1
|
Han MJ, Oh Y, Ann Y, Kang S, Baeg E, Hong SJ, Sohn H, Kim SG. Whole-brain effective connectivity of the sensorimotor system using 7T fMRI with electrical microstimulation in non-human primates. Prog Neurobiol 2025:102760. [PMID: 40280291 DOI: 10.1016/j.pneurobio.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
The sensorimotor system is a crucial interface between the brain and the environment, and it is endowed with multiple computational mechanisms that enable efficient behaviors. For example, predictive processing via an efference copy of a motor command has been proposed as one of the key computations used to compensate for the sensory consequence of movement. However, the neural pathways underlying this process remain unclear, particularly regarding whether the M1-to-S1 pathway plays a dominant role in predictive processing and how its influence compares to that of other pathways. In this study, we present a causally inferable input-output map of the sensorimotor effective connectivity that we made by combining ultrahigh-field functional MRI, electrical microstimulation of the S1/M1 cortex, and dynamic causal modeling for the whole sensorimotor network in anesthetized primates. We investigated how motor signals from M1 are transmitted to S1 at the circuit level, either via direct cortico-cortical projections or indirectly via subcortical structures such as the thalamus. Across different stimulation conditions, we observed a robust asymmetric connectivity from M1 to S1 that was also the most prominent output from M1. In the thalamus, we identified distinct activations: M1 stimulation showed connections to the anterior part of ventral thalamic nuclei, whereas S1 was linked to the more posterior regions of the ventral thalamic nuclei. These findings suggest that the cortico-cortical projection from M1 to S1, rather than the cortico-thalamic loop, plays a dominant role in transmitting movement-related information. Together, our detailed dissection of the sensorimotor circuitry underscores the importance of M1-to-S1 connectivity in sensorimotor coordination.
Collapse
Affiliation(s)
- Min-Jun Han
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Younghyun Oh
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yejin Ann
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sangyun Kang
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Eunha Baeg
- Department of Nano-bioengineering, Incheon National University, Incheon, Republic of Korea; Center for Brain-Machine Interface, Incheon National University, Incheon, Republic of Korea
| | - Seok Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Center for the Developing Brain, Child Mind Institute, NY, United States
| | - Hansem Sohn
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Balbinot G, Milosevic M, Morshead CM, Iwasa SN, Zariffa J, Milosevic L, Valiante TA, Hoffer JA, Popovic MR. The mechanisms of electrical neuromodulation. J Physiol 2025; 603:247-284. [PMID: 39740777 DOI: 10.1113/jp286205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour. Here we examine the neural mechanisms that are thought to underlie the therapeutic effects seen with current neuromodulation technologies. To gain further insights into the mechanisms associated with electrical stimulation, we summarize recent findings from genetic dissection studies conducted in animal models. KEY POINTS: Electricity is everywhere around us and is essential for how our nerves communicate within our bodies. When nerves are damaged or not working properly, using exogenous electricity can help improve their function at distinct levels - inside individual cells, within neural circuits, and across entire systems. This method can be tailored to target specific types of cells, nerve fibres, neurotransmitters and communication pathways, offering significant therapeutic potential. This overview explains how exogenous electricity affects nerve function and its potential benefits, based on research in animal studies. Understanding these effects is important because electrical neuromodulation plays a key role in medical treatments for neurological conditions.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cindi M Morshead
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Stephanie N Iwasa
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
| | - Jose Zariffa
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Luka Milosevic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Taufik A Valiante
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Joaquín Andrés Hoffer
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Milos R Popovic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Huang Y, Yang L, Yang L, Xu Z, Li M, Shang Z. Microstimulation-based path tracking control of pigeon robots through parameter adaptive strategy. Heliyon 2024; 10:e38113. [PMID: 39386879 PMCID: PMC11462516 DOI: 10.1016/j.heliyon.2024.e38113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Research on animal robots utilizing neural electrical stimulation is a significant focus within the field of neuro-control, though precise behavior control remains challenging. This study proposes a parameter-adaptive strategy to achieve accurate path tracking. First, the mapping relationship between neural electrical stimulation parameters and corresponding behavioral responses is comprehensively quantified. Next, adjustment rules related to the parameter-adaptive control strategy are established to dynamically generate different stimulation patterns. A parameter-adaptive path tracking control strategy (PAPTCS), based on fuzzy control principles, is designed for the precise path tracking tasks of pigeon robots in open environments. The results indicate that altering stimulation parameter levels significantly affects turning angles, with higher UPN and PTN inducing changes in the pigeons' motion state. In experimental scenarios, the average control efficiency of this system was 82.165%. This study provides a reference method for the precise control of pigeon robot behavior, contributing to research on accurate target path tracking.
Collapse
Affiliation(s)
- Yinggang Huang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Lifang Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Long Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zehua Xu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Mengmeng Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhigang Shang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
Branam K, Gold JI, Ding L. The subthalamic nucleus contributes causally to perceptual decision-making in monkeys. eLife 2024; 13:RP98345. [PMID: 39311685 PMCID: PMC11419670 DOI: 10.7554/elife.98345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
The subthalamic nucleus (STN) plays critical roles in the motor and cognitive function of the basal ganglia (BG), but the exact nature of these roles is not fully understood, especially in the context of decision-making based on uncertain evidence. Guided by theoretical predictions of specific STN contributions, we used single-unit recording and electrical microstimulation in the STN of healthy monkeys to assess its causal, computational roles in visual-saccadic decisions based on noisy evidence. The recordings identified subpopulations of STN neurons with distinct task-related activity patterns that related to different theoretically predicted functions. Microstimulation caused changes in behavioral choices and response times that reflected multiple contributions to an 'accumulate-to-bound'-like decision process, including modulation of decision bounds and evidence accumulation, and to non-perceptual processes. These results provide new insights into the multiple ways that the STN can support higher brain function.
Collapse
Affiliation(s)
- Kathryn Branam
- Department of Neuroscience, University of PennsylvaniaPhiladelphiaUnited States
| | - Joshua I Gold
- Department of Neuroscience, University of PennsylvaniaPhiladelphiaUnited States
| | - Long Ding
- Department of Neuroscience, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
5
|
Yang Q, Wu B, Castagnola E, Pwint MY, Williams NP, Vazquez AL, Cui XT. Integrated Microprism and Microelectrode Array for Simultaneous Electrophysiology and Two-Photon Imaging across All Cortical Layers. Adv Healthc Mater 2024; 13:e2302362. [PMID: 38563704 PMCID: PMC11421982 DOI: 10.1002/adhm.202302362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/24/2024] [Indexed: 04/04/2024]
Abstract
Cerebral neural electronics play a crucial role in neuroscience research with increasing translational applications such as brain-computer interfaces for sensory input and motor output restoration. While widely utilized for decades, the understanding of the cellular mechanisms underlying this technology remains limited. Although two-photon microscopy (TPM) has shown great promise in imaging superficial neural electrodes, its application to deep-penetrating electrodes is technically difficult. Here, a novel device integrating transparent microelectrode arrays with glass microprisms, enabling electrophysiology recording and stimulation alongside TPM imaging across all cortical layers in a vertical plane, is introduced. Tested in Thy1-GCaMP6 mice for over 4 months, the integrated device demonstrates the capability for multisite electrophysiological recording/stimulation and simultaneous TPM calcium imaging. As a proof of concept, the impact of microstimulation amplitude, frequency, and depth on neural activation patterns is investigated using the setup. With future improvements in material stability and single unit yield, this multimodal tool greatly expands integrated electrophysiology and optical imaging from the superficial brain to the entire cortical column, opening new avenues for neuroscience research and neurotechnology development.
Collapse
Affiliation(s)
- Qianru Yang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittburgh, PA, 15213, USA
- School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittburgh, PA, 15213, USA
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Biomedical Engineering Department, Louisiana Tech University, Ruston, LA, 71272, USA
| | - May Yoon Pwint
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittburgh, PA, 15213, USA
| | - Nathaniel P Williams
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittburgh, PA, 15213, USA
| | - Alberto L Vazquez
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittburgh, PA, 15213, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
6
|
Rogers K, Gold JI, Ding L. The subthalamic nucleus contributes causally to perceptual decision-making in monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588715. [PMID: 38645039 PMCID: PMC11030388 DOI: 10.1101/2024.04.09.588715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The subthalamic nucleus (STN) plays critical roles in the motor and cognitive function of the basal ganglia (BG), but the exact nature of these roles is not fully understood, especially in the context of decision-making based on uncertain evidence. Guided by theoretical predictions of specific STN contributions, we used single-unit recording and electrical microstimulation in the STN of healthy monkeys to assess its causal, computational roles in visual-saccadic decisions based on noisy evidence. The recordings identified subpopulations of STN neurons with distinct task-related activity patterns that related to different theoretically predicted functions. Microstimulation caused changes in behavioral choices and response times that reflected multiple contributions to an "accumulate-to-bound"-like decision process, including modulation of decision bounds and evidence accumulation, and to non-perceptual processes. These results provide new insights into the multiple ways that the STN can support higher brain function.
Collapse
|
7
|
Ramos JMJ. Parotid hypersalivation after inferior salivatory nucleus glutamate/NMDA receptor excitation in the rat. Physiol Behav 2024; 280:114564. [PMID: 38657747 DOI: 10.1016/j.physbeh.2024.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Although salivation is essential during eating behavior, little is known about the brainstem centers that directly control the salivary glands. With regard to the inferior salivatory nucleus (ISN), the site of origin of the parasympathetic preganglionic cell bodies that innervate the parotid glands, previous anatomical studies have located it within the rostrodorsal medullary reticular formation. However, to date there is no functional data that shows the secretory nature of the somas grouped in this region. To activate only the somas and rule out the activation of the efferent fibers from and the afferent fibers to the ISN, in exp. 1, NMDA neurotoxin was administered to the rostrodorsal medullary region and the secretion of saliva was recorded during the following hour. Results showed an increased secretion of parotid saliva but a total absence of submandibular-sublingual secretion. In exp. 2, results showed that the hypersecretion of parotid saliva after NMDA microinjection was completely blocked by the administration of atropine (a cholinergic blocker) but not after administration of dihydroergotamine plus propranolol (α and β-adrenergic blockers, respectively). These findings suggest that the somata of the rostrodorsal medulla are secretory in nature, controlling parotid secretion via a cholinergic pathway. The data thus functionally supports the idea that these cells constitute the ISN.
Collapse
Affiliation(s)
- Juan M J Ramos
- Department of Psychobiology and Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada 18071, Spain.
| |
Collapse
|
8
|
Whyte CJ, Redinbaugh MJ, Shine JM, Saalmann YB. Thalamic contributions to the state and contents of consciousness. Neuron 2024; 112:1611-1625. [PMID: 38754373 PMCID: PMC11537458 DOI: 10.1016/j.neuron.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Consciousness can be conceptualized as varying along at least two dimensions: the global state of consciousness and the content of conscious experience. Here, we highlight the cellular and systems-level contributions of the thalamus to conscious state and then argue for thalamic contributions to conscious content, including the integrated, segregated, and continuous nature of our experience. We underscore vital, yet distinct roles for core- and matrix-type thalamic neurons. Through reciprocal interactions with deep-layer cortical neurons, matrix neurons support wakefulness and determine perceptual thresholds, whereas the cortical interactions of core neurons maintain content and enable perceptual constancy. We further propose that conscious integration, segregation, and continuity depend on the convergent nature of corticothalamic projections enabling dimensionality reduction, a thalamic reticular nucleus-mediated divisive normalization-like process, and sustained coherent activity in thalamocortical loops, respectively. Overall, we conclude that the thalamus plays a central topological role in brain structures controlling conscious experience.
Collapse
Affiliation(s)
- Christopher J Whyte
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | | | - James M Shine
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin National Primate Research Center, Madison, WI, USA
| |
Collapse
|
9
|
Feyerick M, Dehaene W. Dense, 11 V-Tolerant, Balanced Stimulator IC with Digital Time-Domain Calibration for 100 nA Error. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:1166-1176. [PMID: 37335793 DOI: 10.1109/tbcas.2023.3287294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
This article presents a multichannel neurostimulator implementing a novel charge balancing technique to achieve maximal integration. Safe neurostimulation demands accurate charge balancing of the stimulation waveforms to prevent charge build-up on the electrode-tissue interface. We propose digital time-domain calibration (DTDC), which adjusts the second phase of the biphasic stimulation pulses digitally, based on a one-time characterization of all stimulator channels with an on-chip ADC. Accurate control of the stimulation current amplitude is loosened in exchange for time-domain corrections, relieving circuit matching constraints and consequentially saving channel area. A theoretical analysis of DTDC is presented, establishing expressions for the required time resolution and the new, relaxed circuit matching constraints. To validate the DTDC principle, a 16-channel stimulator was implemented in 65 nm CMOS, requiring only 0.0141 mm 2 area/channel. Despite being implemented in a standard CMOS technology, 10.4 V compliance is achieved for compatibility with high-impedance microelectrode arrays typical for high-resolution neural prostheses. To the authors' knowledge, this is the first stimulator in a 65 nm low-voltage process achieving over 10 V output swing. Measurements after calibration show the DC error is successfully reduced below 96 nA on all channels. Static power consumption is 20.3 µW/channel.
Collapse
|
10
|
Oikawa T, Nomura K, Hara T, Koida K. A Fine-Scale and Minimally Invasive Marking Method for Use with Conventional Tungsten Microelectrodes. eNeuro 2023; 10:ENEURO.0141-23.2023. [PMID: 37696665 PMCID: PMC10521347 DOI: 10.1523/eneuro.0141-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
In neurophysiology, achieving precise correlation between physiological responses and anatomic structures is a significant challenge. Therefore, the accuracy of the electrode marking method is crucial. In this study, we describe a tungsten-deposition method, in which tungsten oxide is generated by applying biphasic current pulses to conventional tungsten electrodes. The electrical current used was 40-50 μA, which is similar to that used in electrical microstimulation experiments. The size of the markings ranged from 10 to 100 μm, corresponding to the size of the electrode tip, which is smaller than that of existing marking methods. Despite the small size of the markings, detection is easy as the marking appears in bright red under dark-field observation after Nissl staining. This marking technique resulted in low tissue damage and was maintained in vivo for at least two years. The feasibility of this method was tested in mouse and macaque brains.
Collapse
Affiliation(s)
- Tatsuya Oikawa
- Department of Computer Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan
| | - Kento Nomura
- Department of Computer Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan
| | - Toshimitsu Hara
- Department of Computer Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan
| | - Kowa Koida
- Department of Computer Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan
- Institute for Research on Next-generation Semiconductor and Sensing Science, Toyohashi University of Technology, Aichi 441-8580, Japan
| |
Collapse
|
11
|
McPherson JG, Bandres MF. Neural population dynamics reveal that motor-targeted intraspinal microstimulation preferentially depresses nociceptive transmission in spinal cord injury-related neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550880. [PMID: 37546721 PMCID: PMC10402167 DOI: 10.1101/2023.07.27.550880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The purpose of this study is to determine whether intraspinal microstimulation (ISMS) intended to enhance voluntary motor output after spinal cord injury (SCI) modulates neural population-level spinal responsiveness to nociceptive sensory feedback. The study was conducted in vivo in three cohorts of rats: neurologically intact, chronic SCI without behavioral signs of neuropathic pain, and chronic SCI with SCI-related neuropathic pain (SCI-NP). Nociceptive sensory feedback was induced by application of graded mechanical pressure to the plantar surface of the hindpaw before, during, and after periods of sub-motor threshold ISMS delivered within the motor pools of the L5 spinal segment. Neural population-level responsiveness to nociceptive feedback was recorded throughout the dorso-ventral extent of the L5 spinal segment using dense multi-channel microelectrode arrays. Whereas motor-targeted ISMS reduced nociceptive transmission across electrodes in neurologically intact animals both during and following stimulation, it was not associated with altered nociceptive transmission in rats with SCI that lacked behavioral signs of neuropathic pain. Surprisingly, nociceptive transmission was reduced both during and following motor-targeted ISMS in rats with SCI-NP, and to an extent comparable to that of neurologically intact animals. The mechanisms underlying the differential anti-nociceptive effects of motor-targeted ISMS are unclear, although they may be related to differences in the intrinsic active membrane properties of spinal neurons across the cohorts. Nevertheless, the results of this study support the notion that it may be possible to purposefully engineer spinal stimulation-based therapies that afford multi-modal rehabilitation benefits, and specifically that it may be possible to do so for the individuals most in need - i.e., those with SCI-related movement impairments and SCI-NP.
Collapse
Affiliation(s)
- Jacob G. McPherson
- Program in Physical Therapy, Washington University School of Medicine
- Department of Anesthesiology, Washington University School of Medicine
- Washington University Pain Center, Washington University School of Medicine
- Program in Neurosciences; Washington University School of Medicine
- Department of Biomedical Engineering; Washington University in St. Louis
| | - Maria F. Bandres
- Program in Physical Therapy, Washington University School of Medicine
- Department of Biomedical Engineering; Washington University in St. Louis
| |
Collapse
|
12
|
Dipietro L, Gonzalez-Mego P, Ramos-Estebanez C, Zukowski LH, Mikkilineni R, Rushmore RJ, Wagner T. The evolution of Big Data in neuroscience and neurology. JOURNAL OF BIG DATA 2023; 10:116. [PMID: 37441339 PMCID: PMC10333390 DOI: 10.1186/s40537-023-00751-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/08/2023] [Indexed: 07/15/2023]
Abstract
Neurological diseases are on the rise worldwide, leading to increased healthcare costs and diminished quality of life in patients. In recent years, Big Data has started to transform the fields of Neuroscience and Neurology. Scientists and clinicians are collaborating in global alliances, combining diverse datasets on a massive scale, and solving complex computational problems that demand the utilization of increasingly powerful computational resources. This Big Data revolution is opening new avenues for developing innovative treatments for neurological diseases. Our paper surveys Big Data's impact on neurological patient care, as exemplified through work done in a comprehensive selection of areas, including Connectomics, Alzheimer's Disease, Stroke, Depression, Parkinson's Disease, Pain, and Addiction (e.g., Opioid Use Disorder). We present an overview of research and the methodologies utilizing Big Data in each area, as well as their current limitations and technical challenges. Despite the potential benefits, the full potential of Big Data in these fields currently remains unrealized. We close with recommendations for future research aimed at optimizing the use of Big Data in Neuroscience and Neurology for improved patient outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s40537-023-00751-2.
Collapse
Affiliation(s)
| | - Paola Gonzalez-Mego
- Spaulding Rehabilitation/Neuromodulation Lab, Harvard Medical School, Cambridge, MA USA
| | | | | | | | | | - Timothy Wagner
- Highland Instruments, Cambridge, MA USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA USA
| |
Collapse
|
13
|
Lycke R, Kim R, Zolotavin P, Montes J, Sun Y, Koszeghy A, Altun E, Noble B, Yin R, He F, Totah N, Xie C, Luan L. Low-threshold, high-resolution, chronically stable intracortical microstimulation by ultraflexible electrodes. Cell Rep 2023; 42:112554. [PMID: 37235473 PMCID: PMC10592461 DOI: 10.1016/j.celrep.2023.112554] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Intracortical microstimulation (ICMS) enables applications ranging from neuroprosthetics to causal circuit manipulations. However, the resolution, efficacy, and chronic stability of neuromodulation are often compromised by adverse tissue responses to the indwelling electrodes. Here we engineer ultraflexible stim-nanoelectronic threads (StimNETs) and demonstrate low activation threshold, high resolution, and chronically stable ICMS in awake, behaving mouse models. In vivo two-photon imaging reveals that StimNETs remain seamlessly integrated with the nervous tissue throughout chronic stimulation periods and elicit stable, focal neuronal activation at low currents of 2 μA. Importantly, StimNETs evoke longitudinally stable behavioral responses for over 8 months at a markedly low charge injection of 0.25 nC/phase. Quantified histological analyses show that chronic ICMS by StimNETs induces no neuronal degeneration or glial scarring. These results suggest that tissue-integrated electrodes provide a path for robust, long-lasting, spatially selective neuromodulation at low currents, which lessens risk of tissue damage or exacerbation of off-target side effects.
Collapse
Affiliation(s)
- Roy Lycke
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Robin Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Pavlo Zolotavin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Jon Montes
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Yingchu Sun
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Aron Koszeghy
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790 Helsinki, Finland
| | - Esra Altun
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Material Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Brian Noble
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Applied Physics Program, Rice University, Houston, TX 77005, USA
| | - Rongkang Yin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Fei He
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Nelson Totah
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790 Helsinki, Finland; Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
14
|
Ramos JMJ. Microinjection of NMDA-neurotoxin into the superior salivatory nucleus of the rat: Short-term secretory and long-term drinking behavior effects. Physiol Behav 2023:114282. [PMID: 37364670 DOI: 10.1016/j.physbeh.2023.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The anatomical location of the superior salivatory nucleus (SSN), the site of origin of the parasympathetic preganglionic cell bodies that innervate the submandibular-sublingual salivary glands, is well established in rats. However, as of yet there is no functional data that convincingly shows the secretory nature of this region. Previous studies have not been able to differentiate between interventions on efferent or afferent fibers connected to the SSN versus interventions on the salivatory nucleus itself. Taking advantage of the fact that salivatory neurons express NMDA-receptors on their somas, in the present study SSN cell bodies were activated and lesioned sequentially by means of intracerebral application of NMDA-neurotoxin. In exp. 1 two effects, a short- and a long-term effect, were observed following NMDA administration. The first effect was high submandibular-sublingual saliva secretion during the hour following administration of the neurotoxin and the second was a profound change in drinking behavior once the animals recovered from the lesion. Thus, on post-surgery days 16, 17 and 18, the rats exhibited hyperdipsia in the presence of dry food but not in the presence of wet food. In expt. 2 results showed that saliva hypersecretion observed after NMDA-microinjection was completely blocked by the administration of atropine (a cholinergic blocker) but not after the administration of dihydroergotamine plus propranolol (α and β-adrenergic blockers, respectively). From a functional perspective, these data suggest that the somata of the parvocellular reticular formation control the secretory activity of the submandibular-sublingual salivary glands and thus constitute the SSN.
Collapse
Affiliation(s)
- Juan M J Ramos
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain.
| |
Collapse
|
15
|
Smith TJ, Wu Y, Cheon C, Khan AA, Srinivasan H, Capadona JR, Cogan SF, Pancrazio JJ, Engineer CT, Hernandez-Reynoso AG. Behavioral paradigm for the evaluation of stimulation-evoked somatosensory perception thresholds in rats. Front Neurosci 2023; 17:1202258. [PMID: 37383105 PMCID: PMC10293669 DOI: 10.3389/fnins.2023.1202258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Intracortical microstimulation (ICMS) of the somatosensory cortex via penetrating microelectrode arrays (MEAs) can evoke cutaneous and proprioceptive sensations for restoration of perception in individuals with spinal cord injuries. However, ICMS current amplitudes needed to evoke these sensory percepts tend to change over time following implantation. Animal models have been used to investigate the mechanisms by which these changes occur and aid in the development of new engineering strategies to mitigate such changes. Non-human primates are commonly the animal of choice for investigating ICMS, but ethical concerns exist regarding their use. Rodents are a preferred animal model due to their availability, affordability, and ease of handling, but there are limited choices of behavioral tasks for investigating ICMS. In this study, we investigated the application of an innovative behavioral go/no-go paradigm capable of estimating ICMS-evoked sensory perception thresholds in freely moving rats. We divided animals into two groups, one receiving ICMS and a control group receiving auditory tones. Then, we trained the animals to nose-poke - a well-established behavioral task for rats - following either a suprathreshold ICMS current-controlled pulse train or frequency-controlled auditory tone. Animals received a sugar pellet reward when nose-poking correctly. When nose-poking incorrectly, animals received a mild air puff. After animals became proficient in this task, as defined by accuracy, precision, and other performance metrics, they continued to the next phase for perception threshold detection, where we varied the ICMS amplitude using a modified staircase method. Finally, we used non-linear regression to estimate perception thresholds. Results indicated that our behavioral protocol could estimate ICMS perception thresholds based on ~95% accuracy of rat nose-poke responses to the conditioned stimulus. This behavioral paradigm provides a robust methodology for evaluating stimulation-evoked somatosensory percepts in rats comparable to the evaluation of auditory percepts. In future studies, this validated methodology can be used to study the performance of novel MEA device technologies on ICMS-evoked perception threshold stability using freely moving rats or to investigate information processing principles in neural circuits related to sensory perception discrimination.
Collapse
Affiliation(s)
- Thomas J. Smith
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Yupeng Wu
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Claire Cheon
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Arlin A. Khan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Hari Srinivasan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Crystal T. Engineer
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | | |
Collapse
|
16
|
Cota VR, Cançado SAV, Moraes MFD. On temporal scale-free non-periodic stimulation and its mechanisms as an infinite improbability drive of the brain's functional connectogram. Front Neuroinform 2023; 17:1173597. [PMID: 37293579 PMCID: PMC10244597 DOI: 10.3389/fninf.2023.1173597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Rationalized development of electrical stimulation (ES) therapy is of paramount importance. Not only it will foster new techniques and technologies with increased levels of safety, efficacy, and efficiency, but it will also facilitate the translation from basic research to clinical practice. For such endeavor, design of new technologies must dialogue with state-of-the-art neuroscientific knowledge. By its turn, neuroscience is transitioning-a movement started a couple of decades earlier-into adopting a new conceptual framework for brain architecture, in which time and thus temporal patterns plays a central role in the neuronal representation of sampled data from the world. This article discusses how neuroscience has evolved to understand the importance of brain rhythms in the overall functional architecture of the nervous system and, consequently, that neuromodulation research should embrace this new conceptual framework. Based on such support, we revisit the literature on standard (fixed-frequency pulsatile stimuli) and mostly non-standard patterns of ES to put forward our own rationale on how temporally complex stimulation schemes may impact neuromodulation strategies. We then proceed to present a low frequency, on average (thus low energy), scale-free temporally randomized ES pattern for the treatment of experimental epilepsy, devised by our group and termed NPS (Non-periodic Stimulation). The approach has been shown to have robust anticonvulsant effects in different animal models of acute and chronic seizures (displaying dysfunctional hyperexcitable tissue), while also preserving neural function. In our understanding, accumulated mechanistic evidence suggests such a beneficial mechanism of action may be due to the natural-like characteristic of a scale-free temporal pattern that may robustly compete with aberrant epileptiform activity for the recruitment of neural circuits. Delivering temporally patterned or random stimuli within specific phases of the underlying oscillations (i.e., those involved in the communication within and across brain regions) could both potentiate and disrupt the formation of neuronal assemblies with random probability. The usage of infinite improbability drive here is obviously a reference to the "The Hitchhiker's Guide to the Galaxy" comedy science fiction classic, written by Douglas Adams. The parallel is that dynamically driving brain functional connectogram, through neuromodulation, in a manner that would not favor any specific neuronal assembly and/or circuit, could re-stabilize a system that is transitioning to fall under the control of a single attractor. We conclude by discussing future avenues of investigation and their potentially disruptive impact on neurotechnology, with a particular interest in NPS implications in neural plasticity, motor rehabilitation, and its potential for clinical translation.
Collapse
Affiliation(s)
- Vinícius Rosa Cota
- Rehab Technologies - INAIL Lab, Istituto Italiano di Tecnologia, Genoa, Italy
- Laboratory of Neuroengineering and Neuroscience, Department of Electrical Engineering, Federal University of São João del-Rei, São João del Rei, Brazil
| | - Sérgio Augusto Vieira Cançado
- Núcleo Avançado de Tratamento das Epilepsias (NATE), Felício Rocho Hospital, Fundação Felice Rosso, Belo Horizonte, Brazil
| | - Márcio Flávio Dutra Moraes
- Department of Physiology and Biophysics, Núcleo de Neurociências, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
17
|
Smith TJ, Wu Y, Cheon C, Khan AA, Srinivasan H, Capadona JR, Cogan SF, Pancrazio JJ, Engineer CT, Hernandez-Reynoso AG. Behavioral Paradigm for the Evaluation of Stimulation-Evoked Somatosensory Perception Thresholds in Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.537848. [PMID: 37205577 PMCID: PMC10187227 DOI: 10.1101/2023.05.04.537848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Intracortical microstimulation (ICMS) of the somatosensory cortex via penetrating microelectrode arrays (MEAs) can evoke cutaneous and proprioceptive sensations for restoration of perception in individuals with spinal cord injuries. However, ICMS current amplitudes needed to evoke these sensory percepts tend to change over time following implantation. Animal models have been used to investigate the mechanisms by which these changes occur and aid in the development of new engineering strategies to mitigate such changes. Non-human primates are commonly the animal of choice for investigating ICMS, but ethical concerns exist regarding their use. Rodents are a preferred animal model due to their availability, affordability, and ease of handling, but there are limited choices of behavioral tasks for investigating ICMS. In this study, we investigated the application of an innovative behavioral go/no-go paradigm capable of estimating ICMS-evoked sensory perception thresholds in freely moving rats. We divided animals into two groups, one receiving ICMS and a control group receiving auditory tones. Then, we trained the animals to nose-poke - a well-established behavioral task for rats - following either a suprathreshold ICMS current-controlled pulse train or frequency-controlled auditory tone. Animals received a sugar pellet reward when nose-poking correctly. When nose-poking incorrectly, animals received a mild air puff. After animals became proficient in this task, as defined by accuracy, precision, and other performance metrics, they continued to the next phase for perception threshold detection, where we varied the ICMS amplitude using a modified staircase method. Finally, we used non-linear regression to estimate perception thresholds. Results indicated that our behavioral protocol could estimate ICMS perception thresholds based on ∼95% accuracy of rat nose-poke responses to the conditioned stimulus. This behavioral paradigm provides a robust methodology for evaluating stimulation-evoked somatosensory percepts in rats comparable to the evaluation of auditory percepts. In future studies, this validated methodology can be used to study the performance of novel MEA device technologies on ICMS-evoked perception threshold stability using freely moving rats or to investigate information processing principles in neural circuits related to sensory perception discrimination.
Collapse
|
18
|
Lycke R, Kim R, Zolotavin P, Montes J, Sun Y, Koszeghy A, Altun E, Noble B, Yin R, He F, Totah N, Xie C, Luan L. Low-threshold, high-resolution, chronically stable intracortical microstimulation by ultraflexible electrodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529295. [PMID: 36865195 PMCID: PMC9980065 DOI: 10.1101/2023.02.20.529295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Intracortical microstimulation (ICMS) enables applications ranging from neuroprosthetics to causal circuit manipulations. However, the resolution, efficacy, and chronic stability of neuromodulation is often compromised by the adverse tissue responses to the indwelling electrodes. Here we engineer ultraflexible stim-Nanoelectronic Threads (StimNETs) and demonstrate low activation threshold, high resolution, and chronically stable ICMS in awake, behaving mouse models. In vivo two-photon imaging reveals that StimNETs remain seamlessly integrated with the nervous tissue throughout chronic stimulation periods and elicit stable, focal neuronal activation at low currents of 2 μA. Importantly, StimNETs evoke longitudinally stable behavioral responses for over eight months at markedly low charge injection of 0.25 nC/phase. Quantified histological analysis show that chronic ICMS by StimNETs induce no neuronal degeneration or glial scarring. These results suggest that tissue-integrated electrodes provide a path for robust, long-lasting, spatially-selective neuromodulation at low currents which lessen risks of tissue damage or exacerbation of off-target side-effects.
Collapse
Affiliation(s)
- Roy Lycke
- Department of Electrical and Computer Engineering; Rice University; Houston; Texas; 77005, United States
- Rice Neuroengineering Initiative; Rice University; Houston; Texas; 77005, United States
| | - Robin Kim
- Department of Electrical and Computer Engineering; Rice University; Houston; Texas; 77005, United States
- Rice Neuroengineering Initiative; Rice University; Houston; Texas; 77005, United States
| | - Pavlo Zolotavin
- Department of Electrical and Computer Engineering; Rice University; Houston; Texas; 77005, United States
- Rice Neuroengineering Initiative; Rice University; Houston; Texas; 77005, United States
| | - Jon Montes
- Rice Neuroengineering Initiative; Rice University; Houston; Texas; 77005, United States
- Department of Bioenginering; Rice University; Houston; Texas; 77005, United States
| | - Yingchu Sun
- Department of Electrical and Computer Engineering; Rice University; Houston; Texas; 77005, United States
- Rice Neuroengineering Initiative; Rice University; Houston; Texas; 77005, United States
| | - Aron Koszeghy
- Helsinki Institute of Life Science (HiLIFE); University of Helsinki; Helsinki; 00790; Finland
| | - Esra Altun
- Rice Neuroengineering Initiative; Rice University; Houston; Texas; 77005, United States
- Material Science and NanoEngineering; Rice University; Houston; Texas; 77005, United States
| | - Brian Noble
- Rice Neuroengineering Initiative; Rice University; Houston; Texas; 77005, United States
- Applied Physics Program; Rice University; Houston; Texas; 77005, United States
| | - Rongkang Yin
- Department of Electrical and Computer Engineering; Rice University; Houston; Texas; 77005, United States
- Rice Neuroengineering Initiative; Rice University; Houston; Texas; 77005, United States
| | - Fei He
- Department of Electrical and Computer Engineering; Rice University; Houston; Texas; 77005, United States
- Rice Neuroengineering Initiative; Rice University; Houston; Texas; 77005, United States
| | - Nelson Totah
- Helsinki Institute of Life Science (HiLIFE); University of Helsinki; Helsinki; 00790; Finland
- Faculty of Pharmacy; University of Helsinki; Helsinki; 00790; Finland
| | - Chong Xie
- Department of Electrical and Computer Engineering; Rice University; Houston; Texas; 77005, United States
- Rice Neuroengineering Initiative; Rice University; Houston; Texas; 77005, United States
- Department of Bioenginering; Rice University; Houston; Texas; 77005, United States
| | - Lan Luan
- Department of Electrical and Computer Engineering; Rice University; Houston; Texas; 77005, United States
- Rice Neuroengineering Initiative; Rice University; Houston; Texas; 77005, United States
- Department of Bioenginering; Rice University; Houston; Texas; 77005, United States
| |
Collapse
|
19
|
Deep brain stimulation of the lateral hypothalamus to block morphine reward: Does the intensity of stimulation matter? Behav Brain Res 2023; 437:114159. [PMID: 36241071 DOI: 10.1016/j.bbr.2022.114159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022]
Abstract
It has been shown that high-frequency deep brain stimulation (DBS) of the lateral hypothalamus (LH) prevents morphine-induced conditioned place preference (CPP) in rats. However, our previous study demonstrated that the application of DBS at 150 µA did not block morphine CPP in all rats. Here, we investigated the possibility to completely block morphine CPP by increasing the intensity of LH DBS. Morphine reward was assessed by the CPP paradigm in male Wistar rats. DBS was applied in the LH during the conditioning trials with morphine (5 mg/kg, S.C.) at 130 Hz pulse frequency, 100 µs pulse duration, and either 150 µA or 200 µA pulse amplitude. Results showed that repeated morphine injections produced a robust CPP that was blocked partially by DBS at 150 µA and completely by DBS at 200 µA. Response rate was 47% with 150-µA and 100% with 200-µA stimulation. DBS treatment was not associated with changes in motor activity. In conclusion, the development of morphine reward was modulated by LH DBS in an intensity-dependent manner.
Collapse
|
20
|
Abouelseoud G, Abouelseoud Y, Shoukry A, Ismail N, Mekky J. A mixed integer linear programming framework for improving cortical vision prosthesis designs. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Bundy DT, Barbay S, Hudson HM, Frost SB, Nudo RJ, Guggenmos DJ. Stimulation-Evoked Effective Connectivity (SEEC): An in-vivo approach for defining mesoscale corticocortical connectivity. J Neurosci Methods 2023; 384:109767. [PMID: 36493978 DOI: 10.1016/j.jneumeth.2022.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cortical electrical stimulation is a versatile technique for examining the structure and function of cortical regions and for implementing novel therapies. While electrical stimulation has been used to examine the local spread of neural activity, it may also enable longitudinal examination of mesoscale interregional connectivity. NEW METHOD Here, we sought to use intracortical microstimulation (ICMS) in conjunction with recordings of multi-unit action potentials to assess the mesoscale effective connectivity within sensorimotor cortex. Neural recordings were made from multielectrode arrays placed into sensory, motor, and premotor regions during surgical experiments in three squirrel monkeys. During each recording, single-pulse ICMS was repeatably delivered to a single region. Mesoscale effective connectivity was calculated from ICMS-evoked changes in multi-unit firing. RESULTS Multi-unit action potentials were able to be detected on the order of 1 ms after each ICMS pulse. Across sensorimotor regions, short-latency (< 2.5 ms) ICMS-evoked neural activity strongly correlated with known anatomical connections. Additionally, ICMS-evoked responses remained stable across the experimental period, despite small changes in electrode locations and anesthetic state. COMPARISON WITH EXISTING METHODS Previous imaging studies investigating cross-regional responses to stimulation are limited to utilizing indirect hemodynamic responses and thus lack the temporal specificity of ICMS-evoked responses. CONCLUSIONS These results show that monitoring ICMS-evoked neural activity, in a technique we refer to as Stimulation-Evoked Effective Connectivity (SEEC), is a viable way to longitudinally assess effective connectivity, enabling studies comparing the time course of connectivity changes with the time course of changes in behavioral function.
Collapse
Affiliation(s)
- David T Bundy
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Scott Barbay
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heather M Hudson
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shawn B Frost
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Randolph J Nudo
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA; Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, USA.
| | - David J Guggenmos
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
22
|
Fang K, Mei H, Tang Y, Wang W, Wang H, Wang Z, Dai Z. Grade-control outdoor turning flight of robo-pigeon with quantitative stimulus parameters. Front Neurorobot 2023; 17:1143601. [PMID: 37139263 PMCID: PMC10149694 DOI: 10.3389/fnbot.2023.1143601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction The robo-pigeon using homing pigeons as a motion carrier has great potential in search and rescue operations due to its superior weight-bearing capacity and sustained flight capabilities. However, before deploying such robo-pigeons, it is necessary to establish a safe, stable, and long-term effective neuro-electrical stimulation interface and quantify the motion responses to various stimuli. Methods In this study, we investigated the effects of stimulation variables such as stimulation frequency (SF), stimulation duration (SD), and inter-stimulus interval (ISI) on the turning flight control of robo-pigeons outdoors, and evaluated the efficiency and accuracy of turning flight behavior accordingly. Results The results showed that the turning angle can be significantly controlled by appropriately increasing SF and SD. Increasing ISI can significantly control the turning radius of robotic pigeons. The success rate of turning flight control decreases significantly when the stimulation parameters exceed SF > 100 Hz or SD > 5 s. Thus, the robo-pigeon's turning angle from 15 to 55° and turning radius from 25 to 135 m could be controlled in a graded manner by selecting varying stimulus variables. Discussion These findings can be used to optimize the stimulation strategy of robo-pigeons to achieve precise control of their turning flight behavior outdoors. The results also suggest that robo-pigeons have potential for use in search and rescue operations where precise control of flight behavior is required.
Collapse
Affiliation(s)
- Ke Fang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Hao Mei
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Yezhong Tang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Wenbo Wang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Hao Wang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
- Hao Wang
| | - Zhouyi Wang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
- *Correspondence: Zhouyi Wang
| | - Zhendong Dai
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
- Zhendong Dai
| |
Collapse
|
23
|
Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. NATURE REVIEWS. METHODS PRIMERS 2022; 2:92. [PMID: 38111858 PMCID: PMC10727510 DOI: 10.1038/s43586-022-00170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 12/20/2023]
Abstract
Weak magnetic fields offer nearly lossless transmission of signals within biological tissue. Magnetic nanomaterials are capable of transducing magnetic fields into a range of biologically relevant signals in vitro and in vivo. These nanotransducers have recently enabled magnetic control of cellular processes, from neuronal firing and gene expression to programmed apoptosis. Effective implementation of magnetically controlled cellular signalling relies on careful tailoring of magnetic nanotransducers and magnetic fields to the responses of the intended molecular targets. This primer discusses the versatility of magnetic modulation modalities and offers practical guidelines for selection of appropriate materials and field parameters, with a particular focus on applications in neuroscience. With recent developments in magnetic instrumentation and nanoparticle chemistries, including those that are commercially available, magnetic approaches promise to empower research aimed at connecting molecular and cellular signalling to physiology and behaviour in untethered moving subjects.
Collapse
Affiliation(s)
- Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jimin Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnd Pralle
- Department of Physics, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
24
|
Oz R, Edelman-Klapper H, Nivinsky-Margalit S, Slovin H. Microstimulation in the primary visual cortex: activity patterns and their relation to visual responses and evoked saccades. Cereb Cortex 2022; 33:5192-5209. [PMID: 36300613 DOI: 10.1093/cercor/bhac409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Intracortical microstimulation (ICMS) in the primary visual cortex (V1) can generate the visual perception of a small point of light, termed phosphene, and evoke saccades directed to the receptive field of the stimulated neurons. Although ICMS is widely used, a direct measurement of the spatio-temporal patterns of neural activity evoked by ICMS and their relation to the neural responses evoked by visual stimuli or how they relate to ICMS-evoked saccades are still missing. To investigate this, we combined ICMS with voltage-sensitive dye imaging in V1 of behaving monkeys and measured neural activity at a high spatial (meso-scale) and temporal resolution. We then compared the population response evoked by small visual stimuli to those evoked by microstimulation. Both stimulation types evoked population activity that spread over few millimeters in V1 and propagated to extrastriate areas. However, the population responses evoked by ICMS have shown faster dynamics for the activation transients and the horizontal propagation of activity revealed a wave-like propagation. Finally, neural activity in the ICMS condition was higher for trials with evoked saccades as compared with trials without saccades. Our results uncover the spatio-temporal patterns evoked by ICMS and their relation to visual processing and saccade generation.
Collapse
Affiliation(s)
- Roy Oz
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Hadar Edelman-Klapper
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Shany Nivinsky-Margalit
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Hamutal Slovin
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan 5290002, Israel
| |
Collapse
|
25
|
Uguz I, Shepard KL. Spatially controlled, bipolar, cortical stimulation with high-capacitance, mechanically flexible subdural surface microelectrode arrays. SCIENCE ADVANCES 2022; 8:eabq6354. [PMID: 36260686 PMCID: PMC9581492 DOI: 10.1126/sciadv.abq6354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Most neuromodulation approaches rely on extracellular electrical stimulation with penetrating electrodes at the cost of cortical damage. Surface electrodes, in contrast, are much less invasive but are challenged by the lack of proximity to axonal processes, leading to poor resolution. Here, we demonstrate that high-density (40-μm pitch), high-capacitance (>1 nF), single neuronal resolution PEDOT:PSS electrodes can be programmed to shape the charge injection front selectively at depths approaching 300 micrometers with a lateral resolution better than 100 micrometers. These electrodes, patterned on thin-film parylene substrate, can be subdurally implanted and adhere to the pial surface in chronic settings. By leveraging surface arrays that are optically transparent with PEDOT:PSS local interconnects and integrated with depth electrodes, we are able to combine surface stimulation and recording with calcium imaging and depth recording to demonstrate these spatial limits of bidirectional communication with pyramidal neurons in mouse visual cortex both laterally and at depth from the surface.
Collapse
|
26
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Perceived timing of cutaneous vibration and intracortical microstimulation of human somatosensory cortex. Brain Stimul 2022; 15:881-888. [DOI: 10.1016/j.brs.2022.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
|
28
|
Bhimani RV, Yates R, Bass CE, Park J. Distinct limbic dopamine regulation across olfactory-tubercle subregions through integration of in vivo fast-scan cyclic voltammetry and optogenetics. J Neurochem 2022; 161:53-68. [PMID: 35061915 PMCID: PMC8930533 DOI: 10.1111/jnc.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
The olfactory tubercle (OT), an important component of the ventral striatum and limbic system, is involved in multi-sensory integration of reward-related information in the brain. However, its functional roles are often overshadowed by the neighboring nucleus accumbens. Increasing evidence has highlighted that dense dopamine (DA) innervation of the OT from the ventral tegmental area (VTA) is implicated in encoding reward, natural reinforcers, and motivated behaviors. Recent studies have further suggested that OT subregions may have distinct roles in these processes due to their heterogeneous DA transmission. Currently, very little is known about regulation (release and clearance) of extracellular DA across OT subregions due to its limited anatomical accessibility and proximity to other DA-rich brain regions, making it difficult to isolate VTA-DA signaling in the OT with conventional methods. Herein, we characterized heterogeneous VTA-DA regulation in the medial (m) and lateral (l) OT in "wild-type," urethane-anesthetized rats by integrating in vivo fast-scan cyclic voltammetry with cell-type specific optogenetics to stimulate VTA-DA neurons. Channelrhodopsin-2 was selectively expressed in the VTA-DA neurons of wild-type rats and optical stimulating parameters were optimized to determine VTA-DA transmission across the OT. Our anatomical, neurochemical, and pharmacological results show that VTA-DA regulation in the mOT is less dependent on DA transporters and has greater DA transmission than the lOT. These findings establish the OT as a unique, compartmentalized structure and will aid in future behavioral characterization of the roles of VTA-DA signaling in the OT subregions in reward, drug addiction, and encoding behavioral outputs necessary for survival.
Collapse
Affiliation(s)
- Rohan V. Bhimani
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Ryan Yates
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Caroline E. Bass
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Jinwoo Park
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| |
Collapse
|
29
|
Butovas S, Schwarz C. Local Neuronal Responses to Intracortical Microstimulation in Rats' Barrel Cortex Are Dependent on Behavioral Context. Front Behav Neurosci 2022; 16:805178. [PMID: 35391784 PMCID: PMC8981908 DOI: 10.3389/fnbeh.2022.805178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/09/2022] [Indexed: 12/05/2022] Open
Abstract
The goal of cortical neuroprosthetics is to imprint sensory information as precisely as possible directly into cortical networks. Sensory processing, however, is dependent on the behavioral context. Therefore, a specific behavioral context may alter stimulation effects and, thus, perception. In this study, we reported how passive vs. active touch, i.e., the presence or absence of whisker movements, affects local field potential (LFP) responses to microstimulation in the barrel cortex in head-fixed behaving rats trained to move their whiskers voluntarily. The LFP responses to single-current pulses consisted of a short negative deflection corresponding to a volley of spike activity followed by a positive deflection lasting ~100 ms, corresponding to long-lasting suppression of spikes. Active touch had a characteristic effect on this response pattern. While the first phase including the negative peak remained stable, the later parts consisting of the positive peak were considerably suppressed. The stable phase varied systematically with the distance of the electrode from the stimulation site, pointing to saturation of neuronal responses to electrical stimulation in an intensity-dependent way. Our results suggest that modulatory effects known from normal sensory processing affect the response to cortical microstimulation as well. The network response to microstimulation is highly amenable to the behavioral state and must be considered for future approaches to imprint sensory signals into cortical circuits with neuroprostheses.
Collapse
|
30
|
Kaji M, Yamada Y, Kitazumi Y, Shirai O. Severe Problems of the Voltage‐Clamp Method in Concurrent Monitoring of Membrane Potentials. ELECTROANAL 2022. [DOI: 10.1002/elan.202100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maiko Kaji
- Division of Applied Life Sciences, Graduate School of Agriculture Kyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 Japan
| | - Yusuke Yamada
- Division of Applied Life Sciences, Graduate School of Agriculture Kyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 Japan
| | - Yuki Kitazumi
- Division of Applied Life Sciences, Graduate School of Agriculture Kyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 Japan
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture Kyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 Japan
| |
Collapse
|
31
|
Abstract
To understand how brain functions arise from interconnected neural networks, it is necessary to develop tools that can allow simultaneous manipulation and recording of neural activities. Multimodal neural probes, especially those that combine optogenetics with electrophysiology, provide a powerful tool for the dissection of neural circuit functions and understanding of brain diseases. In this review, we provide an overview of recent developments in multimodal neural probes. We will focus on materials and integration strategies of multimodal neural probes to achieve combined optogenetic stimulation and electrical recordings with high spatiotemporal precision and low invasiveness. In addition, we will also discuss future opportunities of multimodal neural interfaces in basic and translational neuroscience.
Collapse
Affiliation(s)
- Huihui Tian
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ke Xu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Xu R, Bichot NP, Takahashi A, Desimone R. The cortical connectome of primate lateral prefrontal cortex. Neuron 2022; 110:312-327.e7. [PMID: 34739817 PMCID: PMC8776613 DOI: 10.1016/j.neuron.2021.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023]
Abstract
The lateral prefrontal cortex (LPFC) of primates plays an important role in executive control, but how it interacts with the rest of the cortex remains unclear. To address this, we densely mapped the cortical connectome of LPFC, using electrical microstimulation combined with functional MRI (EM-fMRI). We found isomorphic mappings between LPFC and five major processing domains composing most of the cerebral cortex except early sensory and motor areas. An LPFC grid of ∼200 stimulation sites topographically mapped to separate grids of activation sites in the five domains, coarsely resembling how the visual cortex maps the retina. The temporal and parietal maps largely overlapped in LPFC, suggesting topographically organized convergence of the ventral and dorsal streams, and the other maps overlapped at least partially. Thus, the LPFC contains overlapping, millimeter-scale maps that mirror the organization of major cortical processing domains, supporting LPFC's role in coordinating activity within and across these domains.
Collapse
Affiliation(s)
- Rui Xu
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Narcisse P Bichot
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atsushi Takahashi
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Desimone
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
33
|
Wu Y, Jiang D, Demosthenous A. A Multi-Channel Stimulator With High-Resolution Time-to-Current Conversion for Vagal-Cardiac Neuromodulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1186-1195. [PMID: 34982691 DOI: 10.1109/tbcas.2021.3139996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents a low power integrated multi-channel stimulator for a cardiac neuroprosthesis designed to restore the parasympathetic control after heart transplantation. The proposed stimulator is based on time-to-current conversion. It replaces the conventional current mode digital-to-analog converter (DAC) that uses tens of microamps for biasing, with a novel capacitor time-based DAC (CT-DAC) offering about 10-bit current amplitude resolution with a bias current of only 250 nA. A stimulator chip was designed in a 0.18 μm CMOS high-voltage (HV) technology. It consists of 16 independent channels, each capable of delivering up to 550 μA stimulus current with a HV output stage that can be operated up to 20 V. The stimulator chip performance was evaluated using both RC equivalent load and a microelectrode array in saline solution. It is power efficient, provides high-resolution current amplitude stimulation, and has good charge balance. The design is suitable for multi-channel neural stimulation applications.
Collapse
|
34
|
Tehovnik EJ, Froudarakis E, Scala F, Smirnakis SM, Patel SS, Tolias AS. Visuomotor control in mice and primates. Neurosci Biobehav Rev 2021; 130:185-200. [PMID: 34416241 PMCID: PMC10508359 DOI: 10.1016/j.neubiorev.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 12/01/2022]
Abstract
We conduct a comparative evaluation of the visual systems from the retina to the muscles of the mouse and the macaque monkey noting the differences and similarities between these two species. The topics covered include (1) visual-field overlap, (2) visual spatial resolution, (3) V1 cortical point-image [i.e., V1 tissue dedicated to analyzing a unit receptive field], (4) object versus motion encoding, (5) oculomotor range, (6) eye, head, and body movement coordination, and (7) neocortical and cerebellar function. We also discuss blindsight in rodents and primates which provides insights on how the neocortex mediates conscious vision in these species. This review is timely because the field of visuomotor neurophysiology is expanding beyond the macaque monkey to include the mouse; there is therefore a need for a comparative analysis between these two species on how the brain generates visuomotor responses.
Collapse
Affiliation(s)
- E J Tehovnik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
| | - E Froudarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - F Scala
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - S M Smirnakis
- Department of Neurology, Brigham and Women's Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA, USA
| | - S S Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - A S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA; Department of Electrical Engineering and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
35
|
Heiney SA, Wojaczynski GJ, Medina JF. Action-based organization of a cerebellar module specialized for predictive control of multiple body parts. Neuron 2021; 109:2981-2994.e5. [PMID: 34534455 DOI: 10.1016/j.neuron.2021.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
The role of the cerebellum in predictive motor control and coordination has been thoroughly studied during movements of a single body part. In the real world, however, actions are often more complex. Here, we show that a small area in the rostral anterior interpositus nucleus (rAIN) of the mouse cerebellum is responsible for generating a predictive motor synergy that serves to protect the eye by precisely coordinating muscles of the eyelid, neck, and forelimb. Within the rAIN region, we discovered a new functional category of neurons with unique properties specialized for control of motor synergies. These neurons integrated inhibitory cutaneous inputs from multiple parts of the body, and their activity was correlated with the vigor of the defensive motor synergy on a trial-by-trial basis. We propose that some regions of the cerebellum are organized in poly-somatotopic "action maps" to reduce dimensionality and simplify motor control during ethologically relevant behaviors.
Collapse
Affiliation(s)
- Shane A Heiney
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Han MJ, Park CU, Kang S, Kim B, Nikolaidis A, Milham MP, Hong SJ, Kim SG, Baeg E. Mapping functional gradients of the striatal circuit using simultaneous microelectric stimulation and ultrahigh-field fMRI in non-human primates. Neuroimage 2021; 236:118077. [PMID: 33878384 DOI: 10.1016/j.neuroimage.2021.118077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in functional magnetic resonance imaging (fMRI) have significantly enhanced our understanding of the striatal system of both humans and non-human primates (NHP) over the last few decades. However, its circuit-level functional anatomy remains poorly understood, partly because in-vivo fMRI cannot directly perturb a brain system and map its casual input-output relationship. Also, routine 3T fMRI has an insufficient spatial resolution. We performed electrical microstimulation (EM) of the striatum in lightly-anesthetized NHPs while simultaneously mapping whole-brain activation, using contrast-enhanced fMRI at ultra-high-field 7T. By stimulating multiple positions along the striatum's main (dorsal-to-ventral) axis, we revealed its complex functional circuit concerning mutually connected subsystems in both cortical and subcortical areas. Indeed, within the striatum, there were distinct brain activation patterns across different stimulation sites. Specifically, dorsal stimulation revealed a medial-to-lateral elongated shape of activation in upper caudate and putamen areas, whereas ventral stimulation evoked areas confined to the medial and lower caudate. Such dorsoventral gradients also appeared in neocortical and thalamic activations, indicating consistent embedding profiles of the striatal system across the whole brain. These findings reflect different forms of within-circuit and inter-regional neuronal connectivity between the dorsal and ventromedial striatum. These patterns both shared and contrasted with previous anatomical tract-tracing and in-vivo resting-state fMRI studies. Our approach of combining microstimulation and whole-brain fMRI mapping in NHPs provides a unique opportunity to integrate our understanding of a targeted brain area's meso- and macro-scale functional systems.
Collapse
Affiliation(s)
- Min-Jun Han
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chan-Ung Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sangyun Kang
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Byounghoon Kim
- Neuroscience, University of Wisconsin - Madison, Madison, WI, United States
| | - Aki Nikolaidis
- Center for the Developing Brain, Child Mind Institute, New York, NY, United States
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, United States; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, New York, NY, United States
| | - Seok Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea,; Center for the Developing Brain, Child Mind Institute, New York, NY, United States
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea,.
| | - Eunha Baeg
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea,.
| |
Collapse
|
37
|
Rocha I, Cerqueira G, Varella Penteado F, Córdoba de Torresi SI. Electrical Stimulation and Conductive Polymers as a Powerful Toolbox for Tailoring Cell Behaviour in vitro. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:670274. [PMID: 35047926 PMCID: PMC8757900 DOI: 10.3389/fmedt.2021.670274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
Electrical stimulation (ES) is a well-known method for guiding the behaviour of nerve cells in in vitro systems based on the response of these cells to an electric field. From this perspective, understanding how the electrochemical stimulus can be tuned for the design of a desired cell response is of great importance. Most biomedical studies propose the application of an electrical potential to cell culture arrays while examining the cell response regarding viability, morphology, and gene expression. Conversely, various studies failed to evaluate how the fine physicochemical properties of the materials used for cell culture influence the observed behaviours. Among the various materials used for culturing cells under ES, conductive polymers (CPs) are widely used either in pristine form or in addition to other polymers. CPs themselves do not possess the optimal surface for cell compatibility because of their hydrophobic nature, which leads to poor protein adhesion and, hence, poor bioactivity. Therefore, understanding how to tailor the chemical properties on the material surface will determine the obtention of improved ES platforms. Moreover, the structure of the material, either in a thin film or in porous electrospun scaffolds, also affects the biochemical response and needs to be considered. In this review, we examine how materials based on CPs influence cell behaviour under ES, and we compile the various ES setups and physicochemical properties that affect cell behaviour. This review concerns the culture of various cell types, such as neurons, fibroblasts, osteoblasts, and Schwann cells, and it also covers studies on stem cells prone to ES. To understand the mechanistic behaviour of these devices, we also examine studies presenting a more detailed biomolecular level of interaction. This review aims to guide the design of future ES setups regarding the influence of material properties and electrochemical conditions on the behaviour of in vitro cell studies.
Collapse
Affiliation(s)
- Igor Rocha
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
38
|
Zhang SY, Jeffers MS, Lagace DC, Kirton A, Silasi G. Developmental and Interventional Plasticity of Motor Maps after Perinatal Stroke. J Neurosci 2021; 41:6157-6172. [PMID: 34083257 PMCID: PMC8276736 DOI: 10.1523/jneurosci.3185-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/14/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Within the perinatal stroke field, there is a need to establish preclinical models where putative biomarkers for motor function can be examined. In a mouse model of perinatal stroke, we evaluated motor map size and movement latency following optogenetic cortical stimulation against three factors of post-stroke biomarker utility: (1) correlation to chronic impairment on a behavioral test battery; (2) amenability to change using a skilled motor training paradigm; and (3) ability to distinguish individuals with potential to respond well to training. Thy1-ChR2-YFP mice received a photothrombotic stroke at postnatal day 7 and were evaluated on a battery of motor tests between days 59 and 70. Following a cranial window implant, mice underwent longitudinal optogenetic motor mapping both before and after 3 weeks of skilled forelimb training. Map size and movement latency of both hemispheres were positively correlated with impaired spontaneous forelimb use, whereas only ipsilesional hemisphere map size was correlated with performance in skilled reaching. Map size and movement latency did not show groupwise changes with training; however, mice with the smallest pretraining map sizes and worst impairments demonstrated the greatest expansion of map size in response to skilled forelimb training. Overall, motor map size showed utility as a potential biomarker for impairment and training-induced modulation in specific individuals. Future assessment of the predictive capacity of post-stroke motor representations for behavioral outcome in animal models opens the possibility of dissecting how plasticity mechanisms contribute to recovery following perinatal stroke.SIGNIFICANCE STATEMENT We investigated the utility of two cortical motor representation measures (motor map size and movement onset latency) as potential biomarkers for post-stroke motor recovery in a mouse model of perinatal stroke. Both motor map size and movement latency were associated with functional recovery after perinatal stroke, with map size showing an additional association between training responsiveness and severity of impairment. Overall, both motor map size and movement onset latency show potential as neurophysiological correlates of recovery. As such, future studies of perinatal stroke rehabilitation and neuromodulation should include these measures to help explain neurophysiological changes that might be occurring in response to treatment.
Collapse
Affiliation(s)
- Sarah Y Zhang
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Matthew S Jeffers
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario, Canada K1H 8L6
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Adam Kirton
- Alberta Children's Hospital, Calgary Pediatric Stroke Program, Calgary, Alberta, Canada K1H 8M5
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, Calgary, Alberta, Canada T2N 4N1
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Gergely Silasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
39
|
HATTORI K, KURAKAKE H, IMAI J, HASHIMOTO T, ISHIDA M, SATO K, TAKAHASHI H, OGUMA S, YAMAMOTO H, HIRANO-IWATA A, TANII T. Selective Stimulation of a Target Neuron in Micropatterned Neuronal Circuits Using a Pair of Needle Electrodes. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Junko IMAI
- Faculty of Science and Engineering, Waseda University
| | | | - Mihoko ISHIDA
- Faculty of Science and Engineering, Waseda University
| | - Koki SATO
- Faculty of Science and Engineering, Waseda University
| | | | | | - Hideaki YAMAMOTO
- Research Institute of Electrical Communication, Tohoku University
| | | | - Takashi TANII
- Faculty of Science and Engineering, Waseda University
| |
Collapse
|
40
|
Zheng XS, Yang Q, Vazquez AL, Tracy Cui X. Imaging the Efficiency of Poly(3,4-ethylenedioxythiophene) Doped with Acid-Functionalized Carbon Nanotube and Iridium Oxide Electrode Coatings for Microstimulation. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000092. [PMID: 34746928 PMCID: PMC8552016 DOI: 10.1002/anbr.202000092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/18/2021] [Indexed: 12/02/2022] Open
Abstract
Electrical microstimulation has shown promise in restoring neural deficits in humans. Electrodes coated with materials like the conducting polymer poly(3,4-ethylenedioxythiophene) doped with acid-functionalized carbon nanotubes (PEDOT/CNTs, or PC) exhibit superior charge injection than traditional metals like platinum. However, the stimulation performance of PC remains to be fully characterized. Advanced imaging techniques and transgenic tools allow for real-time observations of neural activity in vivo. Herein, microelectrodes coated with PC and iridium oxide (IrOx) (a commonly used high-charge-injection material) are implanted in GCaMP6s mice and electrical stimulation is applied while imaging neuronal calcium responses. Results show that PC-coated electrodes stimulate more intense and broader GCaMP responses than IrOx. Two-photon microscopy reveals that PC-coated electrodes activate significantly more neuronal soma and neuropil than IrOx-coated electrodes in constant-voltage stimulation and significantly more neuronal soma in constant-current stimulation. Furthermore, with the same injected charge, both materials activate more spatially confined neural elements with shorter pulses than longer pulses, providing a means to tune stimulation selectivity. Finite element analyses reveal that the PC coating creates a denser and nonuniform electric field, increasing the likelihood of activating nearby neural elements. PC coating can significantly improve energy efficiency for electrical stimulation applications.
Collapse
Affiliation(s)
- Xin S. Zheng
- Department of BioengineeringUniversity of Pittsburgh3501 Fifth Ave.PittsburghPA15213USA
| | - Qianru Yang
- Department of BioengineeringUniversity of Pittsburgh3501 Fifth Ave.PittsburghPA15213USA
| | - Alberto L. Vazquez
- Departments of Radiology and BioengineeringUniversity of Pittsburgh3025 E. Carson St.PittsburghPA15203USA
| | - Xinyan Tracy Cui
- Department of BioengineeringUniversity of Pittsburgh3501 Fifth Ave.PittsburghPA15213USA
| |
Collapse
|
41
|
Allison-Walker T, Hagan MA, Price NSC, Wong YT. Microstimulation-evoked neural responses in visual cortex are depth dependent. Brain Stimul 2021; 14:741-750. [PMID: 33975054 DOI: 10.1016/j.brs.2021.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Cortical visual prostheses often use penetrating electrode arrays to deliver microstimulation to the visual cortex. To optimize electrode placement within the cortex, the neural responses to microstimulation at different cortical depths must first be understood. OBJECTIVE We investigated how the neural responses evoked by microstimulation in cortex varied with cortical depth, of both stimulation and response. METHODS A 32-channel single shank electrode array was inserted into the primary visual cortex of anaesthetized rats, such that it spanned all cortical layers. Microstimulation with currents up to 14 μA (single biphasic pulse, 200 μs per phase) was applied at depths spanning 1600 μm, while simultaneously recording neural activity on all channels within a response window 2.25-11 ms. RESULTS Stimulation elicited elevated neuronal firing rates at all depths of cortex. Compared to deep sites, superficial stimulation sites responded with higher firing rates at a given current and had lower thresholds. The laminar spread of evoked activity across cortical depth depended on stimulation depth, in line with anatomical models. CONCLUSION Stimulation in the superficial layers of visual cortex evokes local neural activity with the lowest thresholds, and stimulation in the deep layers evoked the most activity across the cortical column. In conjunction with perceptual reports, these data suggest that the optimal electrode placement for cortical microstimulation prostheses has electrodes positioned in layers 2/3, and at the top of layer 5.
Collapse
Affiliation(s)
- Tim Allison-Walker
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic, 3800, Australia; ARC Centre of Excellence for Integrative Brain Function, Australia; Monash Vision Group, Monash University, Clayton, Vic, 3800, Australia
| | - Maureen A Hagan
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic, 3800, Australia; ARC Centre of Excellence for Integrative Brain Function, Australia
| | - Nicholas S C Price
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic, 3800, Australia; ARC Centre of Excellence for Integrative Brain Function, Australia
| | - Yan T Wong
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic, 3800, Australia; ARC Centre of Excellence for Integrative Brain Function, Australia; Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Vic, 3800, Australia; Monash Vision Group, Monash University, Clayton, Vic, 3800, Australia.
| |
Collapse
|
42
|
Pio-Lopez L, Poulkouras R, Depannemaecker D. Visual cortical prosthesis: an electrical perspective. J Med Eng Technol 2021; 45:394-407. [PMID: 33843427 DOI: 10.1080/03091902.2021.1907468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The electrical stimulation of the visual cortices has the potential to restore vision to blind individuals. Until now, the results of visual cortical prosthetics have been limited as no prosthesis has restored a full working vision but the field has shown a renewed interest these last years, thanks to wireless and technological advances. However, several scientific and technical challenges are still open to achieve the therapeutic benefit expected by these new devices. One of the main challenges is the electrical stimulation of the brain itself. In this review, we analyse the results in electrode-based visual cortical prosthetics from the electrical point of view. We first describe what is known about the electrode-tissue interface and safety of electrical stimulation. Then we focus on the psychophysics of prosthetic vision and the state-of-the-art on the interplay between the electrical stimulation of the visual cortex and the phosphene perception. Lastly, we discuss the challenges and perspectives of visual cortex electrical stimulation and electrode array design to develop the new generation implantable cortical visual prostheses.
Collapse
Affiliation(s)
| | - Romanos Poulkouras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, Gardanne, France.,Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Damien Depannemaecker
- Department of Integrative and Computational Neuroscience, Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| |
Collapse
|
43
|
Spencer MJ, Kameneva T, Grayden DB, Burkitt AN, Meffin H. Neural activity shaping utilizing a partitioned target pattern. J Neural Eng 2021; 18. [PMID: 33684894 DOI: 10.1088/1741-2552/abecc4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/08/2021] [Indexed: 11/11/2022]
Abstract
Electrical stimulation of neural tissue is used in both clinical and experimental devices to evoke a desired spatiotemporal pattern of neural activity. These devices induce a local field that drives neural activation, referred to as an activating function or generator signal. In visual prostheses, the spread of generator signal from each electrode within the neural tissue results in a spread of visual perception, referred to as a phosphene. In cases where neighboring phosphenes overlap, it is desirable to use current steering or neural activity shaping strategies to manipulate the generator signal between the electrodes to provide greater control over the total pattern of neural activity. Applying opposite generator signal polarities in neighboring regions of the retina forces the generator signal to pass through zero at an intermediate point, thus inducing low neural activity that may be perceived as a high-contrast line. This approach provides a form of high contrast visual perception, but it requires partitioning of the target pattern into those regions that use positive or negative generator signals. This discrete optimization is an NP-hard problem that is subject to being trapped in detrimental local minima. This investigation proposes a new partitioning method using image segmentation to determine the most beneficial positive and negative generator signal regions. Utilizing a database of 1000 natural images, the method is compared to alternative approaches based upon the mean squared error of the outcome. Under nominal conditions and with a set computation limit, partitioning provided improvement for 32% of these images. This percentage increased to 89% when utilizing image pre-processing to emphasize perceptual features of the images. The percentage of images that were dealt with most effectively with image segmentation increased as lower computation limits were imposed on the algorithms.
Collapse
Affiliation(s)
- Martin J Spencer
- Department of Biomedical Engineering, The University of Melbourne - Parkville Campus, Parkville, Melbourne, Victoria, 3010, AUSTRALIA
| | - Tatiana Kameneva
- Telecommunication, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Hawthorn, Victoria, 3122, AUSTRALIA
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne - Parkville Campus, Parkville, Melbourne, Victoria, 3010, AUSTRALIA
| | - Anthony N Burkitt
- Department of Biomedical Engineering, The University of Melbourne - Parkville Campus, Parkville, Melbourne, Victoria, 3010, AUSTRALIA
| | - Hamish Meffin
- Australian College of Optometry, Parkville, Carlton, Victoria, 3010, AUSTRALIA
| |
Collapse
|
44
|
Chang SJ, Santamaria AJ, Sanchez FJ, Villamil LM, Saraiva PP, Benavides F, Nunez-Gomez Y, Solano JP, Opris I, Guest JD, Noga BR. Deep brain stimulation of midbrain locomotor circuits in the freely moving pig. Brain Stimul 2021; 14:467-476. [PMID: 33652130 PMCID: PMC9097921 DOI: 10.1016/j.brs.2021.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Deep brain stimulation (DBS) of the mesencephalic locomotor region (MLR) has been studied as a therapeutic target in rodent models of stroke, parkinsonism, and spinal cord injury. Clinical DBS trials have targeted the closely related pedunculopontine nucleus in patients with Parkinson’s disease as a therapy for gait dysfunction, with mixed reported outcomes. Recent studies suggest that optimizing the MLR target could improve its effectiveness. Objective: We sought to determine if stereotaxic targeting and DBS in the midbrain of the pig, in a region anatomically similar to that previously identified as the MLR in other species, could initiate and modulate ongoing locomotion, as a step towards generating a large animal neuromodulation model of gait. Methods: We implanted Medtronic 3389 electrodes into putative MLR structures in Yucatan micropigs to characterize the locomotor effects of acute DBS in this region, using EMG recordings, joint kinematics, and speed measurements on a manual treadmill. Results: MLR DBS initiated and augmented locomotion in freely moving micropigs. Effective locomotor sites centered around the cuneiform nucleus and stimulation frequency controlled locomotor speed and stepping frequency. Off-target stimulation evoked defensive and aversive behaviors that precluded locomotion in the animals. Conclusion: Pigs appear to have an MLR and can be used to model neuromodulation of this gait-promoting center. These results indicate that the pig is a useful model to guide future clinical studies for optimizing MLR DBS in cases of gait deficiencies associated with such conditions as Parkinson’s disease, spinal cord injury, or stroke.
Collapse
Affiliation(s)
- Stephano J Chang
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Division of Neurosurgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Andrea J Santamaria
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francisco J Sanchez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Luz M Villamil
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pedro Pinheiro Saraiva
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francisco Benavides
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yohjans Nunez-Gomez
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan P Solano
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ioan Opris
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James D Guest
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brian R Noga
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
45
|
Silva C, Porter BS, Hillman KL. Stimulation in the Rat Anterior Insula and Anterior Cingulate During an Effortful Weightlifting Task. Front Neurosci 2021; 15:643384. [PMID: 33716659 PMCID: PMC7952617 DOI: 10.3389/fnins.2021.643384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
When performing tasks, animals must continually assess how much effort is being expended, and gage this against ever-changing physiological states. As effort costs mount, persisting in the task may be unwise. The anterior cingulate cortex (ACC) and the anterior insular cortex are implicated in this process of cost-benefit decision-making, yet their precise contributions toward driving effortful persistence are not well understood. Here we investigated whether electrical stimulation of the ACC or insular cortex would alter effortful persistence in a novel weightlifting task (WLT). In the WLT an animal is challenged to pull a rope 30 cm to trigger food reward dispensing. To make the action increasingly effortful, 45 g of weight is progressively added to the rope after every 10 successful pulls. The animal can quit the task at any point - with the rope weight at the time of quitting taken as the "break weight." Ten male Sprague-Dawley rats were implanted with stimulating electrodes in either the ACC [cingulate cortex area 1 (Cg1) in rodent] or anterior insula and then assessed in the WLT during stimulation. Low-frequency (10 Hz), high-frequency (130 Hz), and sham stimulations were performed. We predicted that low-frequency stimulation (LFS) of Cg1 in particular would increase persistence in the WLT. Contrary to our predictions, LFS of Cg1 resulted in shorter session duration, lower break weights, and fewer attempts on the break weight. High-frequency stimulation of Cg1 led to an increase in time spent off-task. LFS of the anterior insula was associated with a marginal increase in attempts on the break weight. Taken together our data suggest that stimulation of the rodent Cg1 during an effortful task alters certain aspects of effortful behavior, while insula stimulation has little effect.
Collapse
Affiliation(s)
| | | | - Kristin L. Hillman
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
46
|
Mazurek KA, Schieber MH. Injecting Information into the Mammalian Cortex: Progress, Challenges, and Promise. Neuroscientist 2020; 27:129-142. [PMID: 32648527 DOI: 10.1177/1073858420936253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For 150 years artificial stimulation has been used to study the function of the nervous system. Such stimulation-whether electrical or optogenetic-eventually may be used in neuroprosthetic devices to replace lost sensory inputs and to otherwise introduce information into the nervous system. Efforts toward this goal can be classified broadly as either biomimetic or arbitrary. Biomimetic stimulation aims to mimic patterns of natural neural activity, so that the subject immediately experiences the artificial stimulation as if it were natural sensation. Arbitrary stimulation, in contrast, makes no attempt to mimic natural patterns of neural activity. Instead, different stimuli-at different locations and/or in different patterns-are assigned different meanings randomly. The subject's time and effort then are required to learn to interpret different stimuli, a process that engages the brain's inherent plasticity. Here we will examine progress in using artificial stimulation to inject information into the cerebral cortex and discuss the challenges for and the promise of future development.
Collapse
Affiliation(s)
- Kevin A Mazurek
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - Marc H Schieber
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.,Department of Neurology, University of Rochester, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
47
|
Characterizing and predicting cortical evoked responses to direct electrical stimulation of the human brain. Brain Stimul 2020; 13:1218-1225. [PMID: 32526475 DOI: 10.1016/j.brs.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/28/2020] [Accepted: 05/04/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Direct electrical stimulation of the human brain has been used to successfully treat several neurological disorders, but the precise effects of stimulation on neural activity are poorly understood. Characterizing the neural response to stimulation, however, could allow clinicians and researchers to more accurately predict neural responses, which could in turn lead to more effective stimulation for treatment and to fundamental knowledge regarding neural function. OBJECTIVE Here we use a linear systems approach in order to characterize the response to electrical stimulation across cortical locations and then to predict the responses to novel inputs. METHODS We use intracranial electrodes to directly stimulate the human brain with single pulses of stimulation using amplitudes drawn from a random distribution. Based on the evoked responses, we generate a simple model capturing the characteristic response to stimulation at each cortical site. RESULTS We find that the variable dynamics of the evoked response across cortical locations can be captured using the same simple architecture, a linear time-invariant system that operates separately on positive and negative input pulses of stimulation. We demonstrate that characterizing the response to stimulation using this simple and tractable model of evoked responses enables us to predict the responses to subsequent stimulation with single pulses with novel amplitudes, and the compound response to stimulation with multiple pulses. CONCLUSION Our data suggest that characterizing the response to stimulation in an approximately linear manner can provide a powerful and principled approach for predicting the response to direct electrical stimulation.
Collapse
|
48
|
Hu JM, Qian MZ, Tanigawa H, Song XM, Roe AW. Focal Electrical Stimulation of Cortical Functional Networks. Cereb Cortex 2020; 30:5532-5543. [PMID: 32483588 DOI: 10.1093/cercor/bhaa136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 01/11/2023] Open
Abstract
Abstract
Traditional electrical stimulation of brain tissue typically affects relatively large volumes of tissue spanning multiple millimeters. This low spatial resolution stimulation results in nonspecific functional effects. In addition, a primary shortcoming of these designs was the failure to take advantage of inherent functional organization in the cerebral cortex. Here, we describe a new method to electrically stimulate the brain which achieves selective targeting of single feature-specific domains in visual cortex. We provide evidence that this paradigm achieves mesoscale, functional network-specificity, and intensity dependence in a way that mimics visual stimulation. Application of this approach to known feature domains (such as color, orientation, motion, and depth) in visual cortex may lead to important functional improvements in the specificity and sophistication of brain stimulation methods and has implications for visual cortical prosthetic design.
Collapse
Affiliation(s)
- Jia Ming Hu
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Mei Zhen Qian
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Hisashi Tanigawa
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xue Mei Song
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Anna Wang Roe
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Hangzhou 310029, China
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
| |
Collapse
|
49
|
Place preferences induced by electrical stimulation of the external lateral parabrachial subnucleus in a sequential learning task: Place preferences induced by NLPBe stimulation. Behav Brain Res 2020; 381:112442. [PMID: 31862469 DOI: 10.1016/j.bbr.2019.112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
It is known that electrical stimulation of the external lateral parabrachial nucleus (NLPBe) can sustain concurrent taste and place learning. Place preferences can be learned through different procedures. Previous studies demonstrated that electrical stimulation of the PBNLe can generate aversive and preference place learning using concurrent procedures. In the concurrent procedure, the animals can move freely in the maze, and intracranial electrical stimulation is associated with their voluntary stay in one of the two maze compartments. However, the rewarding properties of most stimuli, whether natural or drugs of abuse, have usually been investigated using the sequential procedure, in which animals are confined while receiving the unconditioned stimulus and then undergo a choice test without stimulation in a later phase. This study examined whether this stimulation can sustain place preference learning in sequential tasks. Results demonstrated that place preferences can also be induced by the electrical stimulation of the NLBe using sequential procedures. These findings suggest that the NLPBe may form part of a brain reward axis that shares certain characteristics with those observed in the processing of natural rewarding agents and especially of drugs of abuse.
Collapse
|
50
|
Abstract
Developments of new strategies to restore vision and improving on current strategies by harnessing new advancements in material and electrical sciences, and biological and genetic-based technologies are of upmost health priorities around the world. Federal and private entities are spending billions of dollars on visual prosthetics technologies. This review describes the most current and state-of-the-art bioengineering technologies to restore vision. This includes a thorough description of traditional electrode-based visual prosthetics that have improved substantially since early prototypes. Recent advances in molecular and synthetic biology have transformed vision-assisted technologies; For example, optogenetic technologies that introduce light-responsive proteins offer excellent resolution but cortical applications are restricted by fiber implantation and tissue damage. Other stimulation modalities, such as magnetic fields, have been explored to achieve non-invasive neuromodulation. Miniature magnetic coils are currently being developed to activate select groups of neurons. Magnetically-responsive nanoparticles or exogenous proteins can significantly enhance the coupling between external electromagnetic devices and any neurons affiliated with these modifications. The need to minimize cytotoxic effects for nanoparticle-based therapies will likely restrict the number of usable materials. Nevertheless, advances in identifying and utilizing proteins that respond to magnetic fields may lead to non-invasive, cell-specific stimulation and may overcome many of the limitations that currently exist with other methods. Finally, sensory substitution systems also serve as viable visual prostheses by converting visual input to auditory and somatosensory stimuli. This review also discusses major challenges in the field and offers bioengineering strategies to overcome those.
Collapse
Affiliation(s)
- Alexander Farnum
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|