1
|
Simon MJ, Zafra MA, Puerto A. Differential rewarding effects of electrical stimulation of the lateral hypothalamus and parabrachial complex: Functional characterization and the relevance of opioid systems and dopamine. J Psychopharmacol 2019; 33:1475-1490. [PMID: 31282233 DOI: 10.1177/0269881119855982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since the discovery of rewarding intracranial self-stimulation by Olds and Milner, extensive data have been published on the biological basis of reward. Although participation of the mesolimbic dopaminergic system is well documented, its precise role has not been fully elucidated, and some authors have proposed the involvement of other neural systems in processing specific aspects of reinforced behaviour. AIMS AND METHODS We reviewed published data, including our own findings, on the rewarding effects induced by electrical stimulation of the lateral hypothalamus (LH) and of the external lateral parabrachial area (LPBe) - a brainstem region involved in processing the rewarding properties of natural and artificial substances - and compared its functional characteristics as observed in operant and non-operant behavioural procedures. RESULTS Brain circuits involved in the induction of preferences for stimuli associated with electrical stimulation of the LBPe appear to functionally and neurochemically differ from those activated by electrical stimulation of the LH. INTERPRETATION We discuss the possible involvement of the LPBe in processing emotional-affective aspects of the brain reward system.
Collapse
Affiliation(s)
- Maria J Simon
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Maria A Zafra
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Amadeo Puerto
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
2
|
Zafra MA, Agüera AD, Molina F, Puerto A. Relevance of the nucleus of the solitary tract, gelatinous part, in learned preferences induced by intragastric nutrient administration. Appetite 2017; 118:90-96. [PMID: 28789870 DOI: 10.1016/j.appet.2017.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
Abstract
Food preferences have been investigated in Wistar rats utilizing a learned concurrent flavor preference behavioral procedure. Previous studies have demonstrated that the perivagal administration of neurotoxin capsaicin disrupts the learning of preferences induced by intragastric administration of rewarding nutrients (pre-digested milk). The vagus nerve projects almost exclusively towards the nucleus of the solitary tract (NST), a brain medullary gateway for visceral signals. The objective of this study was to investigate the participation of the lateral portion of the dorsomedial region, the gelatinous subnucleus (SolG), in the learning of a concurrent preference task. Results show that unlike neurologically intact animals, which learn this task correctly, animals lesioned in the gelatinous part of NST manifest a disruption of discrimination learning. Thus, intakes of the flavored stimulus paired with predigested liquid diet and of the flavored stimulus paired with physiological saline were virtually identical. However, SolG- and sham-lesioned groups consumed similar total amounts of both flavors. These findings suggest that SolG, as a relay of the vagus nerve, along with its anatomical projection, the external lateral parabrachial subnucleus (LPBe), may constitute an anatomical axis that is important in the induction of concurrent flavor/side preferences. It also appears to be relevant in other behavioral processes that require rapid processing of information from the upper gastrointestinal tract.
Collapse
Affiliation(s)
- María A Zafra
- Department of Psychobiology, University of Granada, Campus de Cartuja, Granada 18071, Spain; Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja, Granada 18071, Spain.
| | - Antonio D Agüera
- Department of Psychobiology, University of Granada, Campus de Cartuja, Granada 18071, Spain
| | - Filomena Molina
- Department of Psychobiology, University of Granada, Campus de Cartuja, Granada 18071, Spain; Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja, Granada 18071, Spain
| | - Amadeo Puerto
- Department of Psychobiology, University of Granada, Campus de Cartuja, Granada 18071, Spain; Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja, Granada 18071, Spain
| |
Collapse
|
3
|
Schulz A, van Dyck Z, Lutz AP, Rost S, Vögele C. Gastric modulation of startle eye blink. Biol Psychol 2017; 127:25-33. [DOI: 10.1016/j.biopsycho.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 01/04/2023]
|
4
|
Satiation and re-intake after partial withdrawal of gastric food contents: A dissociation effect in external lateral parabrachial lesioned rats. Brain Res Bull 2016; 127:126-133. [DOI: 10.1016/j.brainresbull.2016.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022]
|
5
|
Min DK, Tuor UI, Chelikani PK. Gastric distention induced functional magnetic resonance signal changes in the rodent brain. Neuroscience 2011; 179:151-8. [PMID: 21284950 DOI: 10.1016/j.neuroscience.2011.01.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/14/2011] [Accepted: 01/23/2011] [Indexed: 12/29/2022]
Abstract
Investigating the localization of gastric sensation within the brain is important for understanding the neural correlates of satiety. Previous rodent studies have identified the brain-stem and hypothalamus as key mediators of gastric distention-induced satiation. Although, recent blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) studies in humans have identified a role for higher cortico-limbic structures in mediating the satiation effects of gastric distention, the role of these regions in rodents remains to be characterized. We determined the effects of gastric distention on global spatio-temporal BOLD fMRI signal changes in the rodent brain. Brain images were acquired with a high resolution 9.4 T magnet during gastric distention with continuous monitoring of blood pressure in adult male Sprague Dawley rats (n=8-10). Distention of the stomach with an intragastric balloon, at rates which mimicked the rate of consumption and emptying of a mixed nutrient liquid meal, resulted in robust reduction in food intake and increase in blood pressure. Gastric distention increased BOLD fMRI activity within homeostatic regions such as the hypothalamus and nucleus tractus solitarius, as well as non homeostatic regions including the hippocampus, amygdala, thalamus, cerebellum and the cortex (cingulate, insular, motor and sensory cortices). Further, the increase in BOLD fMRI activity following distention was strongly correlated to an increase in blood pressure. These results indicate that gastric distention, mimicking the rate of intake and emptying of a liquid meal, increases BOLD fMRI activity in both homeostatic and non homeostatic brain circuits which regulate food intake, and that these BOLD fMRI signal changes may in part be attributable to transient increases in blood pressure.
Collapse
Affiliation(s)
- D K Min
- Gastrointestinal Research Group, Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
6
|
Kobashi M, Xuan SY, Fujita M, Mitoh Y, Matsuo R. Central ghrelin inhibits reflex swallowing elicited by activation of the superior laryngeal nerve in the rat. ACTA ACUST UNITED AC 2010; 160:19-25. [DOI: 10.1016/j.regpep.2009.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 12/01/2009] [Accepted: 12/17/2009] [Indexed: 01/23/2023]
|
7
|
Godino A, Margatho LO, Caeiro XE, Antunes-Rodrigues J, Vivas L. Activation of lateral parabrachial afferent pathways and endocrine responses during sodium appetite regulation. Exp Neurol 2010; 221:275-84. [DOI: 10.1016/j.expneurol.2009.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/05/2009] [Accepted: 11/03/2009] [Indexed: 11/29/2022]
|
8
|
Xu L, Sun X, Tang M, Chen JDZ. Involvement of the Hippocampus and Neuronal Nitric Oxide Synapse in the Gastric Electrical Stimulation Therapy for Obesity. Obes Surg 2008; 19:475-83. [DOI: 10.1007/s11695-008-9579-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 05/19/2008] [Indexed: 11/27/2022]
|
9
|
Xu L, Sun X, Lu J, Tang M, Chen JDZ. Effects of gastric electric stimulation on gastric distention responsive neurons and expressions of CCK in rodent hippocampus. Obesity (Silver Spring) 2008; 16:951-7. [PMID: 18309302 DOI: 10.1038/oby.2008.17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Gastric electrical stimulation (GES) has been introduced for treating obesity. The hippocampus is known to be involved in the regulation of gastrointestinal motility. Changes in hypathalumus cholecystokinin (CCK) have been observed in genetically obese rodents. This experiment was to study the effect of GES on the activities of neurons and the expression of CCK in the hippocampus. METHODS AND PROCEDURES We investigated the effect of GES (GES-I: pulse train of standard parameters; GES-2: reduced train-on time; GES-3: increased pulse width; GES-4: reduced pulse frequency) on neurons responsive to gastric distention (GD) by recording extracellular potentials of single neurons and observing the expression of CCK in the rodent hippocampus by immunohistochemistry staining, radioimmunoassay, and real-time PCR. RESULTS 92.1% of neurons in the CA2-3 region responded to GD, 53.2% of which showed excitation (GD-E), and 46.8% showed inhibition (GD-I). 64.8% GD-responsive neurons were excited by GES. The response was associated with stimulation strength, pulse width, and frequency; 70.6, 57.1, 94.4, and 66.7% of GD-E and 72.7, 57.1, 86.4, and 50% of GD-I neurons showed excitatory responses to GES-I, -2, -3, and -4, respectively. CCK immunoreactive positive neurons (P<0.001), the content of CCK-like materials (P<0.05) and the amount of CCK mRNA were significantly increased after GES (P<0.05). DISCUSSION These findings suggest the central, neuronal, and hormonal mechanisms of GES. GES may excite the activity of GD-sensitive neurons and increase the expression of CCK in the hippocampus. These excitatory effects of GES seem to be related to the parameters of stimulation.
Collapse
Affiliation(s)
- Luo Xu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, P.R. China.
| | | | | | | | | |
Collapse
|
10
|
Xu L, Sun X, Depoortere I, Lu J, Guo F, Peeters TL. Effect of motilin on the discharge of rat hippocampal neurons responding to gastric distension and its potential mechanism. Peptides 2008; 29:585-92. [PMID: 18201801 DOI: 10.1016/j.peptides.2007.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 11/26/2022]
Abstract
The study aims to find the effect of motilin on neuronal activity of gastric distension-responsive neurons in rat hippocampus and its possible mechanism. Single unit discharges in the hippocampal CA1 region were recorded extracellularly by means of four-barrel glass micropipettes in anesthetized rats and the expression of nNOS in hippocampus was observed by fluo-immunohistochemistry staining. Of the 171 recorded neurons, 76.0% were GD-excitatory (GD-E) neurons and 24.0% were GD-inhibited (GD-I) neurons. The 57.6% of GD-E neurons showed an excitatory response to motilin and the same effect was observed in 51.7% GD-I neurons. However, when NOS inhibitor nitro-l-arginine methyl ester (l-NAME) was administrated previously, the followed motilin-induced excitatory responsiveness of GD-responsive neurons was reduced. In contrast, discharge activity of GD-responsive neurons with motilin was enhanced by pretreatment of NO precursor l-arginine. The expression of nNOS-IR positive neurons was significantly increased in CA1 after administration of motilin. Our findings suggested that motilin excited the GD-responsive neurons in the hippocampal CA1 region and the excitatory effect of motilin may be mediated by the endogenous NO.
Collapse
Affiliation(s)
- Luo Xu
- Department of Pathophysiology, Medical College of Qingdao University, 38# Dengzhou Road, Qingdao, Shandong 266021, PR China.
| | | | | | | | | | | |
Collapse
|
11
|
The role of the dorsal-most part of the lateral parabrachial nucleus in the processing of hypertonic NaCl using different conditioned flavor avoidance paradigms. Exp Brain Res 2008; 186:481-91. [PMID: 18193413 DOI: 10.1007/s00221-007-1250-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
The parabrachial nucleus (PBN) has been strongly associated with taste aversion learning (TAL) acquisition. Independent of its suggested associative functions, this brain stem centre plays a key role in the sensorial processing of both gustatory and visceral information. The sensory visceral functions have been attributed to the lateral area of the PBN (PBNl) but, recently, it has been proposed that within this area a form of anatomical and functional segregation may also exist, determined by factors such as, the learning paradigm used, the nature of aversive agent used, or the route chosen for the administration of this agent. This study used a lesion approach in rats to address the question of whether the dorsal most portion of the PBNl plays a key role in the acquisition of a conditioned avoidance to flavored stimuli induced by hypertonic sodium chloride (intra gastric), and whether this role is dependent on the flavor avoidance learning (FAL) paradigm used, concurrent (experiment 1) or delayed-sequential FAL (experiment 2). Results showed a clear disruptive effect of the PBNl electrolytic lesion on the acquisition of the concurrent FAL, but hardly any attenuation of the delayed-sequential FAL. This finding is discussed in the context of the hypothesis that two separate and apparently non-redundant routes exist for the processing of the visceral information.
Collapse
|
12
|
Godino A, De Luca LA, Antunes-Rodrigues J, Vivas L. Oxytocinergic and serotonergic systems involvement in sodium intake regulation: satiety or hypertonicity markers? Am J Physiol Regul Integr Comp Physiol 2007; 293:R1027-36. [PMID: 17567719 DOI: 10.1152/ajpregu.00078.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies demonstrated the inhibitory participation of serotonergic (5-HT) and oxytocinergic (OT) neurons on sodium appetite induced by peritoneal dialysis (PD) in rats. The activity of 5-HT neurons increases after PD-induced 2% NaCl intake and decreases after sodium depletion; however, the activity of the OT neurons appears only after PD-induced 2% NaCl intake. To discriminate whether the differential activations of the 5-HT and OT neurons in this model are a consequence of the sodium satiation process or are the result of stimulation caused by the entry to the body of a hypertonic sodium solution during sodium access, we analyzed the number of Fos-5-HT- and Fos-OT-immunoreactive neurons in the dorsal raphe nucleus and the paraventricular nucleus of the hypothalamus-supraoptic nucleus, respectively, after isotonic vs. hypertonic NaCl intake induced by PD. We also studied the OT plasma levels after PD-induced isotonic or hypertonic NaCl intake. Sodium intake induced by PD significantly increased the number of Fos-5-HT cells, independently of the concentration of NaCl consumed. In contrast, the number of Fos-OT neurons increased after hypertonic NaCl intake, in both depleted and nondepleted animals. The OT plasma levels significantly increased only in the PD-induced 2% NaCl intake group in relation to others, showing a synergic effect of both factors. In summary, 5-HT neurons were activated after body sodium status was reestablished, suggesting that this system is activated under conditions of satiety. In terms of the OT system, both OT neural activity and OT plasma levels were increased by the entry of hypertonic NaCl solution during sodium consumption, suggesting that this system is involved in the processing of hyperosmotic signals.
Collapse
Affiliation(s)
- Andrea Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Casilla de Correo 389, 5000-Córdoba, Argentina
| | | | | | | |
Collapse
|
13
|
Lu Y, Xu L, Sun XR, Wei XF, Lu J, Chen JD. Effects of gastric electrical stimulation on hippocampus gastric distension responsive neurons and the expression of motilin and neuronal nitric oxide synthase in rats. Shijie Huaren Xiaohua Zazhi 2007; 15:1463-1469. [DOI: 10.11569/wcjd.v15.i13.1463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effects of gastric electrical stimulation (GES) on gastric distension (GD) responsive neurons in rat hippocampus, and study the expression of neuronal nitric oxide synthase (nNOS) and motilin (MTL) in rat brain for exploring the central mechanism of GES.
METHODS: Fifty adult Wistar rats were used in this experiment. The effects of GES on GD responsive neurons in hippocampus CA1 area were observed by recording extracellular potentials of single neuron. GD responsive neurons were classified as GD-excitatory (GD-E) and GD-inhibitory (GD-I) neurons according to their responses to GD. GES with 3 sets of parameters were applied for 1 minute respectively: GES-A (6 mA, 0.3 ms, 40 Hz, 2 s-on, 3 s-off) with standard pulse trains; GES-B with increased wave width to 3 ms and GES-C with decreased frequency to 20 Hz. Two hours after GES-A was applied, we observed the expression of nNOS immunoreactive positive neurons in hippocampus by fluorescent immunohistochemistry and the content of motilin in rat brain by radioimmunoassay.
RESULTS: Eighty-seven neurons in hippocampus CA1 area were recorded and 79 responded to gastric distension (GD, 3-5 mL, 10-30 s). Of the 79 GD responsive neurons, 40 (50.6%) were GD-E neurons and 39 (49.4%) were GD-I ones. 62.5%, 100% and 62.3% of GD-E neurons were excited by GES-A, -B, and -C respectively. GES-B excited more GD-E neurons than GES-C (P = 0.016). Among the GD-I neurons, 63.6%, 85.7% and 50.0% neurons were excited by GES-A, -B and -C respectively. GES-C was noted to be less effective comparing with GES-A (P = 0.041) or GES-B (P = 0.021). Two hours after GES-A was used, the expressions of nNOS positive neurons significantly decreased in the CA1 and CA2-3 area of hippocampus (16.75 ± 0.91 cells/mm2vs 20.46 ± 1.30 cells/mm2, P < 0.05; 14.91 ± 1.17 cells/mm2vs 18.73 ± 1.10 cells/mm2, P < 0.05) and the content of motilin peptide decreased obviously in the hypothalamus (48.93 ± 6.98 fmol/mg vs 96.23 ± 12.93 fmol/mg, P < 0.01), mesencephalon (53.17 ± 8.96 fmol/mg vs 30.96 ± 4.86 fmol/mg, P < 0.05), medulla oblongata (46.27 ± 7.83 fmol/mg vs 73.86 ± 9.37 fmol/mg, P < 0.05) and hippocampus (32.23 ± 6.51 fmol/mg vs 62.72 ± 10.07 fmol/mg, P < 0.05) by radioimmunoassay.
CONCLUSION: GES may activate the gastric distension responsive neurons in hippocampus CA1 area and the excitatory effect of GES is related to the frequency and wave width of stimulation. Decreased expression of nNOS and motilin in the brain may also take part in the central mechanism of GES.
Collapse
|
14
|
Guan Y, Tang M, Jiang Z, Peeters TL. Excitatory effects of motilin in the hippocampus on gastric motility in rats. Brain Res 2003; 984:33-41. [PMID: 12932837 DOI: 10.1016/s0006-8993(03)03016-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intestinal motilin is known to stimulate gastrointestinal motility. Recently, it was shown that the motilin gene and the motilin receptor are expressed in various regions of the brain. We studied whether motilin can activate pathways in the rat hippocampus to stimulate gastric motility. Gastric motility was monitored in conscious rats, whereas extracellular electrical activity recordings of the hippocampus were performed on anaesthetized rats to measure the influence of microinjection of motilin and CCK-8 into the hippocampus and into the cerebral ventricles. We found that neurons in the CA3 region of the hippocampus are sensitive to gastric distension, and that injection of motilin into the hippocampus increased the amplitude of gastric contractions by 35.3+/-6.8%, while CCK-8 injection inhibited motility by -27.3+/-6.8%. The hippocampal motilin-induced stimulation of gastric motility (30.6+/-5.5%) was completely abolished by subdiaphragmal vagotomy (-2.8+/-4.4%) but unaffected by the intravenously applied receptor blockers atropine, phentolamine and propranolol. In vivo extracellular recordings of gastric distension-responsive CA3 neurons revealed that intracerebroventricular administration of motilin increased firing while CCK-8 inhibited firing. These opposite effects of motilin and CCK-8 fit with the nature of the actions of these gut-brain peptides on gastric motility. Our findings suggest that the stimulation of gastric motility by motilin administered in the hippocampus reflects the existence of a functional interaction between the hippocampus and a vago-vagus reflex running via a noncholinergic and nonadrenergic efferent pathway.
Collapse
Affiliation(s)
- Yanfang Guan
- Department of Physiology, Medical College of Qingdao University, Qingdao, 266021, PR China.
| | | | | | | |
Collapse
|
15
|
Abstract
Projections to the parabrachial nucleus (PBN) from the nucleus of the solitary tract (NST) carry afferent signals from both the oral cavity and gastrointestinal tract. Although physiological studies suggest the convergence of oral and gastrointestinal sensory signals in the parabrachial nucleus, anatomical studies have emphasized the segregation of these pathways. To more precisely determine the anatomical relationship between gastric distension and oral afferent representation in PBN, small deposits of two anterograde tracers were made into the NST under physiological guidance in the same rat. Gastric terminations were dense and separate from taste projections in the rostral portion of the external lateral and dorsal lateral subnuclei. Gustatory projections were densest and separate from gastric terminations in the ventral lateral and central medial subnuclei of the caudal waist region, but were intermingled with gastric projections in these subnuclei and the external subnuclei at slightly more rostral levels. Patterns of segregation and overlap often appeared as 'patches' within or across subnuclear boundaries. In a second set of experiments, physiological evidence for overlap in PBN was evaluated from single unit extracellular responses evoked by gastric distension and orosensory (taste and orotactile) stimulation. Neurophysiological recordings verified that a small proportion of single cells within the waist and external subnuclei could be activated by both gastric and orotactile stimulation. The anatomical experiments further revealed intranuclear projections from the caudal NST injections that extended rostrally to sites at which responses to oral stimulation had been recorded. Although existing physiological data suggest such interactions are more limited than those in PBN, these anatomical data suggest that gastric/oral interactions may also exist in the NST.
Collapse
|
16
|
Baird JP, Travers JB, Travers SP. Parametric analysis of gastric distension responses in the parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1568-80. [PMID: 11641130 DOI: 10.1152/ajpregu.2001.281.5.r1568] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The parabrachial nucleus (PBN) is regarded as an important locus for the processing and integration of sensory inputs from oral, gastrointestinal, and postabsorptive receptor sites and is thus thought to play an important role in regulating food intake. Gastric distension is an important satiation cue; however, such responses have been qualitatively characterized only over a limited area of the PBN. To more fully characterize gastric distension responses throughout the PBN, the responses of single units to gastric distension were tested using computer-controlled balloon inflation (3-18 ml air) in pentobarbital sodium- and/or urethan-anesthetized male rats. Distension-responsive neurons were indeed distributed throughout the nucleus from rostral areas typically considered to be visceral to more caudal areas associated with gustatory function, providing further anatomical support for the hypothesis that the PBN integrates taste and visceral signals that control feeding. Most PBN neurons had thresholds of 6 ml or less, similar to vagal afferent fibers. However, in contrast to the periphery, there were both excitatory and inhibitory responses. Increases in volume were associated with two distinct effects. First, as volume increased, the response rate increased; second, the duration of the response increased. In fact, in a subset of cells, responses to gastric distension lasted well beyond the stimulation period, particularly at larger volumes. Prolonged gastric distension responses are not common in the periphery and may constitute a central mechanism that contributes to satiation processes.
Collapse
Affiliation(s)
- J P Baird
- Oral Biology, College of Dentistry, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
17
|
Baird JP, Travers SP, Travers JB. Integration of gastric distension and gustatory responses in the parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1581-93. [PMID: 11641131 DOI: 10.1152/ajpregu.2001.281.5.r1581] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Palatable gustatory stimuli promote feeding, whereas gastric distension generally inhibits this behavior. We explored a neural basis for integration of these opposing sensory signals by evaluating the effect of gastric distension on gustatory responses in the parabrachial nucleus (PBN) of anesthetized rats. Sixteen percent of 92 taste cells were coactivated; they responded to independent taste or gastric distension stimulus application. Modulation of taste responses by distension was more prevalent; taste responses declined 37% in response to distension in 25% of the cells and increased by 46% in 10% of cells. Across the whole population, however, the suppressive effect of distension on taste responses was small (6%). The incidence of modulation did not vary as a simple hedonic function of gustatory sensitivity, i.e., similar proportions of sucrose-, citric-acid-, and QHCl-best, but not NaCl-best, neurons were modulated by gastric distension. Coactivated, modulated, and nonmodulated gustatory-responsive cells were intermingled in the gustatory zone of the caudal PBN. The suppression of PBN taste responses by visceral stimulation may reflect a mechanism for satiation and further implicates the PBN in the control of ingestive function.
Collapse
Affiliation(s)
- J P Baird
- Oral Biology, College of Dentistry, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
18
|
Cubero I, Lopez M, Navarro M, Puerto A. Lateral parabrachial lesions impair taste aversion learning induced by blood-borne visceral stimuli. Pharmacol Biochem Behav 2001; 69:157-63. [PMID: 11420081 DOI: 10.1016/s0091-3057(01)00494-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The lateral parabrachial area (LPB), main relay from the area postrema (AP), plays a role in processing visceral information and is thus of potential importance in taste aversion learning (TAL). This study used a lesion approach to address whether LPB functional relevance depends upon the features of toxins that serves as visceral stimuli in TAL. In addition, we explored whether LPB involvement in TAL is restricted to those toxic events detected by the AP or whether it has a more general role. Results showed that LPB-lesioned animals were disrupted in acquiring a TAL induced by blood-borne AP-dependent aversive stimuli (intraperitoneal methylscopolamine) and by AP-independent stimulus (intraperitoneal ethanol), but still, clearly developed strong aversions when intragastric hypertonic sodium chloride, a vagally processed aversive stimulus, served as the aversive stimulus. These findings suggest that the LPB plays a critical role in TAL induced by blood-borne toxins, such as methylscopolamine or ethanol, but is not necessary for vagally mediated stimulus, such as sodium chloride. The present results are discussed in the context of the hypothesis holding separable and independent neural systems underlying TAL.
Collapse
Affiliation(s)
- I Cubero
- Departamento de Psicología Experimental y Psicobiología, Universidad de Almería, 04120 Almería, Spain.
| | | | | | | |
Collapse
|
19
|
Pritchard TC, Hamilton RB, Norgren R. Projections of the parabrachial nucleus in the old world monkey. Exp Neurol 2000; 165:101-17. [PMID: 10964489 DOI: 10.1006/exnr.2000.7450] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The efferent projections of the pontine parabrachial nucleus (PBN) were examined in the Old World monkey (Macaca fascicularis) using tritiated amino acid autoradiography and horseradish peroxidase histochemistry. Parabrachiofugal fibers ascended to the forebrain along three pathways: the central tegmental tract, the ventral ascending catecholaminergic pathway, and a pathway located on the midline between the medial longitudinal fasciculi. The PBN projected heavily to the central nucleus of the amygdala and the lateral division of the bed nucleus of the stria terminalis and moderately to the ventral tegmental area and the substantia nigra. Light terminal label also was present within the dorsomedial, ventromedial, lateral, supramammillary, and infundibular nuclei of the hypothalamus and the annular nucleus and the dorsal raphe nucleus within the brain stem. The overall pattern of terminal label was similar to that previously reported for nonprimate species, but several differences were notable. In monkey the projection to the ventrobasal thalamus did not coincide with the region that contains gustatory-responsive neurons. In rats, these parabrachiothalamic fibers convey gustatory activity but in the monkey these fibers may carry visceral afferent information. The projections from the PBN to the hypothalamus in the monkey were neither as widespread nor as intense as in the rat, and the monkey lacks a projection from the PBN to the frontal and insular cortices.
Collapse
Affiliation(s)
- T C Pritchard
- Department of Behavioral Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
20
|
Cubero I, Puerto A. Lateral parabrachial lesions impair intraperitoneal but not intraventricular methylscopolamine-induced taste aversion learning. Brain Res 2000; 871:113-9. [PMID: 10882790 DOI: 10.1016/s0006-8993(00)02453-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The role of the lateral parabrachial area (lPB) in the acquisition of a delayed taste aversion learning task (TAL) was examined by delivering the peripherally acting aversive compound, methylscopolamine (MSP), through two different routes, intraperitoneal and intraventricular. Consistent with previous anatomical, behavioral and molecular work, electrolytic lesions centered at the lPB did impair TAL when the MSP was injected intraperitoneally. However, lPB-lesioned animals exhibited intact learning capacities when MSP was administered intraventricularly. These results are interpreted in terms of the lPB as a critical anatomical relay involved in bottom-up visceral processing of aversive stimuli and also in relation to the relevance of forebrain structures in TAL.
Collapse
Affiliation(s)
- I Cubero
- Departamento de Psicología Experimental y Psicobiología, Universidad de Almería, 04120, Almería, Spain.
| | | |
Collapse
|
21
|
Yamamoto T, Sawa K. Comparison of c-fos-like immunoreactivity in the brainstem following intraoral and intragastric infusions of chemical solutions in rats. Brain Res 2000; 866:144-51. [PMID: 10825490 DOI: 10.1016/s0006-8993(00)02242-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To examine whether the activation of brainstem neurons during ingestion is due to orosensory afferents or post-ingestive factors, neuronal activation in response to intraoral and intragastric infusions of taste stimuli was compared in the area postrema (AP), nucleus tractus solitarius (NTS) and parabrachial nucleus (PBN) by the c-fos immunohistochemical method. An aliquot (7.5 ml) of 0.5 M sucrose, 5 mM sodium saccharin, 1 mM quinine hydrochloride and distilled water was delivered into the oral cavity or the stomach in each rat, which had been deprived of water and food overnight. Water induced little c-Fos-like immunoreactivity (c-FLI), but both intraoral and intragastric infusions of sucrose, but not non-caloric saccharin, induced strong c-FLI in the AP, caudal NTS and the external lateral subnucleus of the rostral PBN, suggesting that these areas receive general visceral inputs. Other areas in the NTS and PBN may receive gustatory inputs since more dominant c-FLI was detected by intraoral rather than intragastric infusions of the stimuli. Functional segregation of neurons reflecting qualitative and hedonic aspects of sweeteners (sucrose and saccharin) and bitter-tasting substance (quinine) was suggested in the PBN, but less evident in the NTS. These results indicate that c-fos induction in brainstem neurons during ingestion reflects gustatory inputs and postingestional factors depending on the kind of food ingested.
Collapse
Affiliation(s)
- T Yamamoto
- Department of Behavioral Physiology, Faculty of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| | | |
Collapse
|
22
|
Yamamoto T, Sawa K. c-Fos-like immunoreactivity in the brainstem following gastric loads of various chemical solutions in rats. Brain Res 2000; 866:135-43. [PMID: 10825489 DOI: 10.1016/s0006-8993(00)02241-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The distribution of c-Fos-like immunoreactivity (c-FLI) in the lower brainstem especially in the area postrema (AP), nucleus of the tractus solitarius (NTS) and parabrachial nucleus (PBN) was examined following gastric loads of various chemical solutions in rats. An aliquot of 7.5 ml of each stimulus was intragastrically infused, and c-FLI was detected. The most remarkable c-FLI was induced by LiCl, lactose and ethanol which are known to be effective unconditioned stimuli in conditioned taste aversions. Polycose and disaccharides such as sucrose and maltose induced more c-FLI than monosaccharides such as glucose, fructose and galactose. Relatively low levels of c-FLI were observed for other sweeteners such as saccharin, glycine and alanine, and other basic taste stimuli such as NaCl, HCl, quinine and umami substances. Each stimulus induced a similar proportion of c-FLI among the subnuclei of the NTS, but not in the PBN, where chemicals effective in inducing conditioned taste aversions elicited stronger c-FLI in the external lateral subnucleus, and those in inducing conditioned taste preferences such as Polycose and glucose elicited stronger c-FLI in the dorsal lateral subnucleus. Vagotomy reduced c-FLI to about 50% for LiCl stimulation and to about 30% for sucrose stimulation, suggesting that LiCl has a larger proportion of extravagal inputs than sucrose.
Collapse
Affiliation(s)
- T Yamamoto
- Department of Behavioral Physiology, Faculty of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| | | |
Collapse
|
23
|
Karimnamazi H, Travers JB. Differential projections from gustatory responsive regions of the parabrachial nucleus to the medulla and forebrain. Brain Res 1998; 813:283-302. [PMID: 9838165 DOI: 10.1016/s0006-8993(98)00951-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study combined extracellular electrophysiology with anterograde and retrograde tracing techniques to determine efferent projections from taste responsive sites within the parabrachial nucleus (PBN). Taste activity was recorded from two distinct regions of the PBN, the waist region consisting of the ventrolateral (VL) and central medial (CM) subnuclei, and the external region, consisting of the external medial (EM) and external lateral (EL) subnuclei. Ascending and descending projections from these two regions differed. Small biotinylated dextran injections placed in taste responsive sites in the waist area produced a prominent descending projection to the medullary parvocellular reticular formation, a projection nearly non-existent from the external region. Differences in ascending projections were more subtle. Projections to the thalamus were bilateral in all cases, however, the waist region had a larger ipsilateral thalamic projection than the external region and the external region had a larger contralateral projection compared to the waist. Central nucleus of amygdala (CNA) projections from the waist area were primarily from posterior tongue responsive sites in VL and terminated in the central medial and lateral CNA subnuclei; external region projections were distributed to the capsular region of CNA. Both the external and waist region projected to substantia innominata (SI). Different efferent projections from the two gustatory responsive regions of the PBN may reflect functional specialization of PBN subnuclei. Descending projections from orally responsive sites in the waist area project to the lateral parvocellular reticular formation, a region implicated in brainstem circuitry underlying consummatory components of ingestive function. The external region, contains cells responsive to pain and oral aversive stimuli, but does not apparently contribute directly to local brainstem functions. Rather, forebrain pathways appear critical to the expression of external region functions.
Collapse
Affiliation(s)
- H Karimnamazi
- Department of Oral Biology, College of Dentistry, The Ohio State University, 305 W. 12th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
24
|
Kobashi M, Bradley RM. Effects of GABA on neurons of the gustatory and visceral zones of the parabrachial nucleus in rats. Brain Res 1998; 799:323-8. [PMID: 9675328 DOI: 10.1016/s0006-8993(98)00480-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Response characteristics of neurons in the gustatory and visceral zone of the parabrachial nucleus (PBN) to gamma-aminobutyric acid (GABA) were examined using whole cell recordings in brain slices of the rat. Based on the recording site, neurons were divided into three groups: neurons in the dorsolateral quadrant of the PBN (DL-neurons), neurons in the dorsomedial quadrant of the PBN (DM-neurons) and neurons in the ventromedial quadrant of the PBN (VM-neurons). Recordings were made from 44 DL-, 43 DM-, 39 VM-neurons. Superfusion of GABA resulted in a concentration-dependent reduction in input resistance in 67.5% of the neurons in the PBN (73.1% of the DL-, 62.5% of the DM-, 66.7% of the VM-neurons). No obvious difference of the concentration-response curve was found among three groups. The mean reversal potential of the GABA effect was about -74 mV and no significant differences were observed among three groups of neurons. The GABA response was partly or completely blocked by the GABAA antagonist bicuculline in all neurons tested. Superfusion of the GABAA agonist muscimol resulted in a decrease of the input resistance in all neurons tested. It was concluded that GABA functions as an inhibitory neurotransmitter in both gustatory and visceral part of the PBN, mediated in part, by GABAA receptors.
Collapse
Affiliation(s)
- M Kobashi
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | |
Collapse
|
25
|
Abstract
We developed a model for the evaluation of gastric sensitivity to distension in awake rats. A balloon made from a latex condom was chronically placed in the stomach and three stainless steel electrodes were implanted in the neck muscles. Isobaric distensions were performed with a barostat by step of 5 mmHg with 10 min inflation and 2 min deflation. Gastric pressure, integrated neck electromyogram (EMG) and gastric volume were continuously monitored on a potentiometric recorder. Gastric distension at 15 or 20 mmHg induced a typical posture associated with contractions of the neck muscles. Pain threshold was defined as the pressure inducing an increase of integrated neck EMG greater than 100%. The mean pain threshold was 18.5 +/- 0.7 mmHg and was not modified 2, 4 and 7 days after the first experiment. However, gastric volumes were significantly higher on the 4th and the 7th days. Morphine at the doses of 0.4 and 4 mg kg-1 i.p. significantly increases the pain threshold. At the doses of 0.04 and 0.4 mg kg-1, morphine significantly increased gastric volume for the distending pressure of 10 mmHg. Naloxone (2.5 mg kg-1 i.p.) reversed the effects of morphine. In conclusion, our model permits simultaneous evaluation of pain threshold and gastric compliance associated with gastric distension in conscious rats.
Collapse
Affiliation(s)
- M L Rouzade
- Department of Pharmacology, INRA, Toulouse, France
| | | | | |
Collapse
|
26
|
Kobashi M, Bradley RM. Differences in the intrinsic membrane characteristics of parabrachial nucleus neurons processing gustatory and visceral information. Brain Res 1998; 781:218-26. [PMID: 9507138 DOI: 10.1016/s0006-8993(97)01248-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Whole-cell current-clamp recordings were made from neurons in the rat parabrachial nucleus (PBN) in three rostro-caudal brain slices. During recording the neurons were located in one of four quadrants of the PBN. Successful recordings were obtained from neurons in three of these quadrants termed the dorsolateral (DL), dorsomedial (DM) and ventromedial (VM) quadrants. Recordings were made of the intrinsic membrane properties and repetitive discharge characteristics of 58 neurons in the DL, 60 neurons in the DM, and 54 neurons in the VM-quadrants. The input resistance of the neurons in the DL quadrant was significantly lower and the membrane time constant significantly shorter than that of the neurons in the DM- and VM-quadrants. The mean action potential duration of the VM-quadrant neurons was significantly longer than that of both DL- and DM-quadrant neurons. The discharge frequency in response to a 1500 ms 100 pA current pulse of the DL quadrant neurons was significantly lower than that of the neurons in the other two quadrants. The latency of action potential initiation following a 100 pA depolarizing current pulse was significantly longer for DL quadrant neurons compared to neurons in the other two quadrants. Neurons were divided into groups based on their response to a long depolarizing current pulse immediately preceded by a hyperpolarizing current pulse. In all three rostro-caudal slices of the PBN, the largest populations of neurons were in Group II and Group III. The results demonstrate that neurons in different locations in the PBN have different membrane and repetitive discharge properties. These different PBN locations receive inputs from the visceral and gustatory regions of the NST. It is possible therefore that the differences in properties of the PBN neurons may relate to the type of sensory information that they process.
Collapse
Affiliation(s)
- M Kobashi
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109-078, USA
| | | |
Collapse
|
27
|
Yamamoto T, Shimura T, Sako N, Yasoshima Y, Sakai N. Neural substrates for conditioned taste aversion in the rat. Behav Brain Res 1994; 65:123-37. [PMID: 7718144 DOI: 10.1016/0166-4328(94)90097-3] [Citation(s) in RCA: 212] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Conditioned taste aversions (CTAs) are well known to be robust and long-lasting instances of learning induced by a single CS (taste)-US (malaise) pairing. CTA can be taken as a general model to search for neural mechanisms of learning and memory. In spite of extensive research on CTAs using a variety of approaches during the last three decades, the neural mechanisms of taste aversion learning still remain unsolved. In this article we propose a model of neural substrates of CTAs on the basis of our recent studies incorporating previous findings by other workers. Our studies mainly included experiments using ibotenic acid injections into various parts of the rat brain as a lesion technique, and c-fos immunohistochemistry in naive and CTA trained rats. CTAs were established by pairing the ingestion of saccharin (CS) with an ip injection of LiCl (US). Behavioral studies have shown that the parabrachial nucleus (PBN), medial thalamus, and basolateral nucleus of the amygdala are essential for both acquisition and retention of CTAs. C-fos studies suggested that association between gustatory CS and visceral US takes place in the PBN. The gustatory cortex (GC) may modify the strength of this association depending on the nature of the CS, viz., novel or familiar. The amygdala is indispensable for the expressions of CTAs. Tastes with hedonic values are stored in the GC in a long-term manner.
Collapse
Affiliation(s)
- T Yamamoto
- Department of Behavioral Physiology, Faculty of Human Sciences, Osaka University, Japan
| | | | | | | | | |
Collapse
|