1
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
2
|
Role of Kynurenine Pathway in Oxidative Stress during Neurodegenerative Disorders. Cells 2021; 10:cells10071603. [PMID: 34206739 PMCID: PMC8306609 DOI: 10.3390/cells10071603] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are chronic and life-threatening conditions negatively affecting the quality of patients’ lives. They often have a genetic background, but oxidative stress and mitochondrial damage seem to be at least partly responsible for their development. Recent reports indicate that the activation of the kynurenine pathway (KP), caused by an activation of proinflammatory factors accompanying neurodegenerative processes, leads to the accumulation of its neuroactive and pro-oxidative metabolites. This leads to an increase in the oxidative stress level, which increases mitochondrial damage, and disrupts the cellular energy metabolism. This significantly reduces viability and impairs the proper functioning of central nervous system cells and may aggravate symptoms of many psychiatric and neurodegenerative disorders. This suggests that the modulation of KP activity could be effective in alleviating these symptoms. Numerous reports indicate that tryptophan supplementation, inhibition of KP enzymes, and administration or analogs of KP metabolites show promising results in the management of neurodegenerative disorders in animal models. This review gathers and systematizes the knowledge concerning the role of metabolites and enzymes of the KP in the development of oxidative damage within brain cells during neurodegenerative disorders and potential strategies that could reduce the severity of this process.
Collapse
|
3
|
3-Hydroxykynurenine and clinical symptoms in first-episode neuroleptic-naive patients with schizophrenia. Int J Neuropsychopharmacol 2011; 14:756-67. [PMID: 21275080 PMCID: PMC3117924 DOI: 10.1017/s1461145710001689] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One branch of the tryptophan catabolic cascade is the kynurenine pathway, which produces neurotoxic [3-hydroxykynurenine (3-OHKY), quinolinic acid] and neuroinhibitory (kynurenic acid) compounds. Kynurenic acid acts as a competitive antagonist at the glycine site of N-methyl-d-asparate receptors at high concentrations and as a non-competitive antagonist on the α7-nicotinic acetylcholine receptor at low concentrations. Kynurenine compounds also influence cognitive functions known to be disrupted in schizophrenia. Alterations in tryptophan metabolism are therefore of potential significance for the pathophysiology of this disorder. In this paper, tryptophan metabolites were measured from plasma using high-pressure liquid chromatography coupled with electrochemical coulometric array detection, and relationships were tested between these metabolic signatures and clinical symptoms for 25 first-episode neuroleptic-naive schizophrenia patients. Blood samples were collected and clinical and neurological symptoms were rated at baseline and again at 4 wk following initiation of treatment. Level of 3-OHKY and total clinical symptom scores were correlated when patients were unmedicated and neuroleptic-naive, and this relationship differed significantly from the correlation observed for patients 4 wk after beginning treatment. Baseline psychosis symptoms were predicted only by neurological symptoms. Moreover, baseline 3-OHKY predicted clinical change at 4 wk, with the lowest concentrations of 3-OHKY being associated with the greatest improvement in symptoms. Taken together, our findings suggest a neurotoxic product of tryptophan metabolism, 3-OHKY, predicts severity of clinical symptoms during the early phase of illness and before exposure to antipsychotic drugs. Baseline level of 3-OHKY may also predict the degree of clinical improvement following brief treatment with antipsychotics.
Collapse
|
4
|
Stone TW, Darlington LG. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 2002; 1:609-20. [PMID: 12402501 DOI: 10.1038/nrd870] [Citation(s) in RCA: 585] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The kynurenine pathway is the main pathway for tryptophan metabolism. It generates compounds that can modulate activity at glutamate receptors and possibly nicotinic receptors, in addition to some as-yet-unidentified sites. The pathway is in a unique position to regulate other aspects of the metabolism of tryptophan to neuroactive compounds, and also seems to be a key factor in the communication between the nervous and immune systems. It also has potentially important roles in the regulation of cell proliferation and tissue function in the periphery. As a result, the pathway presents a multitude of potential sites for drug discovery in neuroscience, oncology and visceral pathology.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
5
|
Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC. Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 2001; 50:521-30. [PMID: 11600105 DOI: 10.1016/s0006-3223(01)01078-2] [Citation(s) in RCA: 452] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Metabolites of the kynurenine pathway of tryptophan degradation may play a role in the pathogenesis of several human brain diseases. One of the key metabolites in this pathway, kynurenine, is either transaminated to form the glutamate receptor antagonist, kynurenate, or hydroxylated to 3-hydroxykynurenine, which in turn is further degraded to the excitotoxic N-methyl-D-aspartate receptor agonist quinolinate. Because a hypoglutamatergic tone may be involved in the pathophysiology of schizophrenia, it is conceivable that alterations in kynurenine pathway metabolism may play a role in the disease. METHODS The tissue levels of kynurenine, kynurenate, and 3-hydroxykynurenine were measured in brain tissue specimens obtained from the Maryland Brain Collection. All three metabolites were determined in the same samples from three cortical brain regions (Brodmann areas 9, 10, and 19), obtained from 30 schizophrenic and 31 matched control subjects. RESULTS Kynurenate levels were significantly increased in schizophrenic cases in Brodmann area 9 (2.9 +/- 2.2 vs. 1.9 +/- 1.3 pmol/mg protein, p <.05), but not in Brodmann areas 10 and 19. Kynurenine levels were elevated in schizophrenic cases in Brodmann areas 9 (35.2 +/- 28.0 vs. 22.4 +/- 14.3 pmol/mg protein; p <.05) and 19 (40.3 +/- 23.4 vs. 30.9 +/- 10.8; p <.05). No significant differences in 3-hydroxykynurenine content were observed between the two groups. In both groups, significant (p <.05) correlations were found in all three brain areas between kynurenine and kynurenate, but not between kynurenine and 3-hydroxykynurenine (p >.05). In rats, chronic (6-months) treatment with haloperidol did not cause an increase in kynurenate levels in the frontal cortex, indicating that the elevation observed in schizophrenia is not due to antipsychotic medication. CONCLUSIONS The data demonstrate an impairment of brain kynurenine pathway metabolism in schizophrenia, resulting in elevated kynurenate levels and suggesting a possible concomitant reduction in glutamate receptor function.
Collapse
Affiliation(s)
- R Schwarcz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228, USA
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
In just under 20 years the kynurenine family of compounds has developed from a group of obscure metabolites of the essential amino acid tryptophan into a source of intensive research, with postulated roles for quinolinic acid in neurodegenerative disorders, most especially the AIDS-dementia complex and Huntington's disease. One of the kynurenines, kynurenic acid, has become a standard tool for use in the identification of glutamate-releasing synapses, and has been used as the parent for several groups of compounds now being developed as drugs for the treatment of epilepsy and stroke. The kynurenines represent a major success in translating a basic discovery into a source of clinical understanding and therapeutic application, with around 3000 papers published on quinolinic acid or kynurenic acid since the discovery of their effects in 1981 and 1982. This review concentrates on some of the recent work most directly relevant to the understanding and applications of kynurenines in medicine.
Collapse
Affiliation(s)
- T W Stone
- Institute of Biomedical and Life Sciences, University West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
7
|
Vawter MP, Hemperly JJ, Freed WJ, Garver DL. CSF N-CAM in neuroleptic-naïve first-episode patients with schizophrenia. Schizophr Res 1998; 34:123-31. [PMID: 9850978 DOI: 10.1016/s0920-9964(98)00103-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An increased concentration of neural cell adhesion molecule (N-CAM) 105-115 kDa has been reported in patients with schizophrenia in both CSF and in post-mortem brain samples. To determine whether increased N-CAM is integral to the disease process or, alternatively, results from early treatment, CSF N-CAM was measured in a blind study of first episode (FE) patients, who were either neuroleptic-naïve (NN) or neuroleptic-treated (NT, < 100 mg Haldol equivalents), multi-episode (ME) patients, and controls. Overall, the FE patients displayed lower N-CAM concentrations as compared to controls (p = 0.043). This decrease in N-CAM in FE patients was seen only in the FE-NT group as compared to both controls (p = 0.0006). The FE-NT group also showed a lower CSF N-CAM compared to that in the FE-NN (p = 0.025) group. No difference in CSF N-CAM between the FE-NN and control group was found. ME patients showed an increased N-CAM as compared with FE patients (p = 0.018), but not as compared to controls (p = 0.93). Neuroleptic-naïve first-episode patients do not display a phenotypic increase in N-CAM. Thus, N-CAM is altered in first-episode patients following acute neuroleptic treatment and withdrawal, as compared to neuroleptic-naïve first-episode patients.
Collapse
Affiliation(s)
- M P Vawter
- Section on Development and Plasticity, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
8
|
Miller C, Kirchmair R, Troger J, Saria A, Fleischhacker WW, Fischer-Colbrie R, Benzer A, Winkler H. CSF of neuroleptic-naive first-episode schizophrenic patients: levels of biogenic amines, substance P, and peptides derived from chromogranin A (GE-25) and secretogranin II (secretoneurin). Biol Psychiatry 1996; 39:911-8. [PMID: 9162202 DOI: 10.1016/0006-3223(95)00098-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lumbar cerebrospinal fluid (CSF) was collected from controls and neuroleptic-naive patients with their first acute schizophrenic episode. The CSF was analyzed for several biogenic amines and their metabolites [dopamine,dihydroxyphenylacetic acid (DOPAC), noradrenaline, 5-hydroxytryptamine (5-HT), 5-hydroxyindolacetic acid (5-HIAA)]. For these transmitters, which are stored and secreted from synaptic vesicles, there was no significant difference between controls and schizophrenic patients. As constituents of large dense-core vesicles substance P (SP) and GE-25 (derived from chromogranin A)-and secretoneurin (derived from secretogranin 11)-immunoreactivities were determined. SP-like immunoreactivity levels did not differ between controls and patients; however, GE-25 was elevated and especially the GE-25/secretoneurin ratio was significantly (p < .001) higher in patients. Characterization of the immunoreactivities by high-performance liquid chromatography did not reveal any difference between patients (n = 3) and controls in the processing of the two proproteins chromogranin A and secretogranin II. These data indicate that proteolytic processing of the two widespread constituents of large dense-core vesicles, i.e., chromogranin A and secretogranin II, is not altered in schizophrenic patients. The increase in the chromogranin A /secretoneurin ratio in schizophrenic patients deserves further investigation in order to elucidate its possible pathogenetic significance.
Collapse
Affiliation(s)
- C Miller
- Department of Biological Psychiatry, University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Issa F, Gerhardt GA, Bartko JJ, Suddath RL, Lynch M, Gamache PH, Freedman R, Wyatt RJ, Kirch DG. A multidimensional approach to analysis of cerebrospinal fluid biogenic amines in schizophrenia: I. Comparisons with healthy control subjects and neuroleptic-treated/unmedicated pairs analyses. Psychiatry Res 1994; 52:237-49. [PMID: 7991718 DOI: 10.1016/0165-1781(94)90069-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent hypotheses and findings indicate that measurements of interactions between cerebrospinal fluid (CSF) biogenic amine systems, rather than measurement of CSF biogenic amine metabolites, better correlate with clinically important findings in schizophrenia. To test hypotheses, we used a recent technological advance in high performance liquid chromatography with electrochemical detection and combined it with multivariate statistical analyses to study biogenic amine concentrations in CSF in schizophrenia. This approach enabled the study of the interactions of several metabolites of each of the three major neurotransmitter pathways (dopaminergic, noradrenergic, and serotonergic) to test existing hypotheses regarding the neurobiochemical basis of schizophrenia. Twenty biogenic amines, their metabolites, and other compounds from 24 medication-free schizophrenic patients and 12 normal control subjects were simultaneously measured using a recently developed technique of gradient high performance liquid chromatography coupled with a 16-channel electrochemical array detector. After covariation for storage time, results of a stepwise discriminant function analysis comparing the control and patient groups identified tryptophan, tryptophol, and epinephrine as discriminating variables. Hotelling's paired T2 test from a subgroup of schizophrenic patients studied while they were and were not receiving neuroleptic treatment did not yield any significant differences between subgroups. A discussion of the findings and a comparison with previous studies of CSF biogenic amines in schizophrenia are presented.
Collapse
Affiliation(s)
- F Issa
- Neuropsychiatry Branch, National Institute of Mental Health, Washington, DC 20032
| | | | | | | | | | | | | | | | | |
Collapse
|