1
|
Jepsen SL, Albrechtsen NJW, Windeløv JA, Galsgaard KD, Hunt JE, Farb TB, Kissow H, Pedersen J, Deacon CF, Martin RE, Holst JJ. Antagonizing somatostatin receptor subtype 2 and 5 reduces blood glucose in a gut- and GLP-1R-dependent manner. JCI Insight 2021; 6:143228. [PMID: 33434183 PMCID: PMC7934931 DOI: 10.1172/jci.insight.143228] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Somatostatin (SS) inhibits glucagon-like peptide-1 (GLP-1) secretion in a paracrine manner. We hypothesized that blocking somatostatin subtype receptor 2 (SSTR2) and 5 (SSTR5) would improve glycemia by enhancing GLP-1 secretion. In the perfused mouse small intestine, the selective SSTR5 antagonist (SSTR5a) stimulated glucose-induced GLP-1 secretion to a larger degree than the SSTR2 antagonist (SSTR2a). In parallel, mice lacking the SSTR5R showed increased glucose-induced GLP-1 secretion. Both antagonists improved glycemia in vivo in a GLP-1 receptor-dependent (GLP-1R-dependent) manner, as the glycemic improvements were absent in mice with impaired GLP-1R signaling and in mice treated with a GLP-1R-specific antagonist. SSTR5a had no direct effect on insulin secretion in the perfused pancreas, whereas SSTR2a increased insulin secretion in a GLP-1R-independent manner. Adding a dipeptidyl peptidase 4 inhibitor (DPP-4i) in vivo resulted in additive effects on glycemia. However, when glucose was administered intraperitoneally, the antagonist was incapable of lowering blood glucose. Oral administration of SSTR5a, but not SSTR2a, lowered blood glucose in diet-induced obese mice. In summary, we demonstrate that selective SSTR antagonists can improve glucose control primarily through the intestinal GLP-1 system in mice.
Collapse
Affiliation(s)
- Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Johanne A Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas B Farb
- Lilly Research Laboratories, Lilly, Indianapolis, Indiana, USA
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Endocrinology and Nephrology, Hillerød University Hospital, Hillerød, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
PEPPLER WILLEMT, CASTELLANI LAURAN, ROOT-MCCAIG JARED, TOWNSEND LOGANK, SUTTON CHARLESD, FRENDO-CUMBO SCOTT, MEDAK KYLED, MACPHERSON REBECCAEK, CHARRON MAUREENJ, WRIGHT DAVIDC. Regulation of Hepatic Follistatin Expression at Rest and during Exercise in Mice. Med Sci Sports Exerc 2019; 51:1116-1125. [DOI: 10.1249/mss.0000000000001893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Vakili H, Jin Y, Cattini PA. Energy homeostasis targets chromosomal reconfiguration of the human GH1 locus. J Clin Invest 2014; 124:5002-12. [PMID: 25295535 DOI: 10.1172/jci77126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
Levels of pituitary growth hormone (GH), a metabolic homeostatic factor with strong lipolytic activity, are decreased in obese individuals. GH declines prior to the onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechanism by which GH is reduced is not clear. We used transgenic mice expressing the human GH (hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromosome structure of the intact GH1 locus. Animals exposed to 3 days of high caloric intake exhibited hyperinsulinemia without hyperglycemia and a decrease in both hGH synthesis and secretion, but no difference in endogenous production of murine GH. Efficient GH1 expression requires a long-range intrachromosomal interaction between remote enhancer sequences and the proximal promoter region through "looping" of intervening chromatin. High caloric intake disrupted this interaction and decreased both histone H3/H4 hyperacetylation and RNA polymerase II occupancy at the GH1 promoter. Incorporation of physical activity muted the effects of excess caloric intake on insulin levels, GH1 promoter hyperacetylation, chromosomal architecture, and expression. These results indicate that energy homeostasis alters postnatal hGH synthesis through dynamic changes in the 3-dimensional chromatin structure of the GH1 locus, including structures required for cell type specificity during development.
Collapse
|
4
|
Sha L, Westerlund J, Szurszewski JH, Bergsten P. Amplitude modulation of pulsatile insulin secretion by intrapancreatic ganglion neurons. Diabetes 2001; 50:51-5. [PMID: 11147794 DOI: 10.2337/diabetes.50.1.51] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuron activity and insulin release were measured simultaneously from 33 preparations of intrapancreatic canine ganglia and pancreatic parenchyma adjacent to the ganglia. The electrical activity of single neurons of the ganglia was recorded with intracellular microelectrodes, and insulin release from the attached islets was determined with an enzyme-linked immunosorbent assay. Insulin release was 62 +/- 18 fmol preparation/min in the presence of 10 mmol/l glucose and pulsatile (3.7 +/- 0.4 min/pulse). Corresponding measurements of neuronal electrical activity showed a stable membrane potential of -53.5 +/- 0.6 mV. Short, high-frequency (20 Hz) preganglionic nerve stimulation evoked action potentials and, in 46% of the preparations, a threefold rise in the insulin secretory rate associated with increased amplitude of the insulin pulses. The effects were blocked by 10 micromol/l tetrodotoxin (TTX). In other preparations, continuous low-frequency (0.05-0.5 Hz) preganglionic nerve stimulation evoked action potentials and, in 50% of the preparations, a gradual increase of insulin release associated with augmentation of insulin pulse amplitude without alteration of the duration. The effects were blocked by 50 micromol/l hexamethonium (HEX). In the remaining preparations, no change in insulin release was observed during nerve stimulation. In the absence of stimulation, neither TTX nor HEX affected the membrane potential or insulin secretion. These first simultaneous measurements of intrapancreatic ganglion activity and insulin secretion are consistent with amplitude modulation of pulsatile insulin secretion induced by changes in electrical activity in a population of intrapancreatic ganglion neurons.
Collapse
Affiliation(s)
- L Sha
- Department of Physiology and Biophysics, Mayo Clinic and Mayo Foundation, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
5
|
Abstract
Plasma insulin displays 5-10 min oscillations. In Type 2 diabetes the regularity of the oscillations disappears, which may lead to insulin receptor down-regulation and glucose intolerance and explain why pulsatile delivery of the hormone has a greater hypoglycemic effect than continuous delivery. The rhythm is intrinsic to the islet. Variations in metabolism, cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), other hormones, neuronal signaling and possibly beta-cell insulin receptor expression have been implicated in the regulation of plasma insulin oscillations. Most of these factors are important for amplitude-regulation of the insulin pulses. Although evidence exists supporting a role of both metabolism and [Ca(2+)](i) as pacemakers of the pulses, metabolic oscillations probably have a primary role and [Ca(2+)](i) oscillations a permissive role. Results from islets from animal models of diabetes suggest that altered plasma insulin pattern could be due to lowering of pulse amplitude of insulin oscillations rather than alterations in their frequency. Supporting a role of metabolism, altered plasma insulin oscillations were found in MODY2, MIDD and glycogenosis Type VII, which are linked to alterations in glucokinase, mitochondrial tRNALeu(UUR) and phosphofructokinase. Plasma insulin oscillations require coordination of islet secretory activities in the pancreas. The intrapancreatic ganglia have been suggested as coordinators. The diabetes-associated neuropathy may contribute to the deranged pattern as indicated by glucose intolerance in chagasic patients. Continued investigation of the role and regulation of pulsatile insulin release will lead to better understanding of the pathophysiology of impaired pulsatile insulin release, which could lead to new approaches to restore normal plasma insulin oscillations in diabetes and related diseases.
Collapse
Affiliation(s)
- P Bergsten
- Department of Medical Cell Biology, University of Uppsala, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
6
|
Karlsson S, Ahrén B. Insulin and glucagon secretion by ganglionic nicotinic activation in adrenalectomized mice. Eur J Pharmacol 1998; 342:291-5. [PMID: 9548399 DOI: 10.1016/s0014-2999(97)01508-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pancreatic islets are innervated by nerves emanating from intra- and extrapancreatic ganglia. However, the effects of ganglionic activation on insulin and glucagon release in vivo have not been established. We therefore investigated the effects of pharmacological ganglionic activation by the nicotinic agonists DMPP (1,1-dimethyl-4-phenylpiperazinium iodide) and nicotine on insulin and glucagon release in sham-operated and adrenalectomized mice. In sham-operated animals, DMPP (0.5 or 1.6 micromol/kg, i.v.) or nicotine (0.075 or 0.75 micromol/kg, i.v.), did not affect plasma insulin levels, but markedly increased plasma glucagon levels (P < 0.05). In contrast, after adrenalectomy or alpha2-adrenoceptor blockade by yohimbine (3.6 micromol/kg), nicotinic activation markedly increased plasma insulin levels (P < 0.05), whereas the glucagon response to nicotinic activation was inhibited under these conditions (P < 0.05). We conclude that pharmacological ganglionic nicotinic activation in mice stimulates insulin and glucagon secretion. The insulinotropic effect is, however, counteracted by a concomitant adrenal activation through an alpha2-adrenoceptor-mediated mechanism.
Collapse
Affiliation(s)
- S Karlsson
- Department of Medicine, Malmö University Hospital, Lund University, Sweden.
| | | |
Collapse
|
7
|
Friedman JE. Role of glucocorticoids in activation of hepatic PEPCK gene transcription during exercise. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:E560-6. [PMID: 8178976 DOI: 10.1152/ajpendo.1994.266.4.e560] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The objective of these studies was to determine the molecular basis for the activation of phosphoenolpyruvate carboxykinase (PEPCK) gene transcription during prolonged submaximal exercise. Mice were fed a high-carbohydrate diet for 1 wk and exercised continuously by swimming for up to 120 min. The level of hepatic PEPCK mRNA increased progressively during exercise, reaching 510% above control, whereas transcription of the PEPCK gene increased 1,000%, before decreasing to control levels within 60 min of recovery. In transgenic mice carrying a chimeric gene consisting of the PEPCK promoter linked to a reporter gene for bovine growth hormone (bGH), PEPCK(-460)-bGH, the level of hepatic bGH mRNA increased by 490% in response to exercise, similar to the increase in the expression of the native PEPCK gene. However, in transgenic mice with a deletion of the glucocorticoid regulatory unit, PEPCK(-355)-bGH, bGH mRNA did not increase above control values. In transgenic mice with a block mutation in adenosine 3',5'-cyclic monophosphate (cAMP) regulatory regions -90/-82 and -250/-234, PEPCK cAMP response element 1 (CRE-1)/P3(1)-bGH, exercise increased bGH mRNA 260% above controls. Adrenalectomy (Adx) had no effect on PEPCK mRNA levels in nonexercised mice, whereas in adrenalectomized (Adx)-exercised mice, PEPCK mRNA increased only 80% above basal, and, in Adx mice injected with dexamethasone, PEPCK mRNA increased with exercise 570% above controls. Exercise was also associated with a large increase in transcription of the gene for the transcription factor CCAAT/enhancer-binding protein beta (C/EBP-beta) and a smaller rise in transcription of c-jun gene, both of which returned to control levels during recovery.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J E Friedman
- Pew Center for Molecular Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935
| |
Collapse
|
8
|
Dunning BE, Karlsson S, Ahrén B. Contribution of galanin to stress-induced impairment of insulin secretion in swimming mice. ACTA PHYSIOLOGICA SCANDINAVICA 1991; 143:145-52. [PMID: 1720596 DOI: 10.1111/j.1748-1716.1991.tb09215.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study examines the potential role of the neuropeptide, galanin, in stress-induced inhibition of insulin secretion in swimming mice. Firstly, the pancreatic and adrenal content of galanin-like immunoreactivity was determined in mice after swimming stress. It was found that pancreatic content was significantly lower in stressed mice than in resting controls, both after 2 (P less than 0.05) and 6 (P less than 0.025) minutes of swimming, suggesting partial release of pancreatic galanin during stress. In contrast, the adrenal content of galanin-like immunoreactivity did not change during the swimming stress. Gel filtration of tissue extracts indicated that (1) mouse pancreas contains two forms of galanin-like immunoreactivity; one co-eluting with synthetic porcine galanin (centered on Kav of 0.70) and another with a larger molecular weight (centered on Kav of 0.30), and (2) mouse adrenal contains a small void volume-peak and a larger peak of immunoreactivity, the latter co-eluting with synthetic galanin. Secondly, the effects of swimming stress on plasma glucose and insulin levels were compared in mice that received high titre rabbit anti-galanin serum with those in mice receiving normal rabbit serum. In normal rabbit serum-pretreated swimming mice, glucose-induced insulin levels were only 50% of resting controls (P less than 0.01). Immunoneutralization of galanin with specific antiserum abolished this swimming stress-induced inhibition of glucose-stimulated insulin levels. This was accompanied by a modestly enhanced rate of glucose disappearance. These findings suggest that pancreatic galanin is released during swimming stress in mice and that endogenous galanin makes a major contribution to stress-induced impairment of insulin secretion.
Collapse
Affiliation(s)
- B E Dunning
- Division of Endocrinology and Metabolism, VA Medical Center, Seattle, WA 98108
| | | | | |
Collapse
|