein, on survival time after continuous (prolonged) coronary artery ligation in spontaneously hypertensive rats (SHR). Tissue kallikrein (8 and 16 microg/kg, i.v.) treatment caused significant (p < 0.05) increases in the survival time of SHR as compared with the saline-treated control SHR. Trasylol pretreatment abolished (p < 0.05) the beneficial effect of tissue kallikrein on survival time. The tissue kallikrein treatment resulted in a significant (p < 0.05) reduction in systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) of SHR as compared to the saline-treated control SHR. Trasylol (6 microg/kg) treatment antagonized the effects of tissue kallikrein associated with survival time, SBP, DBP and HR. Ligation of the coronary artery caused a significant (p < 0.001) reduction in the SBP, DBP and HR of SHR, when the mean values were compared between before coronary artery ligation and after coronary artery ligation. However, there was no significant difference (p > 0.05) in SBP, DBP and HR between saline and kallikrein-treated SHR after coronary artery ligation. These findings may suggest that tissue kallikrein is able to act as a cardioprotective agent as demonstrated by an increase in survival time of SHR with prolonged coronary artery ligation.
Collapse
Affiliation(s)
- Jagdish N Sharma
- Department of Applied Therapeutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Safat, Kuwait.
| | | | | | | | | |
Collapse
|
12
|
Tschöpe C, Walther T, Königer J, Spillmann F, Westermann D, Escher F, Pauschinger M, Pesquero JB, Bader M, Schultheiss HP, Noutsias M. Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene. FASEB J 2004; 18:828-35. [PMID: 15117887 DOI: 10.1096/fj.03-0736com] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diabetic cardiomyopathy includes fibrosis. Kallikrein (KLK) can inhibit collagen synthesis and promote collagen breakdown. We investigated cardiac fibrosis and left ventricular (LV) function in transgenic rats (TGR) expressing the human kallikrein 1 (hKLK1) gene in streptozotocin (STZ) -induced diabetic conditions. Six weeks after STZ injection, LV function was determined in male Sprague-Dawley (SD) rats and TGR(hKLK1) (n=10/group) by a Millar tip catheter. Total collagen content (Sirius Red staining) and expression of types I, III, and VI collagen were quantified by digital image analysis. SD-STZ hearts demonstrated significantly higher total collagen amounts than normoglycemic controls, reflected by the concomitant increment of collagen types I, III, and VI. This correlated with a significant reduction of LV function vs. normoglycemic controls. In contrast, surface-specific content of the extracellular matrix, including collagen types I, III, and VI expression, was significantly lower in TGR(hKLK1)-STZ, not exceeding the content of SD and TGR(hKLK1) controls. This was paralleled by a preserved LV function in TGR(hKLK1)-STZ animals. The kallikrein inhibitor aprotinin and the bradykinin (BK) B2 receptor antagonist icatibant reduced the beneficial effects on LV function and collagen content in TGR(hKLK1)-STZ animals. Transgenic expression of hKLK1 counteracts the progression of LV contractile dysfunction and extracellular matrix remodeling in STZ-induced diabetic cardiomyopathy via a BK B2 receptor-dependent pathway.
Collapse
Affiliation(s)
- Carsten Tschöpe
- Department of Cardiology and Pneumonology, Campus Benjamin Franklin, Charité-University Medicine, Free University of Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
All the components of the kallikrein-kinin system are located in the cardiac muscle, and its deficiency may lead to cardiac dysfunction. In recent years, numerous observations obtained from clinical and experimental models of diabetes, hypertension, cardiac failure, ischemia, myocardial infarction, and left ventricular hypertrophy have suggested that the reduced activity of the local kallikrein-kinin system may be instrumental for the induction of cardiovascular-related diseases. The cardioprotective property of the angiotensin-converting enzyme inhibitors is primarily mediated via the kinin-releasing pathway, which may cause regression of left ventricular hypertrophy in hypertensive situations. The ability of kallikrein gene delivery to produce a wide spectrum of beneficial effects makes it an excellent candidate in treating hypertension and cardiovascular and renal diseases. In addition, stable kinin agonists may also be available in the future as therapeutic agents for cardiovascular and renal disorders.
Collapse
Affiliation(s)
- Jagdish N Sharma
- Department of Applied Therapeutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| |
Collapse
|
14
|
Koch M, Wendorf M, Dendorfer A, Wolfrum S, Schulze K, Spillmann F, Schultheiss HP, Tschöpe C. Cardiac kinin level in experimental diabetes mellitus: role of kininases. Am J Physiol Heart Circ Physiol 2003; 285:H418-23. [PMID: 12637359 DOI: 10.1152/ajpheart.00677.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus impairs the cardiac kallikrein-kinin system by reducing cardiac kallikrein (KLK) and kininogen levels, a mechanism that may contribute to the deleterious outcome of cardiac ischemia in this disease. We studied left ventricular (LV) function and bradykinin (BK) coronary outflow in buffer-perfused, isolated working hearts (n = 7) of controls and streptozotocin (STZ)-induced diabetic rats before and after global ischemia. With the use of selective kininase inhibitors, the activities of angiotensin I-converting enzyme, aminopeptidase P, and neutral endopeptidase were determined by analyzing the degradation kinetics of exogenously administered BK during sequential coronary passages. Basal LV function and coronary flow were impaired in STZ-induced diabetic rats. Neither basal nor postischemic coronary BK outflow differed between control and diabetic hearts. Reperfusion after 15 min of ischemia induced a peak in coronary BK outflow that was of the same extent and duration in both groups. In diabetic hearts, total cardiac kininase activity was reduced by 41.4% with an unchanged relative kininase contribution compared with controls. In conclusion, despite reduced cardiac KLK synthesis, STZ-induced diabetic hearts are able to maintain kinin liberation under basal and ischemic conditions because of a primary impairment or a secondary downregulation of kinin-degrading enzymes.
Collapse
Affiliation(s)
- Matthias Koch
- Department of Cardiology and Pneumology, University Hospital Benjamin Franklin, Free University of Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sharma JN, Abbas SA, Yusof APM, Shah RP. Evaluation of tissue kallikrein activity on survival time after acute coronary artery ligation in hypertensive rats. Int Immunopharmacol 2003; 3:329-34. [PMID: 12639810 DOI: 10.1016/s1567-5769(02)00272-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is known that the tissue kallikrein-kinin system is located in the cardiac tissue, and the lack of this system in the cardiac tissue might induce cardiac dysfunctions. In this study, we investigated the potential role of tissue kallikrein and Trasylol, an inhibitor of tissue kallikrein, on survival time with acute left coronary artery ligation for 15 min in spontaneously hypertensive rats (SHR). Tissue kallikrein (8 and 16 microg/kg, i.v.) treatment caused significant (P<0.05) increases in the survival time of SHR as compared with the saline-treated control SHR. Trasylol pretreatment abolished (P<0.05) the beneficial effect on tissue kallikrein on survival time. The ligation of coronary artery resulted in significant (P<0.05) reduction in systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) of SHR compared with the saline-treated control SHR. The tissue kallikrein treatment caused greater (P<0.001) reduction in the SBP, DBP and HR of SHR, when the mean values were compared between before coronary artery ligation and after coronary artery ligation. Trasylol (6 microg/kg) treatment antagonized the effects of tissue kallikrein associated with survival time, SBP, DBP and HR. These findings may suggest that tissue kallikrein is able to act as a cardioprotective agent as demonstrated by the increase in survival time of SHR with acute coronary artery ligation. The significance of these observations is discussed.
Collapse
Affiliation(s)
- Jagdish N Sharma
- Department of Applied Therapeutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | | | | | | |
Collapse
|
16
|
Abstract
All the components of the kallikrein-kinin system are located in the vascular smooth muscle as well as in the heart. In recent years, numerous observations obtained from clinical and experimental models of diabetes, hypertension, cardiac failure, ischaemia, myocardial infarction and left ventricular hypertrophy, have suggested that the reduced activity of the local kallikrein-kinin system may be instrumental in the induction of cardiovascular-related diseases. The ability of kallikrein gene delivery to produce a wide spectrum of beneficial effects makes it an excellent candidate in treating hypertension, and cardiovascular and renal diseases. In addition, stable kinin agonists may also be available in the future as therapeutic agents for cardiovascular and renal disorders.
Collapse
Affiliation(s)
- Jagdish N Sharma
- Department of Applied Therapeutics, Faculty of Pharmacy, Kuwait University, Safat.
| | | |
Collapse
|
17
|
Sharma JN, Zubaid M, Khan BZSJ, Yusof APM, Asmawi MZ. Pathophysiological activities of the kallikrein-kinin system with emphasis on the cardiovascular disorders. Inflammopharmacology 2000. [DOI: 10.1163/156856000750260487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Tschöpe C, Walther T, Yu M, Reinecke A, Koch M, Seligmann C, Heringer SB, Pesquero JB, Bader M, Schultheiss H, Unger T. Myocardial expression of rat bradykinin receptors and two tissue kallikrein genes in experimental diabetes. IMMUNOPHARMACOLOGY 1999; 44:35-42. [PMID: 10604522 DOI: 10.1016/s0162-3109(99)00109-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To characterize the role of the kallikrein-kinin system in diabetic cardiopathy, we studied the effect of streptozotocin (STZ) on the regulation of the myocardial bradykinin (BK) receptors, the B1 and B2 type, and two tissue kallikrein genes, rat kallikrein 1 (rKLK1) and rKLK7, in severely hyperglycemic rats. Experiments were performed in STZ-induced diabetic male Wistar rats (n = 7) and compared to controls (n = 7). After extraction of myocardial total RNA, specific oligonucleotides were used to generate reverse transcription PCR (RT-PCR) products from myocardial rKLK1 and rKLK7 mRNA. Southern blot analyses of these RT-PCR products were hybridized with appropriate gene-specific oligonucleotide probes. Myocardial B1 and B2 receptor expression were analyzed by RNase protection assays using specific probes from the coding region of the receptor genes. Twelve weeks after diabetes induction, the rats were normotensive and hyperglycemic and polyuric. We observed an impairment of the main myocardial kinin-forming enzymes, indicated by a reduction of the expression of both, rKLK1 and rKLK7. At this time the myocardial expression of the B1 receptor was not detectable in either group. Thus, the B1 receptor does not play a regulatory role in either the healthy or in STZ-diabetic heart. In contrast, the B2-receptor expression was detectable but did not differ significantly in either group. The reduced synthesis of myocardial tissue KLK implies a reduced capacity to generate BK in diabetic rats. This reduction is not compensated by elevated BK receptor levels. We suggest that alterations of the KKS may contribute to myocardial dysfunction in diabetes mellitus.
Collapse
Affiliation(s)
- C Tschöpe
- Department of Cardiology and Pneumology, University Hospital Benjamin Franklin (UKBF), Free University of Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abbas SA, Sharma JN, Yusof AP. The effect of bradykinin and its antagonist on survival time after coronary artery occlusion in hypertensive rats. IMMUNOPHARMACOLOGY 1999; 44:93-8. [PMID: 10604530 DOI: 10.1016/s0162-3109(99)00155-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
It is known that BK does play a role in the cardioprotective effect of angiotensin converting enzyme (ACE) inhibitors. The present study therefore was conducted to examine the effects of bradykinin (BK) and its antagonist on survival time in spontaneously hypertensive rats (SHR) with coronary artery ligation for 15 min and continuously. We also evaluated the heart rate and blood pressure (BP) in the presence and absence of BK and BK2 receptor antagonist, D-Arg-[Hyp-D-Phe7]BK. Coronary artery was ligated in anaesthetized rats and they were artificially ventilated with room air (stroke volume, 4 ml; 48 strokes/min) as described by the previous investigators. Lead II elecrocardiogram (ECG) was recorded from subcutaneous steel needle electrodes. Results of this investigation indicated that BK treatment 4 microg/kg (i.v.) and 8 microg/kg (i.v.) caused significant (P < 0.05) increase in survival time in SHR with coronary artery ligation for 15 min and continuously as compare to their respective saline-treated controls. However, BK antagonist treatment 4 microg/kg (i.v.) abolished the increase in survival time caused by BK treatment. The mean values of survival time between the saline-treated and BK antagonist plus BK-treated rats did not differ significantly (P > 0.05). The heart rate and BP responses were greatly reduced (P < 0.001) in the presence of coronary artery ligation. These findings suggest that BK might have cardioprotective effect to increase the survival time in rats by activating BK2 receptors after coronary artery ligation.
Collapse
Affiliation(s)
- S A Abbas
- Department of Pharmacology and Physiology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang
| | | | | |
Collapse
|
20
|
Atif Abbas S, Sharma JN, Pauzi A, Yusof M. Effect of bradykinin and its antagonist on survival time after coronary artery occlusion in rats. GENERAL PHARMACOLOGY 1999; 33:243-7. [PMID: 10480657 DOI: 10.1016/s0306-3623(98)00225-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study was conducted to examine the effect of bradykinin and bradykinin 2 receptor antagonist on survival time in rats with coronary artery ligation for 15 min and continuously. We also evaluated the heart rate and blood pressure responses in the presence and absence of bradykinin and its antagonist. Bradykinin treatment (4 microg and 8 microg/kg IV) significantly (p < 0.05) increased the survival time of rats compared with saline-treated rats with coronary artery ligation for 15 min and continuously. The heart rate and blood pressure responses were significantly (p < 0.001) altered in the presence of coronary artery ligation. Bradykinin antagonist treatment (4 microg/kg IV) abolished the effect of bradykinin and thus reduced the survival time of rats with coronary artery ligation. The mean value of survival time between saline-treated and bradykinin antagonist- plus bradykinin-treated rats did not differ significantly (p > 0.05).
Collapse
Affiliation(s)
- S Atif Abbas
- Department of Pharmacology and Physiology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang
| | | | | | | |
Collapse
|
21
|
Sharma JN, Kesavarao U, Yusof AP. Altered cardiac tissue and plasma kininogen levels in hypertensive and diabetic rats. IMMUNOPHARMACOLOGY 1999; 43:129-32. [PMID: 10596843 DOI: 10.1016/s0162-3109(99)00070-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present investigation was aimed at evaluating the cardiac and total plasma kininogen levels, as well as LVWT in hypertensive and diabetic rats. STZ-induced diabetes produced a significant (P < 0.001) rise in mean arterial blood pressure (BP). The LVWT increased (P < 0.001) in SHR with and without diabetes) and diabetic WKYR. The cardiac tissue, as well as total plasma kininogen levels fell significantly (P < 0.001) in diabetic WKYR and SHR with and without diabetes compared to the control WKYR. These findings suggest that reduced kininogen levels may indicate a deficiency in kinin generation in the heart and in the peripheral circulation in diabetic and hypertensive rats. This effect may contribute to the development of LVH.
Collapse
Affiliation(s)
- J N Sharma
- Department of Pharmacology and Physiology, School of Pharmaceutical Sciences, Universiti Sains Malaysia.
| | | | | |
Collapse
|
22
|
Sharma JN, Uma K, Yusof AP. Left ventricular hypertrophy and its relation to the cardiac kinin-forming system in hypertensive and diabetic rats. Int J Cardiol 1998; 63:229-35. [PMID: 9578349 DOI: 10.1016/s0167-5273(97)00329-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the cardiac tissue kallikrein and kininogen levels, left ventricular wall thickness and mean arterial blood pressure of Wistar Kyoto and spontaneously hypertensive rats with and without streptozotocin-induced diabetes. The mean arterial blood pressure was highly elevated (P<0.001) in Wistar Kyoto diabetic and spontaneously hypertensive diabetic rats as compared with their respective controls. The cardiac tissue kallikrein and kininogen levels were reduced significantly (P<0.001) in diabetic Wistar Kyoto, spontaneously hypertensive and diabetic spontaneously hypertensive compared with Wistar Kyoto control rats. In addition, the left ventricular thickness was found to be increased (P<0.001) in diabetic Wistar Kyoto and spontaneously hypertensive rats in the presence and in the absence of diabetes. Our results indicate that reduced activity of the kinin-forming system may be responsible for inducing left ventricular hypertrophy in the presence of raised mean arterial blood pressure in diabetic and hypertensive rats. Thus, the kinin-forming components might have a protective role against the development of left ventricular hypertrophy. The possible significance of these findings is discussed.
Collapse
Affiliation(s)
- J N Sharma
- Department of Pharmacology and Physiology, School of Pharmaceutical Sciences, University Science Malaysia, Penang.
| | | | | |
Collapse
|