1
|
Heflich RH, Bishop ME, Mittelstaedt RA, Yan J, Guerrero SK, Sims AM, Mitchell K, Moore N, Li X, Mei N, Elespuru RK, King ST, Keire DA, Kruhlak NL, Dorsam RT, Raw AS, Davis Bruno KL, McGovern TJ, Atrakchi AH. Optimizing the detection of N-nitrosamine mutagenicity in the Ames test. Regul Toxicol Pharmacol 2024; 153:105709. [PMID: 39343352 DOI: 10.1016/j.yrtph.2024.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Accurately determining the mutagenicity of small-molecule N-nitrosamine drug impurities and nitrosamine drug substance-related impurities (NDSRIs) is critical to identifying mutagenic and cancer hazards. In the current study we have evaluated several approaches for enhancing assay sensitivity for evaluating the mutagenicity of N-nitrosamines in the bacterial reverse mutagenicity (Ames) test. Preincubation assays were conducted using five activation conditions: no exogenous metabolic activation and metabolic activation mixes employing both 10% and 30% liver S9 from hamsters and rats pretreated with inducers of enzymatic activity. In addition, preincubations were conducted for both 60 min and 30 min. These test variables were evaluated by testing 12 small-molecule N-nitrosamines and 17 NDSRIs for mutagenicity in Salmonella typhimurium tester strains TA98, TA100, TA1535, and TA1537, and Escherichia coli strain WP2 uvrA (pKM101). Eighteen of the 29 N-nitrosamine test substances tested positive under one or more of the testing conditions and all 18 positives could be detected by using tester strains TA1535 and WP2 uvrA (pKM101), preincubations of 30 min, and S9 mixes containing 30% hamster liver S9. In general, the conditions under which NDSRIs were mutagenic were similar to those found for small-molecule N-nitrosamines.
Collapse
Affiliation(s)
- Robert H Heflich
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA.
| | - Michelle E Bishop
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | | | - Jian Yan
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Sharon K Guerrero
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Audrey M Sims
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Kamela Mitchell
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Nyosha Moore
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Xilin Li
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Nan Mei
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | | | - Sruthi T King
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, USA
| | - David A Keire
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, USA
| | - Naomi L Kruhlak
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Sciences, USA
| | - Robert T Dorsam
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, USA
| | - Andre S Raw
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, USA
| | - Karen L Davis Bruno
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, USA
| | - Timothy J McGovern
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, USA
| | - Aisar H Atrakchi
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, USA
| |
Collapse
|
2
|
Li X, Le Y, Seo JE, Guo X, Li Y, Chen S, Mittelstaedt RA, Moore N, Guerrero S, Sims A, King ST, Atrakchi AH, McGovern TJ, Davis-Bruno KL, Keire DA, Elespuru RK, Heflich RH, Mei N. Revisiting the mutagenicity and genotoxicity of N-nitroso propranolol in bacterial and human in vitro assays. Regul Toxicol Pharmacol 2023; 141:105410. [PMID: 37210026 PMCID: PMC11393638 DOI: 10.1016/j.yrtph.2023.105410] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Propranolol is a widely used β-blocker that can generate a nitrosated derivative, N-nitroso propranolol (NNP). NNP has been reported to be negative in the bacterial reverse mutation test (the Ames test) but genotoxic in other in vitro assays. In the current study, we systematically examined the in vitro mutagenicity and genotoxicity of NNP using several modifications of the Ames test known to affect the mutagenicity of nitrosamines, as well as a battery of genotoxicity tests using human cells. We found that NNP induced concentration-dependent mutations in the Ames test, both in two tester strains that detect base pair substitutions, TA1535 and TA100, as well as in the TA98 frameshift-detector strain. Although positive results were seen with rat liver S9, the hamster liver S9 fraction was more effective in bio-transforming NNP into a reactive mutagen. NNP also induced micronuclei and gene mutations in human lymphoblastoid TK6 cells in the presence of hamster liver S9. Using a panel of TK6 cell lines that each expresses a different human cytochrome P450 (CYP), CYP2C19 was identified as the most active enzyme in the bioactivation of NNP to a genotoxicant among those tested. NNP also induced concentration-dependent DNA strand breakage in metabolically competent 2-dimensional (2D) and 3D cultures of human HepaRG cells. This study indicates that NNP is genotoxic in a variety of bacterial and mammalian systems. Thus, NNP is a mutagenic and genotoxic nitrosamine and a potential human carcinogen.
Collapse
Affiliation(s)
- Xilin Li
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Yuan Le
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Ji-Eun Seo
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Xiaoqing Guo
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yuxi Li
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Si Chen
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Roberta A Mittelstaedt
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Nyosha Moore
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sharon Guerrero
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Audrey Sims
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sruthi T King
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Aisar H Atrakchi
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Timothy J McGovern
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Karen L Davis-Bruno
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - David A Keire
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - Robert H Heflich
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Nan Mei
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
3
|
Bittner N, Boon A, Delbanco EH, Walter C, Mally A. Assessment of aromatic amides in printed food contact materials: analysis of potential cleavage to primary aromatic amines during simulated passage through the gastrointestinal tract. Arch Toxicol 2022; 96:1423-1435. [PMID: 35247070 PMCID: PMC9013685 DOI: 10.1007/s00204-022-03254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Recent analyses conducted by German official food control reported detection of the aromatic amides N-(2,4-dimethylphenyl)acetamide (NDPA), N-acetoacetyl-m-xylidine (NAAX) and 3-hydroxy-2-naphthanilide (Naphthol AS) in cold water extracts from certain food contact materials made from paper or cardboard, including paper straws, paper napkins, and cupcake liners. Because aromatic amides may be cleaved to potentially genotoxic primary amines upon oral intake, these findings raise concern that transfer of NDPA, NAAX and Naphthol AS from food contact materials into food may present a risk to human health. The aim of the present work was to assess the stability of NDPA, NAAX and Naphthol AS and potential cleavage to 2,4-dimethylaniline (2,4-DMA) and aniline during simulated passage through the gastrointestinal tract using static in vitro digestion models. Using the digestion model established by the National Institute for Public Health and the Environment (RIVM, Bilthoven, NL) and a protocol recommended by the European Food Safety Authority, potential hydrolysis of the aromatic amides to the respective aromatic amines was assessed by LC-MS/MS following incubation of the aromatic amides with digestive fluid simulants. Time-dependent hydrolysis of NDPA and NAAX resulting in formation of the primary aromatic amine 2,4-DMA was consistently observed in both models. The highest rate of cleavage of NDPA and NAAX was recorded following 4 h incubation with 0.07 M HCl as gastric-juice simulant, and amounted to 0.21% and 0.053%, respectively. Incubation of Naphthol AS with digestive fluid simulants did not give rise to an increase in the concentration of aniline above the background that resulted from the presence of aniline as an impurity of the test compound. Considering the lack of evidence for aniline formation from Naphthol AS and the extremely low rate of hydrolysis of the amide bonds of NDPA and NAAX during simulated passage through the gastrointestinal tract that gives rise to only very minor amounts of the potentially mutagenic and/or carcinogenic aromatic amine 2,4-DMA, risk assessment based on assumption of 100% cleavage to the primary aromatic amines would appear to overestimate health risks related to the presence of aromatic amides in food contact materials.
Collapse
Affiliation(s)
- Nataly Bittner
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Andy Boon
- Sun Chemical, Sargasso Building, Five Arches Business Centre, Maidstone Road, Sidcup, UK
| | - Evert H Delbanco
- Siegwerk Druckfarben AG & Co. KGaA, Alfred-Keller-Straße 55, 53721, Siegburg, Germany
| | - Christof Walter
- Verband der deutschen Lack- und Druckfarbenindustrie e.V. (VdL), Mainzer Landstraße 55, 60329, Frankfurt, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany.
| |
Collapse
|
4
|
Chen L, Li N, Liu Y, Faquet B, Alépée N, Ding C, Eilstein J, Zhong L, Peng Z, Ma J, Cai Z, Ouedraogo G. A new 3D model for genotoxicity assessment: EpiSkin™ Micronucleus Assay. Mutagenesis 2021; 36:51-61. [PMID: 32067034 DOI: 10.1093/mutage/geaa003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/14/2020] [Indexed: 11/12/2022] Open
Abstract
The European Regulation on Cosmetics (no. 1223/2009) has prohibited the use of animals in safety testing since March 2009 for ingredients used in cosmetics. Irreversible events at the chromosome level (clastogenesis and aneugenesis) are commonly evaluated by scoring either micronuclei or chromosome aberrations using cell-based genotoxicity assays. Like most in vitro genotoxicity assays, the 2D in vitro micronucleus assay exhibits a poor specificity and does not mimic the dermal route. To address these limitations, the current project aims to develop and validate a 3D micronucleus assay using the EpiSkin™ model. This project is scientifically supported by the Cosmetics Europe Genotoxicity Task Force. In a first step, two key criteria for the development of micronucleus assay, namely, the sufficient yield of cells from the EpiSkin™ model and an acceptable proliferation rate of the basal layer, were assessed and demonstrated. Subsequently, six chemicals (vinblastine, n-ethylnitrosourea, β-butyrolactone, 2-acetylaminofluorene, 2,4-dichlorophenoland d-limonene) were evaluated in the EpiSkin™ Micronucleus Assay. At least two independent experiments using 48- and 72-h incubations were performed for each chemical. Results showed good inter-experimental reproducibility, as well as the correct identification of all six tested chemicals. The metabolism of 2-acetylaminofluorene on the EpiSkin™ model was also investigated and confirmed by the formation of an intermediate metabolite (2-aminofluorene). These preliminary results from the EpiSkin™ Micronucleus Assay indicate that it is a promising in vitro assay for assessing genotoxicity. The availability and suitability of this test method contribute significantly to the development of non-animal testing methods in China and its impact on the worldwide field.
Collapse
Affiliation(s)
- Lizao Chen
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Nan Li
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Yanfeng Liu
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Brigitte Faquet
- Advanced Research, L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Nathalie Alépée
- Advanced Research, L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Chunmei Ding
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Joan Eilstein
- Advanced Research, L'Oréal Research and Innovation India, Bearys Global Research Triangle, Bangalore, India
| | - Lingyan Zhong
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Zhengang Peng
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Jie Ma
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Zhenzi Cai
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Gladys Ouedraogo
- Advanced Research, L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| |
Collapse
|
5
|
Hyun SW, Lee TG, Song SJ, Kim CS. Evaluation of oral toxicity and genotoxicity of Achyranthis Radix extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:113944. [PMID: 33711437 DOI: 10.1016/j.jep.2021.113944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/31/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Achyranthes bidentata Blume, Achyranthis Radix (AR), is used as a traditional medicine ingredient in East Asia. It has anti-inflammatory, anti-oxidative, and anti-diabetic activities. AIM OF THE STUDY In the present study, we aimed to evaluate the oral toxicity and genotoxicity of single-dose and 4-week repeated-doses of AR hot water extract (ARE), under the good laboratory practice principles. MATERIALS AND METHODS For oral toxicity studies, SD rats (n = 5 per sex and group) were administered ARE at concentrations of 500, 1000, and 2000 mg/kg/day once (single dose) or once per day for 4 weeks (repeated dose). The non-clinical genotoxicity study consisted of bacterial reverse mutation using Escherichia coli (WP2 uvrA) and Salmonella typhimurium (TA98, TA100, TA1535, and TA1537), in vitro chromosomal aberration test with Chinese hamster lung cells (CHL/IU), and in vivo mouse bone marrow micronucleus test using bone marrow cells collected from male ICR mice (n = 5) that were orally administered ARE. RESULTS In the single-dose oral toxicity study, mortality and treatment-related changes in body weight were not observed throughout the study, and the lethal dose was estimated to be > 2000 mg/kg in rats. In the 4-week repeated-dose oral toxicity study, ARE did not induce significant changes in body weight, organ weight, food intake, or hematological and serum biochemical parameters in any group. In the bacterial reverse mutation test, ARE did not induce gene mutations in any tested strain. In the chromosomal aberration test, ARE did not cause chromosomal aberrations. The micronucleus test showed no significant increase in the number of micronucleated polychromatic erythrocytes or the mean ratio of polychromatic to total erythrocytes. CONCLUSIONS These results showed that ARE does not induce oral toxicity and genotoxicity in the in vivo and in vitro test systems.
Collapse
Affiliation(s)
- Soo-Wang Hyun
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea; Practical Research Division, Honam National Institute of Biological Resources, Mokpo-si, 58762, Republic of Korea
| | - Tae Gu Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea; Safety Research Team, Crop Protection Research Institute, FarmHannong Co., Ltd, Nonsan-si, 33010, Republic of Korea
| | - Su Jeong Song
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Chan-Sik Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea; Korean Convergence Medicine, University of Science Technology, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
6
|
Kirkland D, Kovochich M, More SL, Murray FJ, Monnot AD, Miller JV, Jaeschke H, Jacobson-Kram D, Deore M, Pitchaiyan SK, Unice K, Eichenbaum G. A comprehensive weight of evidence assessment of published acetaminophen genotoxicity data: Implications for its carcinogenic hazard potential. Regul Toxicol Pharmacol 2021; 122:104892. [PMID: 33592196 DOI: 10.1016/j.yrtph.2021.104892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
In 2019, the California Office of Environmental Health Hazard Assessment initiated a review of the carcinogenic hazard potential of acetaminophen, including an assessment of its genotoxicity. The objective of this analysis was to inform this review process with a weight-of-evidence assessment of more than 65 acetaminophen genetic toxicology studies that are of widely varying quality and conformance to accepted standards and relevance to humans. In these studies, acetaminophen showed no evidence of induction of point or gene mutations in bacterial and mammalian cell systems or in in vivo studies. In reliable, well-controlled test systems, clastogenic effects were only observed in unstable, p53-deficient cell systems or at toxic and/or excessively high concentrations that adversely affect cellular processes (e.g., mitochondrial respiration) and cause cytotoxicity. Across the studies, there was no clear evidence that acetaminophen causes DNA damage in the absence of toxicity. In well-controlled clinical studies, there was no meaningful evidence of chromosomal damage. Based on this weight-of-evidence assessment, acetaminophen overwhelmingly produces negative results (i.e., is not a genotoxic hazard) in reliable, robust high-weight studies. Its mode of action produces cytotoxic effects before it can induce the stable, genetic damage that would be indicative of a genotoxic or carcinogenic hazard.
Collapse
|
7
|
Sharma R, Rao R, Kumar S, Mahant S, Khatkar S. Therapeutic Potential of Citronella Essential Oil: A Review. Curr Drug Discov Technol 2020; 16:330-339. [PMID: 30019646 DOI: 10.2174/1570163815666180718095041] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/30/2017] [Accepted: 07/09/2018] [Indexed: 11/22/2022]
Abstract
Mosquito-borne diseases such as malaria, filariasis, chikunguniya, yellow fever, dengue and Japanese encephalitis are the major cause of remarkable morbidity and mortality in livestock and humans worldwide. Since ancient times, aromatic plants are used for their medicinal value. Essential oils derived from these plants may be used as effective alternatives/adjuvants in pharmaceuticals, biomedical, cosmetic, food, veterinary and agriculture applications. These oils have also gained popularity and interest for prevention and treatment of various disorders. However, several reports on adverse effects including skin eruption, contact artricaria or toxic encephalopathy in children are available for synthetic repellent in the literature. Thus, natural insect repellents like essential oils have been explored recently as an alternative. One such essential oil studied widely, is citronella oil, extracted mainly from Cymbopogon nardus. This essential oil has exhibited good efficacy against mosquitoes. It is a mixture of components including citronellal, citronellol, geraniol as major constituents contributing to various activities (antimicrobial, anthelmintic, antioxidant, anticonvulsant antitrypanosomal and wound healing), besides mosquito repellent action. Citronella essential oil is registered in US EPA (Environmental protection agency) as insect repellent due to its high efficacy, low toxicity and customer satisfaction. However, poor stability in the presence of air and high temperature limits its practical applications. Since specific knowledge on properties and chemical composition of oil is fundamental for its effective application, the present review compiles and discusses biological properties of citronella oil. It also sheds light on various formulations and applications of this essential oil.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar-125001, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar-125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar-125001, India
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Sarita Khatkar
- Vaish Institute of Pharmaceutical Education and Research, Rohtak-124001, India
| |
Collapse
|
8
|
Hwang ES, Song SB. Possible Adverse Effects of High-Dose Nicotinamide: Mechanisms and Safety Assessment. Biomolecules 2020; 10:E687. [PMID: 32365524 PMCID: PMC7277745 DOI: 10.3390/biom10050687] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide (NAM) at doses far above those recommended for vitamins is suggested to be effective against a wide spectrum of diseases and conditions, including neurological dysfunctions, depression and other psychological disorders, and inflammatory diseases. Recent increases in public awareness on possible pro-longevity effects of nicotinamide adenine dinucleotide (NAD+) precursors have caused further growth of NAM consumption not only for clinical treatments, but also as a dietary supplement, raising concerns on the safety of its long-term use. However, possible adverse effects and their mechanisms are poorly understood. High-level NAM administration can exert negative effects through multiple routes. For example, NAM by itself inhibits poly(ADP-ribose) polymerases (PARPs), which protect genome integrity. Elevation of the NAD+ pool alters cellular energy metabolism. Meanwhile, high-level NAM alters cellular methyl metabolism and affects methylation of DNA and proteins, leading to changes in cellular transcriptome and proteome. Also, methyl metabolites of NAM, namely methylnicotinamide, are predicted to play roles in certain diseases and conditions. In this review, a collective literature search was performed to provide a comprehensive list of possible adverse effects of NAM and to provide understanding of their underlying mechanisms and assessment of the raised safety concerns. Our review assures safety in current usage level of NAM, but also finds potential risks for epigenetic alterations associated with chronic use of NAM at high doses. It also suggests directions of the future studies to ensure safer application of NAM.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul 02504, Korea
| | | |
Collapse
|
9
|
Stamm EV, Skurlatov YI, Roshchin AV, Shvydkii VO, Semenyak LV. Role of Water-Soluble Forms of Toxicants in the Formation of Toxic Properties of Natural and Waste Water. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793119060095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Kishino Y, Hasegawa T, Yamoto T, Mori K. Species differences in micronucleus induction of the clastogenic compounds associated with drug metabolic profile. J Toxicol Sci 2020; 44:701-709. [PMID: 31588061 DOI: 10.2131/jts.44.701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genotoxicity and carcinogenicity profiles of drugs occasionally vary across species due to species difference in drug metabolic profile. To clarify the effect of species differences in the metabolic profile on micronucleus induction, we conducted an in vitro micronucleus test for seven clastogens (benzo[a]pyrene: BaP, cyclophosphamide monohydrate: CPA coumarin, diclofenac, piroxicam, lansoprazole, and chlorpheniramine) with rat, mouse, monkey, dog, or human liver S9. BaP, CPA, coumarin, diclofenac, piroxicam, and lansoprazole induced micronucleus formation with all species of S9s, whereas chlorpheniramine did not induce micronucleus formation in any of the S9s. BaP and CPA revealed remarkable species differences in micronucleus induction, whereas coumarin, diclofenac, piroxicam, and lansoprazole did not present any differences. Interestingly, the amounts of hydroxy-BaP-epoxides and phosphamide mustard, which might be associated with micronucleus induction by BaP and CPA, respectively, were correlated with the degree of micronucleus induction among the five species. In conclusion, the species difference in micronucleus induction by BaP and CPA was attributable to the differences in the metabolic profiles of these drugs among species. Our results indicate that it is crucial to understand the effect of species differences in the metabolic profile of drug candidates on genotoxicity and carcinogenicity potential and to predict their risk in human.
Collapse
Affiliation(s)
- Yuki Kishino
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Tomoko Hasegawa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Takashi Yamoto
- Product Information Management Department, Daiichi Sankyo Co., Ltd
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| |
Collapse
|
11
|
Luijten M, Ball NS, Dearfield KL, Gollapudi BB, Johnson GE, Madia F, Peel L, Pfuhler S, Settivari RS, ter Burg W, White PA, van Benthem J. Utility of a next generation framework for assessment of genomic damage: A case study using the industrial chemical benzene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:94-113. [PMID: 31709603 PMCID: PMC6972600 DOI: 10.1002/em.22346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 05/22/2023]
Abstract
We recently published a next generation framework for assessing the risk of genomic damage via exposure to chemical substances. The framework entails a systematic approach with the aim to quantify risk levels for substances that induce genomic damage contributing to human adverse health outcomes. Here, we evaluated the utility of the framework for assessing the risk for industrial chemicals, using the case of benzene. Benzene is a well-studied substance that is generally considered a genotoxic carcinogen and is known to cause leukemia. The case study limits its focus on occupational and general population health as it relates to benzene exposure. Using the framework as guidance, available data on benzene considered relevant for assessment of genetic damage were collected. Based on these data, we were able to conduct quantitative analyses for relevant data sets to estimate acceptable exposure levels and to characterize the risk of genetic damage. Key observations include the need for robust exposure assessments, the importance of information on toxicokinetic properties, and the benefits of cheminformatics. The framework points to the need for further improvement on understanding of the mechanism(s) of action involved, which would also provide support for the use of targeted tests rather than a prescribed set of assays. Overall, this case study demonstrates the utility of the next generation framework to quantitatively model human risk on the basis of genetic damage, thereby enabling a new, innovative risk assessment concept. Environ. Mol. Mutagen. 61:94-113, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | | | | | | | - George E. Johnson
- Swansea University Medical School, Swansea UniversitySwanseaUnited Kingdom
| | - Federica Madia
- European Commission, Joint Research Centre (JRC)IspraItaly
| | - Lauren Peel
- Health and Environmental Sciences InstituteWashingtonDistrict of Columbia
| | | | | | - Wouter ter Burg
- Centre for Safety of Substances and ProductsNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Paul A. White
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Jan van Benthem
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| |
Collapse
|
12
|
Kishino Y, Hasegawa T, Arakawa S, Shibaya Y, Yamoto T, Mori K. Effect of the metabolic capacity in rat liver S9 on the positive results of in vitro micronucleus tests. J Toxicol Sci 2019; 44:145-153. [PMID: 30842367 DOI: 10.2131/jts.44.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A high incidence of positive results is obtained with in vitro genotoxicity tests, which do not correlate with the in vivo negative results in many cases. To address this issue, the metabolic profile of rat liver 9000 × g supernatant fraction (S9) pretreated with phenobarbital (PB) and 5,6-benzoflavone (BNF) was characterized. Furthermore, the in vitro micronucleus tests of 10 compounds were performed with PB-BNF-induced rat S9. PB-BNF increased cytochrome P450 (CYP) activity and CYP1A1, CYP1A2, CYP2B1/2, CYP2C6, CYP3A1, and CYP3A2 expression in rat S9, whereas it decreased CYP2C11 and CYP2E1 expression. PB-BNF-induced S9 enhanced the micronucleus induction (MI) of benzo[a]pyrene (BaP), cyclophosphamide (CPA), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine hydrochloride (PhIP), which are metabolized by CYP1A1, CYP2C6, and CYP1A2, respectively. In contrast, coumarin and chlorpheniramine showed MI with PB-BNF-induced S9 despite the fact that they show negative results in the in vivo studies. Furthermore, diclofenac, piroxicam, lansoprazole, and caffeine showed MI regardless of the enzyme induction by PB-BNF, whereas phenacetin did not show MI. These results indicate that PB-BNF-induced rat S9 is effective in detecting the genotoxic potential of promutagens, such as BaP, CPA, and PhIP, but not of coumarin and chlorpheniramine, probably due to the differences in the in vitro and in vivo metabolic profile and its exposure levels of the drugs.
Collapse
Affiliation(s)
- Yuki Kishino
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Tomoko Hasegawa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Shingo Arakawa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Yukari Shibaya
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Takashi Yamoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| |
Collapse
|
13
|
Zedek F, Bureš P. Pest Arthropods with Holocentric Chromosomes are More Resistant to Sterilizing Ionizing Radiation. Radiat Res 2019; 191:255-261. [PMID: 30702973 DOI: 10.1667/rr15208.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It has been hypothesized that species with holocentric chromosomes have a selective evolutionary advantage for developmental and reproductive success because holocentric chromosomes are less susceptible to chromosome breakage than monocentric chromosomes. We analyzed data on sterilizing doses of ionizing radiation for more than 250 species of arthropods to test whether the minimal dose for reproductive sterilization is higher for species with holocentric chromosomes than for species with monocentric chromosomes. Using linear mixed models that account for phylogeny, we show that holocentric arthropods are more tolerant of sterilizing radiation than monocentrics. Moreover, higher dose rates correlate with lower sterilizing doses in monocentrics, but not in holocentrics, which is a novel finding that may be of importance for radiosanitation practice. Under the dose rate of 1 Gy/min, holocentric arthropods are sterilized on average with a 2.9 times higher minimal dose than monocentrics. Life stage and sex have significant but considerably weaker effects on sterilizing dose than chromosome type. Adults and males require 1.2 and 1.4 times higher sterilizing doses than juveniles and females, respectively. These results support the hypothesis that holocentric lineages may originate and thrive better in times of increased exposure to chromosome-breaking factors.
Collapse
Affiliation(s)
- František Zedek
- Department of Botany and Zoology, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
14
|
Kishino Y, Hasegawa T, Kato A, Nishiya Y, Rozhnal V, Watanabe K, Takasaki W, Yamoto T, Mori K. Effect of inter-individual variability in human liver cytochrome P450 isozymes on cyclophosphamide-induced micronucleus formation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 838:37-45. [PMID: 30678826 DOI: 10.1016/j.mrgentox.2018.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
We investigated the relationship between metabolic activities of cytochrome P450 (CYP) isozymes present in microsomal fractions derived from the livers of 78 donors and micronucleus induction by cyclophosphamide (CPA). Consequently, a wide inter-individual variation in CYP activities was observed among the 78 donors. The CYP activities were partially correlated with the metabolic phenotypes predicted for the donors based on their single nucleotide polymorphisms. In addition, CPA induced micronucleus formation was seen for 47 out of 52 donors whose samples were tested with CPA doses ranging from 18.8 to 100 μg/mL. The CPA dose at which micronucleated cells were observed varied among the donors. Furthermore, a close correlation was identified between the catalytic activities of the CYP2B6, CYP2C9, CYP2C19, and CYP3A4 isozymes and micronucleus induction by CPA. To elucidate the mechanism underlying CPA-induced micronucleus formation in vitro tests were conducted on expression systems of CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. Additionally, the metabolites of CPA generated by the expression systems were quantified by a liquid chromatography tandem mass spectrometer. Interestingly, several metabolites including the 4-hydroxyl form of CPA (4-OH-CPA) and phosphamide mustard were detected in the CYP2B6, CYP2C19, and CYP3A4 expression systems, but not in the CYP2C9 and CYP2D6 system. The presence of these metabolites was correlated with micronucleus induction by CPA. The absence of CPA metabolites in the CYP2C9 expression system might be associated with the lower 4-hydroxylase activity of this system. The present results suggest that inter-individual variability in the metabolic capacity of each donor was associated with potential micronucleus induction due to CPA. Additionally, CPA metabolites like 4-OH-CPA and phosphamide mustard produced by human CYP2B6, CYP2C9, CYP2C19, and CYP3A4 are suggested to be major determinants of micronucleus induction by CPA.
Collapse
Affiliation(s)
- Yuki Kishino
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan.
| | - Tomoko Hasegawa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Ayako Kato
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Yumi Nishiya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Veronika Rozhnal
- Tissue and Cell Research Center Munich, Daiichi Sankyo Europe, GmbH, Bunsenstrasse 7, 82152, Martinsried, Germany
| | - Kyoko Watanabe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Wataru Takasaki
- Research and Development Planning and Management Department, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Takashi Yamoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| |
Collapse
|
15
|
Igarashi T, Takashima H, Takabe M, Suzuki H, Ushida K, Kawamura T, Matsumoto M, Iso T, Tanabe S, Inoue K, Ono A, Yamada T, Hirose A. Initial hazard assessment of benzyl salicylate: In vitro genotoxicity test and combined repeated-dose and reproductive/developmental toxicity screening test in rats. Regul Toxicol Pharmacol 2018; 100:105-117. [PMID: 30359701 DOI: 10.1016/j.yrtph.2018.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/01/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
Benzyl salicylate is used as a fragrance ingredient and an ultraviolet light absorber, but its toxicity is unknown. Therefore, toxicity tests and hazard classification were conducted for screening assessment under the Japanese Chemical Substances Control Law. Benzyl salicylate was found to be non-genotoxic in vitro based on the chromosomal aberration test using Chinese hamster lung cells. However, the combined repeated-dose and reproductive/developmental screening toxicity test, in which male and female rats were administered benzyl salicylate by gavage at 0, 30, 100, or 300 mg/kg/day for 42 and 41-46 days, respectively, from 14 days before mating until postnatal Day 4, showed that repeated doses had major effects on the thymus, liver, epididymis, and femur at 100 and/or 300 mg/kg/day. Furthermore, although benzyl salicylate had no effect on the estrus cycle, fertility, corpus lutea, or implantation rate, embryonic resorption, offspring mortality, and neural tube defects were observed at 300 mg/kg/day, and the offspring had lower body weights at 30 and 100 mg/kg/day, suggesting teratogenicity similar to other salicylates. Based on the developmental toxicity, this chemical was classified as hazard class 2, with a lowest observed adverse effect level (LOAEL) of 30 mg/kg/day and a D-value of 0.003 mg/kg/day.
Collapse
Affiliation(s)
- Toshime Igarashi
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Hiromasa Takashima
- BoZo Research Center Inc., 1284 Kamado, Gotennba, Shizuoka, 412-0039, Japan.
| | - Michihito Takabe
- BoZo Research Center Inc., 1284 Kamado, Gotennba, Shizuoka, 412-0039, Japan.
| | - Hiroshi Suzuki
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Kazuo Ushida
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Tomoko Kawamura
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Mariko Matsumoto
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Takako Iso
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Kaoru Inoue
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Atsushi Ono
- Division of Pharmaceutical, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8530, Japan.
| | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Akihiko Hirose
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| |
Collapse
|
16
|
Younes M, Aggett P, Aguilar F, Crebelli R, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Lambré C, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Brimer L, Mosesso P, Christodoulidou A, Horváth Z, Lodi F, Tard A, Dusemund B. Re-evaluation of propane-1,2-diol alginate (E 405) as a food additive. EFSA J 2018; 16:e05371. [PMID: 32625998 PMCID: PMC7009538 DOI: 10.2903/j.efsa.2018.5371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The present opinion deals with the re‐evaluation of propane‐1,2‐diol alginate (E 405) when used as a food additive. The Panel noted that absorption, distribution, metabolism and excretion (ADME) data on propane‐1,2‐diol alginate gave evidence for the hydrolysis of this additive into propane‐1,2‐diol and alginic acid. These two compounds have been recently re‐evaluated for their safety of use as food additives (EFSA ANS Panel, 2017, 2018). Consequently, the Panel considered in this opinion the major toxicokinetic and toxicological data of these two hydrolytic derivatives. No adverse effects were reported in subacute and subchronic dietary studies with propane‐1,2‐diol alginate. The available data did not indicate a genotoxic concern for propane‐1,2‐diol alginate (E 405) when used as a food additive. Propane‐1,2‐diol alginate, alginic acid and propane‐1,2‐diol were not of concern with respect to carcinogenicity. The Panel considered that any adverse effect of propane‐1,2‐diol alginate would be due to propane‐1,2‐diol. Therefore, the acceptable daily intake (ADI) of the food additive E 405 is determined by the amount of free propane‐1,2‐diol and the propane‐1,2‐diol released from the food additive after hydrolysis. According to the EU specification, the concentration of free and bound propane‐1,2‐diol amounts to a maximum of 45% on a weight basis. On the worst‐case assumption that 100% of propane‐1,2‐diol would be systemically available and considering the ADI for propane‐1,2‐diol of 25 mg/kg body weight (bw) per day, the Panel allocated an ADI of 55 mg/kg bw per day for propane‐1,2‐diol alginate. The Panel concluded that exposure estimates did not exceed the ADI in any of the population groups from the use of propane‐1,2‐diol alginate (E 405) as a food additive. Therefore, the Panel concluded that there is no safety concern at the authorised use levels.
Collapse
|
17
|
Tate MJ, Walmsley RM. The influence of exogenous metabolism on the specificity of in vitro mammalian genotoxicity tests. Mutagenesis 2018; 32:491-499. [PMID: 28992092 DOI: 10.1093/mutage/gex017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A two-part study was designed to determine whether the inclusion of the rodent liver 'S9' exogenous metabolic activating system contributes to the generation of misleading positive results by the regulator-required in vitro mammalian genotoxicity tests. The mono-oxygenase enzymes in S9 produce direct-acting DNA-reactive electrophiles, and are included in in vitro genotoxicity tests to enhance the detection of substances which only become genotoxic following metabolism. However, as the S9 system lacks 'detoxifying' phase 2 factors it was hypothesised that increased chemical metabolism per se may lead to an increase in irrelevant S9 test outcomes in safety assessment. To test this, 89 compounds with positive or negative carcinogenicity data were identified, which produced negative Ames test data (+/- S9), and only produced positive in vitro mammalian test data in the presence of S9. This allowed a determination of whether or not misleading predictions of carcinogenicity by the in vitro mammalian tests were more or less prevalent in the presence of S9. A subset of these compounds was then tested with and without S9 in the GADD45a-GFP genotoxicity test, in order to determine whether misleading in vitro mammalian positive results were generally more prevalent with S9, or reflected particular tests' liabilities. This study suggests that the use of S9 metabolic activation in in vitro genotoxicity tests does not increase the prevalence of misleading positive results in in vitro mammalian genotoxicity assays, at least amongst Ames negative compounds.
Collapse
Affiliation(s)
| | - Richard M Walmsley
- Gentronix Ltd, Alderley Edge, Cheshire SK10 4TG, UK.,University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
18
|
Verma S, Srivastava A. Cyto-genotoxic consequences of carbendazim treatment monitored by cytogenetical analysis using Allium root tip bioassay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:238. [PMID: 29564638 DOI: 10.1007/s10661-018-6616-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Environmental pollution is one of the major problems of these days. One of the reasons of environmental pollution is the indiscriminate use of agrochemicals in agriculture. Fungicides are being extensively used in agriculture for enhancing crop yield and growth by controlling fungal growth. Fungicide carbendazim is widely applied to soil and seeds of vegetable/cereal crops in India and is effective against a very broad spectrum of fungi. The present study was designed to monitor the cyto-genotoxic effects of carbendazim directly in treated soils by cytogenetical analysis using Allium cepa root tip bioassay. In a pot experiment, fungicide carbendazim was added to soil at the rates of 2.5, 5, 7.5, and 10 mg kg-1 soil and uniform size onion bulb was planted in each pot, and three replicates were maintained for each dose at 1, 7, 15, 30, and 45 days after application and roots from onion bulbs were fixed for cytogenetical analysis. Findings indicate that carbendazim treatment leads to a significant dose and duration-dependent decrease in percent mitotic index with related increase in mitotic inhibition. Statistical analysis showed a significant effect of carbendazim doses and duration of treatment on the percentage relative abnormality rate of A. cepa. Phase indices of our study showed high numbers of cells in prophase as compared to other phases at some doses of treatment. The different types of chromosomal abnormalities observed in our study serve as indicators of genotoxicity of carbendazim and we report for the first time the effect of its application directly in soil using a plant test system.
Collapse
Affiliation(s)
- Sonam Verma
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India.
| |
Collapse
|
19
|
Validation of the 3D Skin Comet assay using full thickness skin models: Transferability and reproducibility. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 827:27-41. [DOI: 10.1016/j.mrgentox.2018.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
|
20
|
Zedek F, Bureš P. Holocentric chromosomes: from tolerance to fragmentation to colonization of the land. ANNALS OF BOTANY 2018; 121:9-16. [PMID: 29069342 PMCID: PMC5786251 DOI: 10.1093/aob/mcx118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/24/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND The dispersed occurrence of holocentric chromosomes across eukaryotes implies they are adaptive, but the conditions under which they confer an advantage over monocentric chromosomes remain unclear. Due to their extended kinetochore and the attachment of spindle microtubules along their entire length, holocentric chromosomes tolerate fragmentation; hence, they may be advantageous in times of exposure to factors that cause chromosomal fragmentation (clastogens). SCOPE It is shown that holocentric organisms may, indeed, thrive better than monocentric organisms under clastogenic conditions and that such conditions of various duration and intensity have occurred many times throughout the history of Earth's biota. One of the most important clastogenic events in eukaryotic history, in which holocentric chromosomes may have played the key role, was the colonization of land by plants and animals half a billion years ago. In addition to arguments supporting the anticlastogenic hypothesis of holocentric chromosomes and a discussion of its evolutionary consequences, experiments and analyses are proposed to explore this hypothesis in more depth. CONCLUSIONS It is argued that the tolerance to clastogens explains the origin of holocentric lineages and may also have far-reaching consequences for eukaryotic evolution in general as exemplified by the potential role of holocentric chromosomes in terrestrialization.
Collapse
Affiliation(s)
- František Zedek
- Department of Botany and Zoology, Masaryk University, Kotlarska, Brno, Czech Republic
- For correspondence. E-mail
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Kotlarska, Brno, Czech Republic
| |
Collapse
|
21
|
Diab KA, Fahmy MA, Hassan ZM, Hassan EM, Salama AB, Omara EA. Genotoxicity of carbon tetrachloride and the protective role of essential oil of Salvia officinalis L. in mice using chromosomal aberration, micronuclei formation, and comet assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1621-1636. [PMID: 29098592 DOI: 10.1007/s11356-017-0601-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/24/2017] [Indexed: 05/17/2023]
Abstract
The present work was conducted to evaluate the genotoxic effect of carbon tetrachloride (CCl4) in mouse bone marrow and male germ cells. The safety and the modulating activity of sage (Salvia officinalis L.) essential oil (SEO) against the possible genotoxic effect of CCl4 were also evaluated. A combination of in vivo mutagenic endpoints was included: micronucleus (MN), apoptosis using dual acridine orange/ethidium bromide (AO/EB) staining, comet assay, chromosomal aberrations (CAs), and sperm abnormalities. Histological examination of testis tissues was also studied. The extracted SEO was subjected to gas chromatography-mass spectrometry (GC-MS) for identifying its chemical constituents. Safety/genotoxicity of SEO was determined after two consecutive weeks (5 days/week) from oral treatment with different concentrations (0.1, 0.2, and 0.4 mL/kg). For assessing genotoxicity of CCl4, both acute (once) and subacute i.p. treatment for 2 weeks (3 days/week) with the concentrations 1.2 mL/kg (for acute) and 0.8 mL/kg (for subacute) were performed. For evaluating the protective role of SEO, simultaneous treatment with SEO plus CCl4 was examined. In sperm abnormalities, mice were treated with the subject materials for five successive days and the samples were collected after 35 days from the beginning of treatment. Based on GC-MS findings, 22 components were identified in the chromatogram of SEO. The results demonstrated that the three concentrations of SEO were safe and non-genotoxic in all the tested endpoints. Negative results were also observed in bone marrow after acute and subacute treatment with CCl4. In contrast, CCl4 induced testicular DNA damage as evidenced by a significant increase of CAs in primary spermatocytes, sperm abnormalities, and histological distortion of testis. A remarkable reduction in these cells was observed in groups treated with SEO plus CCl4 especially with the two higher concentrations of SEO. In conclusion, SEO is safe and non-genotoxic under the tested conditions and can modulate genetic damage and histological alteration induced by CCl4 in the testes.
Collapse
Affiliation(s)
- Kawthar Ae Diab
- Genetics and Cytology Department, National Research Centre (NRC), 33 El-Bohouth st, Dokki, Cairo, Egypt.
| | - Maha A Fahmy
- Genetics and Cytology Department, National Research Centre (NRC), 33 El-Bohouth st, Dokki, Cairo, Egypt
| | - Zeinab M Hassan
- Natural Compounds Department, National Research Centre (NRC), 33 El-Bohouth st, Dokki, Cairo, Egypt
| | - Emad M Hassan
- Medicinal and Aromatic Plants Research Department, National Research Centre (NRC), 33 El-Bohouth st, Dokki, Cairo, Egypt
| | - Adel B Salama
- Medicinal and Aromatic Plants Research Department, National Research Centre (NRC), 33 El-Bohouth st, Dokki, Cairo, Egypt
| | - Enayat A Omara
- Pathology Department, National Research Centre (NRC), 33 El-Bohouth st, Dokki, Cairo, Egypt
| |
Collapse
|
22
|
Novak M, Žegura B, Modic B, Heath E, Filipič M. Cytotoxicity and genotoxicity of anticancer drug residues and their mixtures in experimental model with zebrafish liver cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:293-300. [PMID: 28558277 DOI: 10.1016/j.scitotenv.2017.05.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023]
Abstract
Anticancer drugs enter aquatic environment predominantly via hospital and municipal wastewater effluents where they may, due to their genotoxic potential, cause adverse environmental effects even at very low doses. In this study we evaluated cytotoxic and genotoxic potential of two widely used anticancer drugs, cyclophosphamide (CP) and ifosfamide (IF) as individual compounds and in a complex mixture together with 5-fluorouracil (5-FU) and cisplatin (CDDP) because these four drugs have been frequently detected in an oncological ward effluents. As an experimental model we used zebrafish liver cell (ZFL) line. The cytotoxicity was determined with the MTS assay and genotoxicity with the comet assay and cytokinesis block micronucleus (CBMN) assay that measure the formation of DNA strand breaks and genomic instability, respectively. CP and IF exerted low cytotoxicity towards ZFL cells. Both compounds induced DNA strand breaks and genomic instability, however at relatively high concentrations that are not relevant for the contamination of aquatic environment. The mixture of CP, IF, 5-FU and CDDP was tested at maximal detected concentrations of each drug as determined in the effluents from the oncological ward. The mixture was not cytotoxic and did not induce genomic instability, but it induced significant increase in the formation of DNA strand breaks at concentrations of individual compounds that were several orders of magnitude lower from those that were effective when tested as individual compounds. The results indicate that such mixtures of anticancer drugs may pose a threat to aquatic organisms at environmentally relevant concentrations and contribute to the accumulating evidence that it is not always possible to predict adverse effects of complex mixtures based on the toxicological data for individual compounds.
Collapse
Affiliation(s)
- Matjaž Novak
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Ecological Engineering Institute, Ljubljanska ulica 9, 2000 Maribor, Slovenia; Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Barbara Modic
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Ester Heath
- Institute Jozef Stefan, Jadranska 29, 1000 Ljubljana, Slovenia.
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Tahara H, Yamamoto Y, Matsuda S, Yoshizawa H, Fujita M, Hioki T, Kasahara T. Chemically induced strong cellular hypertrophy often reduces the accuracy of cytotoxicity measurements obtained using the ATP assay. J Toxicol Sci 2017; 42:205-221. [PMID: 28321047 DOI: 10.2131/jts.42.205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The ATP assay is a highly sensitive and versatile method for measuring cytotoxicity. However, the correlation between the cell viability results obtained using the ATP assay and those obtained using direct cell counting has not been widely reported. Therefore, to evaluate the reliability and limitations of the ATP assay, we compared the results of ATP assay with those of automatic cell counter, which can measure the number and diameter of cells directly, by using 24 compounds and repeating individual experiments thrice. The correlation between the data was low for 7 of the 24 compounds (r2 < 0.8, at least 2 out of 3 experiments). These were the top 7 of the 11 compounds that induced cell hypertrophy. These 7 compounds were also observed to increase the area of mitochondria. However, the last 4 of the 11 compounds increased the cell size but did not increase the mitochondrial area. For the remaining 13 compounds, which had no effect on cell size, a good correlation was observed between the results of the two methods (r2 > 0.8, at least 2 out of 3 experiments), and the cell size was effectively the same as that of the controls. We concluded that the poor correlation between the two methods was attributable to an increase in the content of intracellular ATP because of the chemically induced cell and mitochondrial hypertrophy. We showed that the ATP assay is unsuitable for assessing the cytotoxicity of compounds that induce cell hypertrophy with increase in the mitochondrial area and ATP content.
Collapse
|
24
|
Bhagat J. Combinations of genotoxic tests for the evaluation of group 1 IARC carcinogens. J Appl Toxicol 2017; 38:81-99. [PMID: 28695982 DOI: 10.1002/jat.3496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023]
Abstract
Many of the known human carcinogens are potent genotoxins that are efficiently detected as carcinogens in human populations but certain types of compounds such as immunosuppressants, sex hormones, etc. act via non-genotoxic mechanism. The absence of genotoxicity and the diversity of modes of action of non-genotoxic carcinogens make predicting their carcinogenic potential extremely challenging. There is evidence that combinations of different short-term tests provide a better and efficient prediction of human genotoxic and non-genotoxic carcinogens. The purpose of this study is to summarize the in vivo and in vitro comet assay (CMT) results of group 1 carcinogens selected from the International Agency for Research on Cancer and to discuss the utility of the comet assay along with other genotoxic assays such as Ames, in vivo micronucleus (MN), and in vivo chromosomal aberration (CA) test. Of the 62 agents for which valid genotoxic data were available, 38 of 61 (62.3%) were Ames test positive, 42 of 60 (70%) were in vivo MN test positive and 36 of 45 (80%) were positive for the in vivo CA test. Higher sensitivity was seen in in vivo CMT (90%) and in vitro CMT (86.9%) assay. Combination of two tests has greater sensitivity than individual tests: in vivo MN + in vivo CA (88.6%); in vivo MN + in vivo CMT (92.5%); and in vivo MN + in vitro CMT (95.6%). Combinations of in vivo or in vitro CMT with other tests provided better sensitivity. In vivo CMT in combination with in vivo CA provided the highest sensitivity (96.7%).
Collapse
Affiliation(s)
- Jacky Bhagat
- Department of Zoology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
25
|
Ford KA. Refinement, Reduction, and Replacement of Animal Toxicity Tests by Computational Methods. ILAR J 2017; 57:226-233. [DOI: 10.1093/ilar/ilw031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/12/2016] [Indexed: 12/16/2022] Open
|
26
|
Andersen F. Final Report On the Safety Assessment of Glycolic Acid, Ammonium, Calcium, Potassium, and Sodium Glycolates, Methyl, Ethyl, Propyl, and Butyl Glycolates, and Lactic Acid, Ammonium, Calcium, Potassium, Sodium, and Tea-Lactates, Methyl, Ethyl, Isopropyl, and Butyl Lactates, and Lauryl, Myristyl, and Cetyl Lactates. Int J Toxicol 2016. [DOI: 10.1177/109158189801700101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This report provides a review of the safety of Glycolic Acid, Ammonium, Calcium, Potassium, and Sodium Glycolates, Methyl, Ethyl, Propyl, and Butyl Glycolates, Lactic Acid, Ammonium, Calcium, Potassium, Sodium, and TEA-Lactates, and Lauryl, Myristyl, and Cetyl Lactates. These ingredients belong to a group known as alpha-hydroxy acids (AHAs). Products containing these ingredients may be for consumer use, salon use, or medical use. This report does not address the medical use. In consumer and salon use, AHAs can function as mild exfoliants, but are also used as pH adjusters and skin-conditioning agents. AHAs are absorbed by the skin; the lower the pH, the greater the absorption. Metabolism and distribution studies show expected pathways and distribution. Consistent with these data, acute oral animal studies show oxalate-induced renal calculi, an increase in renal oxalate, and nephrotoxic effects. No systemic effects in animals were seen with dermal application, but irritation at the sight of application was produced. While many animal studies were performed to evaluate AHA-induced skin irritation, it was common for either the AHA concentration or the pH of the formulation to be omitted, limiting the usefulness of the data. Clinical testing using AHA formulations of known concentration and pH was done to address the issue of skin irritation as a function of concentration and pH. Skin irritation increased with AHA concentration at a given pH. Skin irritation increased when the pH of a given AHA concentration was lowered. Repeat insult patch tests using lotions and creams containing up to 10% Glycolic or Lactic Acid were negative. Glycolic Acid at concentrations up to 10% was not comedogenic and Lactic Acid at the same concentrations did not cause immediate urticarial reactions. Glycolic Acid was found to be nonirritating to minimally irritating in animal ocular tests, while Lactic Acid was found to be nonirritating to moderately irritating. In vitro testing to predict ocular irritation suggested Glycolic Acid would be a minimal to moderate-severe ocular irritant, and that Lactic Acid would be a minimal to moderate ocular irritant. Developmental and maternal toxicity were reported in rats dosed by gavage at the highest dose level used in a study that exposed the animals on days 7-21 of gestation. No developmental toxicity was reported at levels that were not maternally toxic. AHAs were almost uniformly negative in genotoxicity tests and were not carcinogenic in rabbits or rats. Clinical reports suggested that AHAs would enhance the penetration of hydroquinone and lidocaine. Animal and clinical tests were done to further evaluate the potential ofAHAs to enhance the skin penetration of other chemical agents. Pretreatment of guinea pig skin with Glycolic Acid did not affect the absorption of hydroquinone or musk xylol. Clinical tests results indicated no increase in penetration of hydrocortisone or glycerin with Glycolic Acid pretreatment. Because AHAs can act to remove a portion of the stratum corneum, concern was expressed about the potential that pretreatment with AHAs could increase skin damage produced by UV radiation. Clinical testing was done to determine the number of sunburn cells (cells damaged by UV radiation that show distinct morphologic changes) produced by 1 MED of UV radiation in skin pretreated with AHAs. A statistically significant increase in the number of sunburn cells was seen in skin pretreated with AHAs compared to controls. These increases, however, were less than those seen when the UV dose was increased from 1 MED to 1.56 MED. The increase in UV radiation damage associated with AHA pretreatment, therefore, was of such a magnitude that it is easily conceivable that aspects of product formulation could eliminate the effect. Based on the available information included in this report, the CIR Expert Panel concluded that Glycolic and Lactic Acid, their common salts and their simple esters, are safe for use in cosmetic products at concentrations ≤10%, at final formulation pH≥3.5, when formulated to avoid increasing sun sensitivity or when directions for use include the daily use of sun protection. These ingredients are safe for use in salon products at concentrations ≤30%, at final formulation pH ≥3.0, in products designed for brief, discontinuous use followed by thorough rinsing from the skin, when applied by trained professionals, and when application is accompanied by directions for the daily use of sun protection.
Collapse
Affiliation(s)
- F.A. Andersen
- 1101 17th St., NW, Suite 310, Washington, DC 20036,
USA
| |
Collapse
|
27
|
Bernacki DT, Bryce SM, Bemis JC, Kirkland D, Dertinger SD. γH2AX and p53 responses in TK6 cells discriminate promutagens and nongenotoxicants in the presence of rat liver S9. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:546-558. [PMID: 27364561 PMCID: PMC4980245 DOI: 10.1002/em.22028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 05/03/2023]
Abstract
Previous work with a diverse set of reference chemicals suggests that an in vitro multiplexed flow cytometry-based assay (MultiFlow™ DNA Damage Kit-p53, γH2AX, Phospho-Histone H3) can distinguish direct-acting clastogens and aneugens from nongenotoxicants (Bryce SM et al. []: Environ Mol Mutagen 57:171-189). This work extends this line of investigation to include compounds that require metabolic activation to form reactive electrophiles. For these experiments, TK6 cells were exposed to 11 promutagens and 37 presumed nongenotoxicants in 96 well plates. Unless precipitation or foreknowledge about cytotoxicity suggested otherwise, the highest concentration was 1 mM. Exposure occurred for 4 hr after which time cells were washed to remove S9 and test article. Immediately following the wash and again at 24 hr, cell aliquots were added to wells of a microtiter plate containing the working detergent/stain/antibody cocktail. After a brief incubation, robotic sampling was employed for walk-away flow cytometric data acquisition. Univariate logistic regression analyses indicated that γH2AX induction and p53 activation provide the greatest degree of discrimination between clastogens and nongenotoxicants. Multivariate prediction algorithms that incorporated both of these endpoints, in each combination of time points, were evaluated. The best performing models correctly predicted 9 clastogens out of 11 and 36 nongenotoxicants out of 37. These results are encouraging as they suggest that an efficient and highly scalable multiplexed assay can effectively identify clastogenic chemicals that require bioactivation. More work is planned with a broader range of chemicals, additional cell lines, and other laboratories to further evaluate the merits and limitations of this approach. Environ. Mol. Mutagen. 57:546-558, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Derek T. Bernacki
- Litron Laboratories, 3500 Winton Place, Rochester, New York, 14623, USA
| | - Steven M. Bryce
- Litron Laboratories, 3500 Winton Place, Rochester, New York, 14623, USA
| | - Jeffrey C. Bemis
- Litron Laboratories, 3500 Winton Place, Rochester, New York, 14623, USA
| | | | - Stephen D. Dertinger
- Litron Laboratories, 3500 Winton Place, Rochester, New York, 14623, USA
- corresponding author: S.D.D., 585-442-0930,
| |
Collapse
|
28
|
Gajski G, Gerić M, Žegura B, Novak M, Nunić J, Bajrektarević D, Garaj-Vrhovac V, Filipič M. Genotoxic potential of selected cytostatic drugs in human and zebrafish cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14739-14750. [PMID: 25943512 DOI: 10.1007/s11356-015-4592-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Due to their increasing use, the residues of anti-neoplastic drugs have become emerging pollutants in aquatic environments. Most of them directly or indirectly interfere with the cell's genome, which classifies them into a group of particularly dangerous compounds. The aim of the present study was to conduct a comparative in vitro toxicological characterisation of three commonly used cytostatics with different mechanisms of action (5-fluorouracil [5-FU], cisplatin [CDDP] and etoposide [ET]) towards zebrafish liver (ZFL) cell line, human hepatoma (HepG2) cells and human peripheral blood lymphocytes (HPBLs). Cytotoxicity was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and acridine orange/ethidium bromide staining. All three drugs induced time- and dose-dependent decreases in cell viability. The sensitivity of ZFL and HepG2 cells towards the cytotoxicity of 5-FU was comparable (half maximal inhibitory concentration (IC50) 5.3 to 10.4 μg/mL). ZFL cells were more sensitive towards ET- (IC50 0.4 μg/mL) and HepG2 towards CDDP- (IC50 1.4 μg/mL) induced cytotoxicity. Genotoxicity was determined by comet assay and cytokinesis block micronucleus (CBMN) assay. ZFL cells were the most sensitive, and HPBLs were the least sensitive. In ZFL cells, induction of DNA strand breaks was a more sensitive genotoxicity endpoint than micronuclei (MNi) induction; the lowest effective concentration (LOEC) for DNA strand break induction was 0.001 μg/mL for ET, 0.01 μg/mL for 5-FU and 0.1 μg/mL for CDDP. In HepG2 cells, MNi induction was a more sensitive genotoxicity endpoint. The LOEC values were 0.01 μg/mL for ET, 0.1 μg/mL for 5-FU and 1 μg/mL for CDDP. The higher sensitivity of ZFL cells to cytostatic drugs raises the question of the impact of such compounds in aquatic ecosystem. Since little is known on the effect of such drugs on aquatic organisms, our results demonstrate that ZFL cells provide a relevant and sensitive tool to screen genotoxic potential of environmental pollutant in the frame of hazard assessment.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
- Ecological Engineering Institute, Ljubljanska ulica 9, 2000, Maribor, Slovenia
| | - Jana Nunić
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Džejla Bajrektarević
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Vera Garaj-Vrhovac
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| |
Collapse
|
29
|
Mišík M, Filipic M, Nersesyan A, Mišíková K, Knasmueller S, Kundi M. Analyses of combined effects of cytostatic drugs on micronucleus formation in the Tradescantia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14762-14770. [PMID: 26620864 DOI: 10.1007/s11356-015-5837-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Recent experiments showed that 5-fluorouracil (5FU), cisplatin (CDDP), etoposide (ET), and imatinib mesylate (IM), which are currently among the most widely used anticancer drugs, cause damage of the genetic material in higher plants. The aim of the present study was to determine whether mixtures of these drugs cause synergistic or antagonistic effects which may have an impact on their environmental safety. Therefore, the effects of binary mixtures of these anticancer drugs on the induction of micronuclei (MN) which reflect structural and numerical chromosomal aberrations were assessed in Tradescantia tetrads. Synergistic/antagonistic effects were determined by comparison with single exposures that would be equally effective in a reference model of independent action. This comparison was performed at two distinct effect sizes. We found clear evidence for synergisms in combination experiments with IM and antagonism in a high-dose experiment with ET and 5FU. Our findings indicate that IM increases the genotoxic effects of other anticancer drugs. The maximal effects which we found were in the range between 19 and 38 % in the excess of effect sizes predicted under independent action. These effects may have an impact on the overall genotoxic activities of untreated hospital waste waters but not on the environment in general as the predicted environmental concentrations of the studied drugs are several orders of magnitude lower as the levels which are required to cause induction of MN in higher plants.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Metka Filipic
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Armen Nersesyan
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Katarína Mišíková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Siegfried Knasmueller
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.
| | - Michael Kundi
- Medical University of Vienna, Institute of Environmental Health, Medical University of Vienna, Wien, Austria
| |
Collapse
|
30
|
Petkov PI, Schultz TW, Donner EM, Honma M, Morita T, Hamada S, Wakata A, Mishima M, Maniwa J, Todorov M, Kaloyanova E, Kotov S, Mekenyan OG. Integrated approach to testing and assessment for predicting rodent genotoxic carcinogenicity. J Appl Toxicol 2016; 36:1536-1550. [DOI: 10.1002/jat.3338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Petko I. Petkov
- Laboratory of Mathematical Chemistry (LMC); As. Zlatarov University; Bourgas Bulgaria
| | - Terry W. Schultz
- College of Veterinary Medicine; The University of Tennessee; Knoxville TN 37996-4500 USA
| | - E. Maria Donner
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark; DE USA
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis; National Institute of Health Sciences; Tokyo Japan
| | - Takeshi Morita
- Division of Risk Assessment; National Institute of Health Sciences; Tokyo Japan
| | | | | | - Masayuki Mishima
- Chugai Pharmaceutical Co., Ltd., Fuji Gotemba Research Labs; Shizuoka Japan
| | - Jiro Maniwa
- Clinical Science Division, Research & Development AstraZeneca KK; Osaka Japan
| | - Milen Todorov
- Laboratory of Mathematical Chemistry (LMC); As. Zlatarov University; Bourgas Bulgaria
| | - Elena Kaloyanova
- Laboratory of Mathematical Chemistry (LMC); As. Zlatarov University; Bourgas Bulgaria
| | - Stefan Kotov
- Laboratory of Mathematical Chemistry (LMC); As. Zlatarov University; Bourgas Bulgaria
| | - Ovanes G. Mekenyan
- Laboratory of Mathematical Chemistry (LMC); As. Zlatarov University; Bourgas Bulgaria
| |
Collapse
|
31
|
Liu Q, Zhang J, Luo X, Ihsan A, Liu X, Dai M, Cheng G, Hao H, Wang X, Yuan Z. Further investigations into the genotoxicity of quinoxaline-di-N-oxides and their primary metabolites. Food Chem Toxicol 2016; 93:145-57. [PMID: 27170491 DOI: 10.1016/j.fct.2016.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022]
Abstract
Quinoxaline-di-N-oxides (QdNOs) are potential antibacterial agents with a wide range of biological properties. Quinocetone (QCT), carbadox (CBX), olaquindox (OLA), mequindox (MEQ) and cyadox (CYA) are classical QdNOs. Though the genotoxicity of parent drugs has been evaluated, the genotoxicity of their primary N → O reduced metabolites remains unclear. In the present study, a battery of four different short-term tests, mouse lymphoma assay (MLA), Ames test, chromosomal aberration assay in vitro and bone marrow erythrocyte micronucleus assay in vivo was carried out to investigate the genotoxicity of the six primary N → O reduced metabolites. Additionally, the genotoxicity of five parent drugs was evaluated by the MLA. Strong genotoxicity of N1-MEQ, B-MEQ and B-CBX was found in three of the assays but not in the Ames assay, and the rank order was N1-MEQ>B-MEQ>B-CBX that is consistent with prototype QdNOs. Negative results for the five QdNOs were noted in the MLA. We present for the first time a comparison of the genotoxicity of primary N → O reduced metabolites, and evaluate the ability of five QdNOs to cause mutations in the MLA. The present study demonstrates that metabolites are involved in genetic toxicity mediated by QdNOs, and improve the prudent use of QdNOs for public health.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianwu Zhang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xun Luo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Xianglian Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Menghong Dai
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Guyue Cheng
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Haihong Hao
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Xu Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
32
|
Morita T, Hamada S, Masumura K, Wakata A, Maniwa J, Takasawa H, Yasunaga K, Hashizume T, Honma M. Evaluation of the sensitivity and specificity of in vivo erythrocyte micronucleus and transgenic rodent gene mutation tests to detect rodent carcinogens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 802:1-29. [DOI: 10.1016/j.mrgentox.2016.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/26/2022]
|
33
|
Nakamura A, Monzen S, Takasugi Y, Wojcik A, Mariya Y. Application of cell sorting for enhancing the performance of the cytokinesis-block micronucleus assay. JOURNAL OF RADIATION RESEARCH 2016; 57:121-126. [PMID: 26826197 PMCID: PMC4795957 DOI: 10.1093/jrr/rrv103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/16/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Among the numerous methods available to assess genotoxicity, the cytokinesis-block micronucleus (CBMN) assay is very popular due its relative simplicity and power to detect both clastogenic and aneugenic compounds. A problem with the CBMN assay is that all DNA damaging agents also inhibit the ability of cells to progress through mitosis, leading to a low number of binucleated cells (BNCs). One method to resolve this issue is to ensure a sufficient proportion of BNCs in the samples. In the current study, the applicability of a cell sorting system capable of isolating cell fractions containing abundant BNCs was investigated. Furthermore, to investigate the relationship between the cell division delay due to radiation exposure and the generation of BNCs and micronuclei (MN), we assessed a series of lag times between radiation exposure and addition of cytochalasin-B (Cyt-B). Cells from the human chronic myelogenous leukemia cell line K562 were exposed to X-rays (2 Gy and 4 Gy), and Cyt-B was subsequently added at 0, 6 and 12 h following irradiation. After treatment with Cyt-B for 24 h, the percentage of BNCs, the MN frequency and the cell cycle distribution were analyzed. In addition, cells displaying the DNA contents corresponding to BNCs were isolated and analyzed. The results indicate that applying the cell sorter to the CBMN assay increased the percentage of BNCs compared with the standard method. Thus, this technique is a promising way of enhancing the capacity of the CBMN assay.
Collapse
Affiliation(s)
- Ayumi Nakamura
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Satoru Monzen
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Yuki Takasugi
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Yasushi Mariya
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
34
|
Kirkland D, Kasper P, Martus HJ, Müller L, van Benthem J, Madia F, Corvi R. Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 795:7-30. [DOI: 10.1016/j.mrgentox.2015.10.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
|
35
|
Morita T, Uno Y, Honma M, Kojima H, Hayashi M, Tice RR, Corvi R, Schechtman L. The JaCVAM international validation study on the in vivo comet assay: Selection of test chemicals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015. [DOI: 10.1016/j.mrgentox.2015.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Whitwell J, Smith R, Jenner K, Lyon H, Wood D, Clements J, Aschcroft-Hawley K, Gollapudi B, Kirkland D, Lorge E, Pfuhler S, Tanir JY, Thybaud V. Relationships between p53 status, apoptosis and induction of micronuclei in different human and mouse cell lines in vitro: Implications for improving existing assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 789-790:7-27. [PMID: 26232254 DOI: 10.1016/j.mrgentox.2015.05.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 11/17/2022]
Abstract
Accumulated evidence has shown that in vitro mammalian cell genotoxicity assays produce high frequencies of "misleading" positive results, i.e. predicted hazard is not confirmed in in vivo and/or carcinogenicity studies [1], raising the question of relevance to human risk assessment. A recent study of micronucleus (MN) induction [2] showed that commonly used p53-deficient rodent cell lines (CHL, CHO and V79) gave a higher frequency of "misleading" positive results with 9 non-DNA reactive, Ames-negative and in vivo negative chemicals [3] than human p53-competent cells (blood lymphocytes, TK6 and HepG2 cell lines). This raised the question of whether these differences were due to p53 status or species origin. This present study compared human versus mouse and p53-competent versus p53-mutated function. The same 9 chemicals were tested for induction of MN in mouse lymphoma L5178Y (mutated p53), human TK6 (functional p53) and WIL2-NS (TK6 related, with mutated p53) cells. Six chemicals provided clear positive increases in MN frequency in at least one cell type. L5178Y cells yielded clear positive responses with more chemicals than either TK6 or WIL2-NS, indicating origin rather than p53 functionality was most relevant. Apoptosis induction (measured via caspase-3/7) was also investigated with clear differences in the timing and extent of apoptosis induction between mouse and human cells noted. With curcumin in TK6 cells, induction of caspase-3/7 activity coincided with MN induction, whereas for L5178Y cells, MN induction occurred in the absence of increased caspase activity. By contrast, with MMS in TK6 cells, MN induction preceded increased caspase-3/7 activity. These data suggest that MN induction by "misleading positive" genotoxins in p53-competent human cell lines may result from apoptosis, whereas in p53-defective rodent cells such as L5178Y, MN induction may be independent of apoptosis.
Collapse
Affiliation(s)
- James Whitwell
- Covance Laboratories Ltd., Harrogate, North Yorkshire, UK.
| | - Robert Smith
- Covance Laboratories Ltd., Harrogate, North Yorkshire, UK
| | - Karen Jenner
- Covance Laboratories Ltd., Harrogate, North Yorkshire, UK
| | - Heather Lyon
- Covance Laboratories Ltd., Harrogate, North Yorkshire, UK
| | - Deborah Wood
- Covance Laboratories Ltd., Harrogate, North Yorkshire, UK
| | - Julie Clements
- Covance Laboratories Ltd., Harrogate, North Yorkshire, UK
| | | | | | | | | | - Stefan Pfuhler
- Procter & Gamble, Global Product Stewardship, Cincinnati, USA
| | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute, Washington DC, USA
| | | |
Collapse
|
37
|
Scientific Opinion on the re‐evaluation of ascorbic acid (E 300), sodium ascorbate (E 301) and calcium ascorbate (E 302) as food additives. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
38
|
Wada K, Fukuyama T, Nakashima N, Matsumoto K. Assessment of the in vivo genotoxicity of cadmium chloride, chloroform, and D,L-menthol as coded test chemicals using the alkaline comet assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015. [PMID: 26212300 DOI: 10.1016/j.mrgentox.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM) international validation study of in vivo rat alkaline comet assays, we examined cadmium chloride, chloroform, and D,L-menthol under blind conditions as coded chemicals in the liver and stomach of Sprague-Dawley rats after 3 days of administration. Cadmium chloride showed equivocal responses in the liver and stomach, supporting previous reports of its poor mutagenic potential and non-carcinogenic effects in these organs. Treatment with chloroform, which is a non-genotoxic carcinogen, did not induce DNA damage in the liver or stomach. Some histopathological changes, such as necrosis and degeneration, were observed in the liver; however, they did not affect the comet assay results. D,L-Menthol, a non-genotoxic non-carcinogen, did not induce liver or stomach DNA damage. These results indicate that the comet assay can reflect genotoxic properties under blind conditions.
Collapse
Affiliation(s)
- Kunio Wada
- Toxicology Division, The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan.
| | - Tomoki Fukuyama
- Toxicology Division, The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Nobuaki Nakashima
- Toxicology Division, The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Kyomu Matsumoto
- Toxicology Division, The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| |
Collapse
|
39
|
Takayanagi T, Takashima R, Wako Y, Kawasako K, Tanaka Y, Hori H, Fujii W. Repeated dose liver micronucleus assay using clofibrate in young adult rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 780-781:117-22. [DOI: 10.1016/j.mrgentox.2015.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/03/2015] [Indexed: 11/28/2022]
|
40
|
Sui H, Matsumoto H, Wako Y, Kawasako K. Evaluation of in vivo genotoxicity by thioacetamide in a 28-day repeated-dose liver micronucleus assay using male young adult rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 780-781:81-4. [DOI: 10.1016/j.mrgentox.2014.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 11/26/2022]
|
41
|
Mišík M, Pichler C, Rainer B, Filipic M, Nersesyan A, Knasmueller S. Acute toxic and genotoxic activities of widely used cytostatic drugs in higher plants: Possible impact on the environment. ENVIRONMENTAL RESEARCH 2014; 135:196-203. [PMID: 25282277 DOI: 10.1016/j.envres.2014.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 05/24/2023]
Abstract
Cytostatic drugs are highly toxic pharmaceuticals and it was repeatedly postulated that they may cause adverse effects in ecosystems. The acute toxic and genotoxic properties of these drugs have not been adequately investigated in higher plants so far; therefore, we studied the most widely used drugs (5-flurouracil, 5FU; etoposide, Et; cisplatin, CisPt; carboplatin, CaPt; vincristine sulfate, VinS and cyclophosphamide monohydrate, CP) in micronucleus (MN) assays with meiotic pollen tetrad cells of Tradescantia and with root cells from Allium cepa. MNi are formed as a consequence of chromosome breaks and aneuploidy. We monitored also the acute toxic properties of the drugs, i.e. inhibition of cell division (mitotic indices and retardation of root growth) in the latter species. All compounds caused in both indicator plants genotoxic effects. The order of genotoxic potencies expressed as NOELs in µM was CisPt (0.1)≥ Et (0.5)>CP (1.0)>CaPt (10)>5FU (30)>VinS (100) in Tradescantia. A similar order was seen in Allium MN but Et was less active (5.0µM). Four compounds caused alterations of the mitotic indices under the present conditions namely CisPt (0.5), Et (10.0), 5FU (10.0) and VinS (100). Inhibition of root growth decreased in the order CisPt (0.5)>Et (1.0)≥VinS (1.0)>5FU (5.0)>CaPt (33.0)>CP (>1000). Comparisons of the NOELs with the predicted environmental concentrations (PEC) show that the latter values are at least 5 orders of magnitude lower and indicate that it is unlikely that their release in the environment may cause adverse effects in higher plants. However, it is notable that the levels of both platinum compounds and of 5FU in hospital effluents may reach levels which may induce damage of the genetic material.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Clemens Pichler
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Bernhard Rainer
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Armen Nersesyan
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Siegfried Knasmueller
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
42
|
Kirkland D, Zeiger E, Madia F, Corvi R. Can in vitro mammalian cell genotoxicity test results be used to complement positive results in the Ames test and help predict carcinogenic or in vivo genotoxic activity? II. Construction and analysis of a consolidated database. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 775-776:69-80. [PMID: 25435357 DOI: 10.1016/j.mrgentox.2014.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
A Workshop sponsored by EURL ECVAM was held in Ispra, Italy in 2013 to consider whether the in vitro mammalian cell genotoxicity test results could complement and mitigate the implications of a positive Ames test response for the prediction of in vivo genotoxicity and carcinogenicity, and if patterns of results could be identified. Databases of Ames-positive chemicals that were tested for in vivo genotoxicity and/or carcinogenicity were collected from different sources and analysed individually (Kirkland et al., in this issue). Because there were overlaps and inconsistent test results among chemicals in the different databases, a combined database which eliminated the overlaps and evaluated the inconsistencies was considered preferable for addressing the above question. A database of >700 Ames-positive chemicals also tested in vivo was compiled, and the results in in vitro mammalian cell tests were analysed. Because the database was limited to Ames-positive chemicals, the majority (>85%) of carcinogens (103/119) and in vivo genotoxins (83/88) were positive when tested in both in vitro gene mutation and aneugenicity/clastogenicity tests. However, about half (>45%) of chemicals that were not carcinogenic (19/28) or genotoxic in vivo (33/73) also gave the same patterns of positive mammalian cell results. Although the different frequencies were statistically significant, positive results in 2 in vitro mammalian cell tests did not, per se, add to the predictivity of the positive Ames test. By contrast, negative results for both in vitro mammalian cell endpoints were rare for Ames-positive carcinogens (3/119) and in vivo genotoxins (2/88) but, were significantly more frequent for Ames-positive chemicals that are not carcinogenic (4/28) or genotoxic in vivo (14/73). Thus, in the case of an Ames-positive chemical, negative results in 2 in vitro mammalian cell tests covering both mutation and clastogenicity/aneugenicity endpoints should be considered as indicative of absence of in vivo genotoxic or carcinogenic potential.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster LS24 0AS, United Kingdom
| | - Errol Zeiger
- Errol Zeiger Consulting, 800 Indian Springs Road, Chapel Hill, NC 27514, USA
| | - Federica Madia
- European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Systems Toxicology Unit, Institute for Health and Consumer Protection (IHCP), European Commission - Joint Research Centre, TP 126, Via E. Fermi 2749, I-21027 Ispra, Va, Italy
| | - Raffaella Corvi
- European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Systems Toxicology Unit, Institute for Health and Consumer Protection (IHCP), European Commission - Joint Research Centre, TP 126, Via E. Fermi 2749, I-21027 Ispra, Va, Italy.
| |
Collapse
|
43
|
Scientific Opinion on the re-evaluation of propionic acid (E 280), sodium propionate (E 281), calcium propionate (E 282) and potassium propionate (E 283) as food additives. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
44
|
Morita T, Miyajima A, Hatano A, Honma M. Effects of lowering the proposed top-concentration limit in an in vitro chromosomal aberration test on assay sensitivity and on the reduction of the number of false positives. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 769:34-49. [DOI: 10.1016/j.mrgentox.2014.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 03/04/2014] [Accepted: 04/05/2014] [Indexed: 10/25/2022]
|
45
|
Scientific Opinion on the safety and efficacy of disodium 5′‐ribonucleotides, disodium 5′‐guanylate, disodium 5′‐inosinate for all animal species and categories. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
46
|
Smirnikhina SA, Voronina ES, Strelnikov VV, Tanas AS, Lavrov AV. Mutagen influence with different mechanisms of action on DNA global methylation in human whole-blood lymphocytes in vitro. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413060124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Brambilla G, Mattioli F, Robbiano L, Martelli A. Genotoxicity and carcinogenicity studies of bronchodilators and antiasthma drugs. Basic Clin Pharmacol Toxicol 2013; 112:302-13. [PMID: 23374861 DOI: 10.1111/bcpt.12054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/02/2013] [Indexed: 11/30/2022]
Abstract
This survey is a compendium of genotoxicity and carcinogenicity information of bronchodilators and antiasthma drugs. Data from 46 marketed drugs were collected. Of these 46 drugs, 25 (54.3%) did not have retrievable genotoxicity or carcinogenicity data. The remaining 21 (45.7%) had at least one genotoxicity or carcinogenicity test result. Of these 21 drugs, 10 had at least one positive finding: three tested positive in at least one genotoxicity assay, eight in at least one carcinogenicity assay, and one of them gave positive results in both genotoxicity assay and carcinogenicity assay. Concerning the predictivity of genetic toxicology findings for the result(s) of long-term carcinogenesis assays, 15 drugs had both genotoxicity and carcinogenicity data: seven of them (46.6%) were neither genotoxic nor carcinogenic, 6 (40.0%) were carcinogenic in at least one sex of mice or rats but tested negative in genotoxicity assays, 1 (6.7%) tested positive in genotoxicity assay but was non-carcinogenic, and 1 (6.7%) gave positive responses in both genotoxicity and carcinogenicity assay. Only 11 (23.9%) of the 46 drugs considered had all data required by current guidelines for testing of pharmaceuticals, but a large fraction of them were developed and marketed prior to the present regulatory climate.
Collapse
Affiliation(s)
- Giovanni Brambilla
- Department of Internal Medicine, Division of Clinical Pharmacology and Toxicology, University of Genoa, Genoa, Italy.
| | | | | | | |
Collapse
|
48
|
Brookmire L, Chen JJ, Levy DD. Evaluation of the highest concentrations used in the in vitro chromosome aberrations assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:36-43. [PMID: 23076808 DOI: 10.1002/em.21738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/17/2012] [Accepted: 08/19/2012] [Indexed: 06/01/2023]
Abstract
There is controversy over the highest concentration to which an article should be tested in in vitro mammalian cell assays of genetic toxicity. Until recently, most guidelines specified the use of concentrations of up to 10 mM or 5,000 μg/ml (whichever is lower) when not limited by the toxicity of the test article to the cells used for the test. Several recent publications have called for lowering those limits. We examined concentration/response curves for in vitro chromosome aberrations assays. Data was extracted from two published databases to evaluate the lowest dose at which a positive response was reported. Concentration/response curves were simulated using Monte Carlo procedures on log normal distributions of the data. These curves were then used to predict the loss in assay sensitivity that would be incurred by arbitrarily lowering the highest concentration to which the assay is conducted. The simulations suggest that lowering the current high concentration limit from 10 mM would dramatically impact the sensitivity of the assay. In contrast, lowering the high concentration limit using the μg/ml scale, the most commonly applied scale in regulatory submissions, would not have a similar impact on assay sensitivity until the limit concentration was lowered to more than half of the current 5,000 μg/ml limit. This analysis suggests that the current limits of 10 mM and 5,000 μg/ml are not equivalent to one another and challenges the assumption that lowering the 10 mM limit will not decrease assay sensitivity.
Collapse
Affiliation(s)
- Lauren Brookmire
- US Food and Drug Administration Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740, USA
| | | | | |
Collapse
|
49
|
Tsutsui T, Tanaka Y, Ushimura A, Ide T, Matsumura M, Barrett JC. In vitro cytotoxicity of diverse preparations used in dental practice to human gingival keratinocytes. Toxicol In Vitro 2012; 11:393-8. [PMID: 20654326 DOI: 10.1016/s0887-2333(97)00030-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/1997] [Indexed: 11/16/2022]
Abstract
The cytotoxicities of diverse preparations used for dental practice were examined with normal human keratinocytes from gingival tissues by the uptake of neutral red (NR assay). Cultures from different individuals were established, and secondary cultures in serum-free medium were used. The cytotoxicities to cells treated for 2 days with gargles, mouthwashes, gingival massages, fluoride preparations, dentifrices and local anaesthetics were determined from the dose-response curves of inhibition of NR uptake. As a quantitative measure of cytotoxicity, NR(50) (the concentration of the preparations that resulted in a 50% decrease in NR uptake relative to untreated controls) was interpolated from dose-response curves. Dentifrices examined showed cytotoxicity similar to gingival massages but were more cytotoxic than any fluoride preparations, local anaesthetics, and most gargles and mouthwashes. The cytotoxicities of dentifrices were at least 6.5-fold those of fluoride preparations and 7.9-fold those of local anaesthetics. The results provide useful estimates of relative toxicities of dental preparations to human oral mucosa and are useful as a standard for cytotoxic assessment of newly developed preparations for dental use.
Collapse
Affiliation(s)
- T Tsutsui
- Laboratory of Molecular Carcinogenesis, Environmental Carcinogenesis Program, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
50
|
Reduction of misleading (“false”) positive results in mammalian cell genotoxicity assays. II. Importance of accurate toxicity measurement. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:104-117. [DOI: 10.1016/j.mrgentox.2012.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 02/08/2012] [Accepted: 04/19/2012] [Indexed: 11/21/2022]
|