1
|
Zhou Y, Liu B, Lei Y, Tang L, Li T, Yu S, Zhang GJ, Li YT. Acupuncture Needle-Based Transistor Neuroprobe for In Vivo Monitoring of Neurotransmitter. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204142. [PMID: 36344461 DOI: 10.1002/smll.202204142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Chemical communication via neurotransmitters is central to brain functions. Nevertheless, in vivo real-time monitoring of neurotransmitters released in the brain, especially the electrochemically inactive molecules, remains a great challenge. In this work, a novel needle field-effect transistor (FET) microsensor based on an acupuncture needle is proposed, which is demonstrated to be capable of real-time monitoring dopamine molecules as well as neuropeptide Y in vivo. The FET microstructure is fabricated by successively wrapping an insulating layer and a gold layer on the top of the needle, where the needle and the Au served as the source and drain, respectively. After assembling reduced graphene oxide (RGO) between the source and drain electrodes, the specific aptamer is immobilized on the RGO, making this needle-FET biosensor highly selective and sensitive to real-time monitor neurotransmitters released from rat brain, even in a Parkinson's diseases model. Furthermore, the needle-FET biosensor is applied to detect a variety of targets including hormones, proteins, and nucleic acid. By constructing a FET sensing interface on an acupuncture needle and implanting the sensor in a rat's brain for in vivo detection, this work provides a new sight in the FET domain and further expands the species of real-time in vivo detection.
Collapse
Affiliation(s)
- Ying Zhou
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Huiji Road, Wuhan, 430030, China
| | - Binzhu Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Yongmin Lei
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Tingxian Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Shanshan Yu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Yu-Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| |
Collapse
|
2
|
Abstract
The mass transport or flux of neurochemicals in the brain and how this flux affects chemical measurements and their interpretation is reviewed. For all endogenous neurochemicals found in the brain, the flux of each of these neurochemicals exists between sources that produce them and the sites that consume them all within μm distances. Principles of convective-diffusion are reviewed with a significant emphasis on the tortuous paths and discrete point sources and sinks. The fundamentals of the primary methods of detection, microelectrodes and microdialysis sampling of brain neurochemicals are included in the review. Special attention is paid to the change in the natural flux of the neurochemicals caused by implantation and consumption at microelectrodes and uptake by microdialysis. The detection of oxygen, nitric oxide, glucose, lactate, and glutamate, and catecholamines by both methods are examined and where possible the two techniques (electrochemical vs. microdialysis) are compared. Non-invasive imaging methods: magnetic resonance, isotopic fluorine MRI, electron paramagnetic resonance, and positron emission tomography are also used for different measurements of the above-mentioned solutes and these are briefly reviewed. Although more sophisticated, the imaging techniques are unable to track neurochemical flux on short time scales, and lack spatial resolution. Where possible, determinations of flux using imaging are compared to the more classical techniques of microdialysis and microelectrodes.
Collapse
Affiliation(s)
- David W Paul
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
3
|
Huo T, Zhang Y, Li W, Yang H, Jiang H, Sun G. Effect of realgar on extracellular amino acid neurotransmitters in hippocampal CA1 region determined by online microdialysis–dansyl chloride derivatization–high-performance liquid chromatography and fluorescence detection. Biomed Chromatogr 2015; 28:1254-62. [PMID: 25237708 DOI: 10.1002/bmc.3154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An online microdialysis (MD)–dansyl chloride (Dns) derivatization–high-performance liquid chromatography (HPLC) and fluorescence detection (FD) system was developed for simultaneous determination of eight extracellular amino acid neurotransmitters in hippocampus. The MD probe was implanted in hippocampal CA1 region. Dialysate and Dns were online mixed and derivatized. The derivatives were separated on an ODS column and detected by FD. The developed online system showed good linearity, precision, accuracy and recovery. This online MD-HPLC system was applied to monitor amino acid neurotransmitters levels in rats exposed to realgar (0.3, 0.9 and 2.7 g/kg body weight). The result shows that glutamate concentrations were significantly increased (p<0.05) in hippocampal CA1 region of rats exposed to three doses of realgar. A decrease in γ-aminobutyric acid concentrations was found in rats exposed to medium and high doses of realgar (p<0.05). Elevation of excitotoxic index (EI) values in hippocampal CA1 region of realgar-exposed rats was observed (p<0.05). Positive correlation was found between EI values and arsenic contents in hippocampus of realgar-exposed rats, which indicates that the change in extracellular EI values is associated with arsenic accumulation in hippocampus. The developed online MD–Dns derivatization–HPLC–FD system provides a new experimental method for studying the effect of toxic Chinese medicines on amino acid neurotransmitters.
Collapse
|
4
|
Quarta D, Smolders I. Rewarding, reinforcing and incentive salient events involve orexigenic hypothalamic neuropeptides regulating mesolimbic dopaminergic neurotransmission. Eur J Pharm Sci 2014; 57:2-10. [DOI: 10.1016/j.ejps.2014.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/19/2014] [Indexed: 12/22/2022]
|
5
|
Vasicek TW, Jackson MR, Poseno TM, Stenken JA. In vivo microdialysis sampling of cytokines from rat hippocampus: comparison of cannula implantation procedures. ACS Chem Neurosci 2013; 4:737-46. [PMID: 23480171 DOI: 10.1021/cn400025m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytokines are signaling proteins that have been of significant importance in the field of immunology, since these proteins affect different cells in the immune system. In addition to their immune system significance, these proteins have recently been referred to as a third chemical communication network within the CNS. The role that cytokines play in orchestrating the immune response within tissues after a mechanical injury leads to potential complications if the source of cytokines (i.e., trauma vs disease) is of interest. Microdialysis sampling has seen wide use in collection of many different solutes within the CNS. Yet, implantation of microdialysis guide cannulas and the probes creates tissue injury. In this study, we compared the differences in cytokine levels in dialysates from 4 mm, 100 kDa molecular weight cutoff (MWCO) polyethersulfone membrane microdialysis probes implanted in the hippocampus of male Sprague-Dawley rats. Comparisons were made between animals that were dialyzed immediately after cannula implantation (day 0), 7 days post cannula implantation (day 7), and repeatedly sampled on day 0 and day 7. Multiplexed bead-based immunoassays were used to quantify CCL2 (MCP-1), CCL3 (MIP-1α), CCL5 (RANTES), CXCL1 (KC/GRO), CXCL2 (MIP-2), IL-1β, IL-6, and IL-10 in dialysates. Differences in cytokine concentrations between the different treatment groups were observed with higher levels of inflammatory cytokines measured in day 7 cannulated animals. Only CCL3 (MIP-1α), CXCL1 (KC/GRO), CXCL2 (MIP-2), and IL-10 were measured above the assay limits of detection for a majority of the dialysates, and their concentrations were typically in the low to high (10-1000) picogram per milliliter range. The work described here lays the groundwork for additional basic research studies with microdialysis sampling of cytokines in rodent CNS.
Collapse
Affiliation(s)
- Thaddeus W. Vasicek
- Department of Chemistry and Biochemistry, ‡Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Matthew R. Jackson
- Department of Chemistry and Biochemistry, ‡Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Tina M. Poseno
- Department of Chemistry and Biochemistry, ‡Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Julie A. Stenken
- Department of Chemistry and Biochemistry, ‡Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
6
|
Clough GF, Stenken JA, Church MK. High Molecular Weight Targets and Treatments Using Microdialysis. MICRODIALYSIS IN DRUG DEVELOPMENT 2013. [DOI: 10.1007/978-1-4614-4815-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
The intriguing mission of neuropeptide Y in the immune system. Amino Acids 2011; 45:41-53. [DOI: 10.1007/s00726-011-1185-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
|
8
|
Ocular microdialysis: a continuous sampling technique to study pharmacokinetics and pharmacodynamics in the eye. Bioanalysis 2011; 2:487-507. [PMID: 21083257 DOI: 10.4155/bio.10.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The unique anatomy and physiology of the eye present many challenges to the successful development and delivery of ophthalmic drugs. Any therapeutic strategy developed to control the progression of anterior and posterior segment diseases requires continuous monitoring of effective drug concentrations in the relevant ocular tissues and fluids. Ocular microdialysis has gained popularity in recent years due to its ability to continuously monitor drug concentrations and substantially reduce the number of animals needed. The intrusive nature of ocular microdialysis experimentation has restricted these studies to animal models. This review article intends to highlight various aspects of ocular microdialysis and its relevance in examining the disposition of drugs in the anterior and posterior segments.
Collapse
|
9
|
Glass JD, Guinn J, Kaur G, Francl JM. On the intrinsic regulation of neuropeptide Y release in the mammalian suprachiasmatic nucleus circadian clock. Eur J Neurosci 2010; 31:1117-26. [PMID: 20377624 DOI: 10.1111/j.1460-9568.2010.07139.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Timing of the circadian clock of the suprachiasmatic nucleus (SCN) is regulated by photic and non-photic inputs. Of these, neuropeptide Y (NPY) signaling from the intergeniculate leaflet (IGL) to the SCN plays a prominent role. Although NPY is critical to clock regulation, neither the mechanisms modulating IGL NPY neuronal activity nor the nature of regulatory NPY signaling in the SCN clock are understood, as NPY release in the SCN has never been measured. Here, microdialysis procedures for in vivo measurement of NPY were used in complementary experiments to address these questions. First, neuronal release of NPY in the hamster SCN was rhythmic under a 14L : 10D photocycle, with the acrophase soon after lights-on and the nadir at midday. No rhythmic fluctuation in NPY occurred under constant darkness. Second, a behavioral phase-resetting stimulus (wheel-running at midday that induces IGL serotonin release) acutely stimulated SCN NPY release. Third, bilateral IGL microinjection of the serotonin agonist, (+/-)-2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT) (another non-photic phase-resetting stimulant), at midday enhanced SCN NPY release. Conversely, similar application of the serotonin antagonist, metergoline, abolished wheel-running-induced SCN NPY release. IGL microinjection of the GABA agonist, muscimol, suppressed SCN NPY release. These results support an intra-IGL mechanism whereby behavior-induced serotonergic activity suppresses inhibitory GABAergic transmission, promoting NPY activity and subsequent phase resetting. Collectively, these results confirm IGL-mediated NPY release in the SCN and verify that its daily rhythm of release is dependent upon the 14L : 10D photocycle, and that it is modulated by appropriately-timed phase-resetting behavior, probably mediated by serotonergic activation of NPY units in the IGL.
Collapse
Affiliation(s)
- J David Glass
- Department of Biological Sciences, Kent State University, Kent, OH 44242-0001, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
Microdialysis is an in vivo sampling technique that permits the quantification of various substances (e.g., neurotransmitters, peptides, electrolytes) in blood and tissue. It is also used to infuse substances into the brain and spinal cord. This unit describes methods for the construction and stereotaxic implantation of microdialysis probes into discrete brain regions of the rat and mouse. Procedures for the conduct of conventional and quantitative microdialysis experiments in the awake and anesthetized rodent are also provided.
Collapse
Affiliation(s)
- Agustin Zapata
- Integrative Neuroscience Section, NIH/NIDA Intramural Research Program, Baltimore, Maryland, USA
| | | | | |
Collapse
|
11
|
Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. CURRENT PROTOCOLS IN NEUROSCIENCE 2009; Chapter 7:Unit7.1. [PMID: 19340812 PMCID: PMC2953244 DOI: 10.1002/0471142301.ns0701s47] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The technique of microdialysis enables sampling and collecting of small-molecular-weight substances from the interstitial space. It is a widely used method in neuroscience and is one of the few techniques available that permits quantification of neurotransmitters, peptides, and hormones in the behaving animal. More recently, it has been used in tissue preparations for quantification of neurotransmitter release. This unit provides a brief review of the history of microdialysis and its general application in the neurosciences. The authors review the theoretical principles underlying the microdialysis process, methods available for estimating extracellular concentration from dialysis samples (i.e., relative recovery), the various factors that affect the estimate of in vivo relative recovery, and the importance of determining in vivo relative recovery to data interpretation. Several areas of special note, including impact of tissue trauma on the interpretation of microdialysis results, are discussed. Step-by-step instructions for the planning and execution of conventional and quantitative microdialysis experiments are provided.
Collapse
Affiliation(s)
- Vladimir I Chefer
- Integrative Neuroscience Section, NIH/NIDA Intramural Research Program, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
12
|
Sah R, Parker SL, Sheriff S, Eaton K, Balasubramaniam A, Sallee FR. Interaction of NPY compounds with the rat glucocorticoid-induced receptor (GIR) reveals similarity to the NPY-Y2 receptor. Peptides 2007; 28:302-9. [PMID: 17240481 PMCID: PMC1876793 DOI: 10.1016/j.peptides.2006.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/09/2006] [Indexed: 10/23/2022]
Abstract
The rat glucocorticoid-induced receptor (rGIR) is an orphan G protein-coupled receptor awaiting pharmacological characterization. Among known receptors, rGIR exhibits highest sequence similarity to the neuropeptide Y (NPY)-Y(2) receptor (38-40%). The pharmacological profile of rGIR was investigated using (125)I-PYY(3-36), a Y(2)-preferring radioligand and several NPY analogs. rGIR displayed a similar displacement profile as reported for the Y(2) receptor, in that the Y(2)-selective C terminus fragments of NPY and PYY (NPY(3-36) and PYY(3-36)) showed high affinity binding and activation of rGIR (low nanomolar range). The rank order potency for displacement was NPY(3-36)>PYY(3-36)=NPY>NPY(13-36)>Ac, Leu NPY(24-36)>[D-Trp(32)]-NPY>Leu(31), Pro(34)-NPY=hPP. NPY and Y(2)-selective agonists NPY(3-36) and PYY(3-36) led to significant activation of (35)S-GTPgammaS binding to rGIR transfected cells. BIIE0246, a specific Y(2) antagonist, displaced (125)I-PYY(3-36) binding to rGIR with high affinity (95nM). Activation of (35)S-GTPgammaS binding by Y(2)-selective agonist in rGIR transfected cells was also completely abolished by BIIE0246. Our data report, for the first time, an interaction of NPY ligands with rGIR expressed in vitro, and indicate similarities between GIR and the NPY-Y(2) receptor.
Collapse
Affiliation(s)
- Renu Sah
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- * Corresponding Author, Renu Sah, Department of Psychiatry, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, Ohio 45229-0559, Tel: +1 513-558-5129, Fax: +1 513-558-2288,
| | - Steven L. Parker
- Department of Pharmacology, University of Tennessee, Memphis, TN 38163, USA
| | - Sulaiman Sheriff
- Department of Surgery, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Katherine Eaton
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | | | - Floyd R. Sallee
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
13
|
Parker SL, Parker MS, Sah R, Balasubramaniam A, Sallee FR. Self-regulation of agonist activity at the Y receptors. Peptides 2007; 28:203-13. [PMID: 17194507 DOI: 10.1016/j.peptides.2006.07.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 07/29/2006] [Indexed: 11/20/2022]
Abstract
Neuropeptide Y (NPY) is one of the most abundant neuropeptides, and is likely to be present at nanomolar levels over extended periods in the synaptic space of many forebrain areas. This might be linked to an evolved generalized toning activity through a number of other peptide receptors that use C-terminally amidated agonists (with LHRH and orexin receptors and GIR as examples). However, the Y1 and Y2 receptors (which constitute the bulk of Y receptors active in the neural matrix) possess subnanomolar affinities that, at saturating NPY levels, could produce excessive signaling, as well as receptor losses via repeated endocytosis. The related Y4 receptor shows an even higher agonist affinity, and faces the same problem in visceral and neural locations accessible to pancreatic polypeptide (PP). An examination of agonist peptide interaction with Y receptors shows that Y1 and Y4 receptors in particular (as located on either the intact cells, or on particulates derived from various cell types) develop a blockade dependent on ligand concentration, with the blocking ranks of [NPY]>>[peptide YY] (PYY) for the Y1, and [human PP]>>>[PYY-related Y4 agonist] for the Y4 receptor. This blockade is also echoed in a concentration-related reduction in biological activity of primary agonists (NPY and PP), resembling a partial agonism, and is influenced especially by the allosteric interactivity of agonists. With the Y2 receptor, the blocking by agonists is less pronounced, but the signaling by NPY-related peptides is apparently less than with PYY-related agonists. The extended occupancy and self-attenuation of primary agonist activity at Y receptors could represent an evolutionary solution contributing to a balancing of metabolic signaling, agonist clearance and receptor conservation.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
14
|
Choi YS, Wood TD. Polyaniline-coated nanoelectrospray emitters treated with hydrophobic polymers at the tip. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:2101-8. [PMID: 17546654 DOI: 10.1002/rcm.3068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In nanoelectrospray ionization (nanoESI) techniques, the hydrophilic character of the emitters generally produces large bases for the Taylor cones, thereby generating relatively large droplet sizes and consequently reduced sensitivity. In order to minimize this 'wetting' effect in nanoESI, a model hydrophobic polymer (an acrylic paint) was coated at the tip of commercial polyaniline (PANI)-coated emitters, and their performance was compared with that of unmodified PANI emitters using oxytocin and neuropeptide Y (NPY) solutions. In experiments with oxytocin, the hydrophobic emitter produced higher signal intensities (up to 3.6 times) as well as higher signal-to-noise ratios (33% increase) than those from the unmodified PANI emitter. In addition, the hydrophobic emitter showed reusability and a slightly wider linear dynamic range (10 nM to 50 microM, r2=0.9938) than that from the unmodified PANI emitter (10 nM to 10 microM, r2=0.9904). In the case of NPY, the hydrophobic emitter also enabled an approximately 350-fold overall increase in sensitivity than the unmodified PANI emitter (70 zmol vs. 25 amol). The enhanced performance of the hydrophobic emitter clearly indicates potential for further increases in nanoESI sensitivity using emitters with tailored hydrophobic overcoatings.
Collapse
Affiliation(s)
- Yong Seok Choi
- Department of Chemistry, Natural Sciences Complex, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA
| | | |
Collapse
|
15
|
Abstract
Microdialysis of neuropeptide Y (NPY) has been reported to be difficult, which partly may be due to the adhesive nature of the molecule. The aim of this study was to determine the optimal probe and perfusion medium for microdialysis of NPY and to investigate if microdialysis can be used to sample NPY from human muscle tissue. Three different probe types with a 10mm membrane were used for experiments in vitro. They were perfused with a modified Krebs-Henseleit buffer (KHB), with or without the addition of 0.5% human serum albumin (HSA). Dialysate samples were collected at different flow rates. Ten healthy subjects participated in the clinical microdialysis. Microdialysis samples were obtained by probes inserted intramuscularly in the right masseter and trapezius muscle and perfused with KHB+HSA at a flow-rate of 4 microl/min. The relative recovery of NPY was significantly higher in the dialysates with HSA added to the perfusion medium, while there was no difference between the three probe types. NPY was detectable in 90% of the dialysates from the masseter and in 40% of the dialysates from the trapezius muscle. In conclusion, this study shows that NPY can be detected in microdialysis samples from human skeletal muscle and that addition of HSA to the perfusion medium increases the relative recovery in vitro.
Collapse
Affiliation(s)
- Malin M Ernberg
- Department of Clinical Oral Physiology, Institute of Odontology, Karolinska Institutet, Box 4064, SE 141 04 Huddinge, Sweden.
| | | |
Collapse
|
16
|
|
17
|
Abstract
The technique of microdialysis enables the monitoring of neurotransmitters and other molecules in the extracellular environment. This method has undergone several modifications and is now widely used for sampling and quantitating neurotransmitters, neuropeptides, and hormones in the brain and periphery. This unit describes the principles of conventional and quantitative microdialysis as well as strategies in designing a dialysis experiment. It establishes the groundwork for the basic techniques of preparation, conduct, and analysis of dialysis experiments in rodents and subhuman primates. Although the methods described are those used for monitoring CNS function, they can be easily applied with minor modification to other organ systems.
Collapse
Affiliation(s)
- T S Shippenberg
- NIH/NIDA Intramural Research Program, Baltimore, Maryland, USA
| | | |
Collapse
|
18
|
Husum H, Mikkelsen JD, Mørk A. Extracellular levels of neuropeptide Y are markedly increased in the dorsal hippocampus of freely moving rats during kainic acid-induced seizures. Brain Res 1998; 781:351-4. [PMID: 9507190 DOI: 10.1016/s0006-8993(97)01374-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this microdialysis study we measured the extracellular neuropeptide Y (NPY) levels in the dorsal hippocampus of conscious rats. During potassium-induced depolarisations, a 93% increase in extracellular levels of NPY was observed. NPY has been demonstrated to reduce kainic acid-induced convulsions in rats, but it is unknown whether NPY neurotransmission is affected by seizures. During seizures induced by kainic acid we observed a 104% increase in levels of NPY, suggesting that convulsions are associated with a dramatically increased NPYergic neurotransmission.
Collapse
Affiliation(s)
- H Husum
- Department of Neurobiology, H. Lundbeck A/S, 9 Ottiliavej, DK-2500 Copenhagen-Valby, Denmark
| | | | | |
Collapse
|
19
|
Schneiderheinze JM, Hogan BL. Selective in Vivo and in Vitro Sampling of Proteins Using Miniature Ultrafiltration Sampling Probes. Anal Chem 1996; 68:3758-62. [DOI: 10.1021/ac960309u] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Barry L. Hogan
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63103
| |
Collapse
|
20
|
Sam PM, Justice JB. Effect of general microdialysis-induced depletion on extracellular dopamine. Anal Chem 1996; 68:724-8. [PMID: 8779439 DOI: 10.1021/ac950754+] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Continuous sampling by microdialysis induces a general depletion of all low molecular weight materials around the microdialysis probe. The effect of this depletion on the estimation of extracellular dopamine (DA) concentration was evaluated for various degrees of depletion. The basal level of DA in the striatum of male Wistar rats was estimated by the zero net flux method at six different flow rates ranging form 0.3 to 1.6 microL/min. The extracellular DA concentrations in the striatum of male rats measured by this method were found not to differ significantly from one flow rate to another (p > 0.05) with a mean of 6.5 nM +/- 0.11. These finding suggest that the estimation of extracellular dopamine by quantitative microdialysis is independent of the flow rate and that the depletion of other extracellular substances around the probe has no effect on the determination of the extracellular concentration of dopamine.
Collapse
Affiliation(s)
- P M Sam
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|