1
|
Lee CK, Nguyen HS, Kang SJ, Jeong SW. Cellular and Molecular Mechanisms Underlying Altered Excitability of Cardiac Efferent Neurons in Cirrhotic Rats. Biomedicines 2024; 12:1722. [PMID: 39200187 PMCID: PMC11351538 DOI: 10.3390/biomedicines12081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Patients with cirrhosis often exhibit cardiac autonomic dysfunction (CAD), characterized by enhanced cardiac sympathetic activity and diminished cardiac vagal tone, leading to increased morbidity and mortality. This study delineates the cellular and molecular mechanisms associated with altered neuronal activities causing cirrhosis-induced CAD. Biliary and nonbiliary cirrhotic rats were produced by common bile duct ligation (CBDL) and intraperitoneal injections of thioacetamide (TAA), respectively. Three weeks after CBDL or TAA injection, the assessment of heart rate variability revealed autonomic imbalance in cirrhotic rats. We observed increased excitability in stellate ganglion (SG) neurons and decreased excitability in intracardiac ganglion (ICG) neurons in cirrhotic rats compared to sham-operated controls. Additionally, threshold, rheobase, and action potential duration exhibited opposite alterations in SG and ICG neurons, along with changes in afterhyperpolarization duration. A- and M-type K⁺ channels were significantly downregulated in SG neurons, while M-type K⁺ channels were upregulated, with downregulation of the N- and L-type Ca2⁺ channels in the ICG neurons of cirrhotic rats, both in transcript expression and functional activity. Collectively, these findings suggest that cirrhosis induces an imbalance between cardiac sympathetic and parasympathetic neuronal activities via the differential regulation of K+ and Ca2+ channels. Thus, cirrhosis-induced CAD may be associated with impaired autonomic efferent functions within the homeostatic reflex arc that regulates cardiac functions.
Collapse
Affiliation(s)
| | | | | | - Seong-Woo Jeong
- Laboratory of Molecular Neurophysiology, Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (C.-K.L.); (H.S.N.); (S.J.K.)
| |
Collapse
|
2
|
Clyburn C, Li MH, Ingram SL, Andresen MC, Habecker BA. Cholinergic collaterals arising from noradrenergic sympathetic neurons in mice. J Physiol 2023; 601:1247-1264. [PMID: 36797985 PMCID: PMC10065914 DOI: 10.1113/jp284059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The sympathetic nervous system vitally regulates autonomic functions, including cardiac activity. Postganglionic neurons of the sympathetic chain ganglia relay signals from the central nervous system to autonomic peripheral targets. Disrupting this flow of information often dysregulates organ function and leads to poor health outcomes. Despite the importance of these sympathetic neurons, fundamental aspects of the neurocircuitry within peripheral ganglia remain poorly understood. Conventionally, simple monosynaptic cholinergic pathways from preganglionic neurons are thought to activate postganglionic sympathetic neurons. However, early studies suggested more complex neurocircuits may be present within sympathetic ganglia. The present study recorded synaptic responses in sympathetic stellate ganglia neurons following electrical activation of the pre- and postganglionic nerve trunks and used genetic strategies to assess the presence of collateral projections between postganglionic neurons of the stellate ganglia. Orthograde activation of the preganglionic nerve trunk, T-2, uncovered high jitter synaptic latencies consistent with polysynaptic connections. Pharmacological inhibition of nicotinic acetylcholine receptors with hexamethonium blocked all synaptic events. To confirm that high jitter, polysynaptic events were due to the presence of cholinergic collaterals from postganglionic neurons within the stellate ganglion, we knocked out choline acetyltransferase in adult noradrenergic neurons. This genetic knockout eliminated orthograde high jitter synaptic events and EPSCs evoked by retrograde activation. These findings suggest that cholinergic collateral projections arise from noradrenergic neurons within sympathetic ganglia. Identifying the contributions of collateral excitation to normal physiology and pathophysiology is an important area of future study and may offer novel therapeutic targets for the treatment of autonomic imbalance. KEY POINTS: Electrical stimulation of a preganglionic nerve trunk evoked fast synaptic transmission in stellate ganglion neurons with low and high jitter latencies. Retrograde stimulation of a postganglionic nerve trunk evoked direct, all-or-none action currents and delayed nicotinic EPSCs indistinguishable from orthogradely-evoked EPSCs in stellate neurons. Nicotinic acetylcholine receptor blockade prevented all spontaneous and evoked synaptic activity. Knockout of acetylcholine production in noradrenergic neurons eliminated all retrogradely-evoked EPSCs but did not change retrograde action currents, indicating that noradrenergic neurons have cholinergic collaterals connecting neurons within the stellate ganglion.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Ming-Hua Li
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Susan L Ingram
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Andresen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
3
|
Barrett MS, Hegarty DM, Habecker BA, Aicher SA. Distinct morphology of cardiac- and brown adipose tissue-projecting neurons in the stellate ganglia of mice. Physiol Rep 2022; 10:e15334. [PMID: 35621038 PMCID: PMC9136702 DOI: 10.14814/phy2.15334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/24/2022] Open
Abstract
Sympathetic neurons that innervate the heart are located primarily in the stellate ganglia (SG), which also contains neurons that project to brown adipose tissue (BAT). These studies were designed to examine the morphology of these two populations (cardiac- and BAT-projecting) and their target connectivity. We examined SG neurons in C57BL/6J mice following injections of the retrograde tracer cholera toxin B (CTb) conjugated to Alexa Fluor 488 and Alexa Fluor 555, into cardiac tissue and intrascapular BAT. BAT-projecting SG neurons were widely dispersed in SG, while cardiac-projecting SG neurons were localized primarily near the inferior cardiac nerve base. SG neurons were not dual-labeled, suggesting that sympathetic innervation is specific to the heart and BAT, supporting the idea of "labeled lines" of efferents. Morphologically, cardiac-projecting SG somata had more volume and were less abundant than BAT-projecting neurons using our tracer-labeling paradigm. We found a positive correlation between the number of primary dendrites per neuron and soma volume in cardiac-projecting SG neurons, though not in BAT-projecting neurons. In both SG subpopulations, the number of cholinergic inputs marked with vesicular acetylcholine transporter (VAChT) puncta contacting the soma was positively correlated to soma volume, suggesting scaling of inputs across a range of neuronal sizes. In separate studies using dual tracing from left and right BAT, we found that BAT-projecting SG neurons were located predominately ipsilateral to the injection, but a small subset of SG neurons project bilaterally to BAT. This tracing approach will allow the assessment of cell-specific mechanisms of plasticity within subpopulations of SG neurons.
Collapse
Affiliation(s)
- Madeleine S Barrett
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Deborah M Hegarty
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
4
|
Davis H, Herring N, Paterson DJ. Downregulation of M Current Is Coupled to Membrane Excitability in Sympathetic Neurons Before the Onset of Hypertension. Hypertension 2020; 76:1915-1923. [PMID: 33040619 PMCID: PMC8360673 DOI: 10.1161/hypertensionaha.120.15922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Neurohumoral activation is an early hallmark of cardiovascular disease and contributes to the etiology of the pathophysiology. Stellectomy has reemerged as a positive therapeutic intervention to modify the progression of dysautonomia, although the biophysical properties underpinning abnormal activity of this ganglia are not fully understood in the initial stages of the disease. We investigated whether stellate ganglia neurons from prehypertensive SHRs (spontaneously hypertensive rats) are hyperactive and describe their electrophysiological phenotype guided by single-cell RNA sequencing, molecular biology, and perforated patch clamp to uncover the mechanism of abnormal excitability. We demonstrate the contribution of a plethora of ion channels, in particular inhibition of M current to stellate ganglia neuronal firing, and confirm the conservation of expression of key ion channel transcripts in human stellate ganglia. We show that hyperexcitability was curbed by M-current activators, nonselective sodium current blockers, or inhibition of Nav1.1-1.3, Nav1.6, or INaP. We conclude that reduced activity of M current contributes significantly to abnormal firing of stellate neurons, which, in part, contributes to the hyperexcitability from rats that have a predisposition to hypertension. Targeting these channels could provide a therapeutic opportunity to minimize the consequences of excessive sympathetic activation.
Collapse
Affiliation(s)
- Harvey Davis
- From the Burdon Sanderson Cardiac Science Centre (H.D., N.H., D.J.P.), University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, Wellcome Trust OXION Initiative in Ion Channels and Disease (H.D., D.J.P.), University of Oxford, United Kingdom
| | - Neil Herring
- From the Burdon Sanderson Cardiac Science Centre (H.D., N.H., D.J.P.), University of Oxford, United Kingdom.,Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, United Kingdom (N.H.)
| | - David J Paterson
- From the Burdon Sanderson Cardiac Science Centre (H.D., N.H., D.J.P.), University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, Wellcome Trust OXION Initiative in Ion Channels and Disease (H.D., D.J.P.), University of Oxford, United Kingdom
| |
Collapse
|
5
|
Increased cardiac sympathetic activity: Cause or compensation in vasovagal syncope? Clin Auton Res 2018; 28:265-266. [PMID: 29616375 DOI: 10.1007/s10286-018-0524-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
6
|
Affiliation(s)
- Wilfrid Jänig
- Department of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
7
|
Shanks J, Herring N, Johnson E, Liu K, Li D, Paterson DJ. Overexpression of Sarcoendoplasmic Reticulum Calcium ATPase 2a Promotes Cardiac Sympathetic Neurotransmission via Abnormal Endoplasmic Reticulum and Mitochondria Ca 2+ Regulation. Hypertension 2017; 69:625-632. [PMID: 28223472 PMCID: PMC5344179 DOI: 10.1161/hypertensionaha.116.08507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/11/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Supplemental Digital Content is available in the text. Reduced cardiomyocyte excitation–contraction coupling and downregulation of the SERCA2a (sarcoendoplasmic reticulum calcium ATPase 2a) is associated with heart failure. This has led to viral transgene upregulation of SERCA2a in cardiomyocytes as a treatment. We hypothesized that SERCA2a gene therapy expressed under a similar promiscuous cytomegalovirus promoter could also affect the cardiac sympathetic neural axis and promote sympathoexcitation. Stellate neurons were isolated from 90 to 120 g male, Sprague–Dawley, Wistar Kyoto, and spontaneously hypertensive rats. Neurons were infected with Ad-mCherry or Ad-mCherry-hATP2Aa (SERCA2a). Intracellular Ca2+ changes were measured using fura-2AM in response to KCl, caffeine, thapsigargin, and carbonylcyanide-p-trifluoromethoxyphenylhydrazine to mobilize intracellular Ca2+ stores. The effect of SERCA2a on neurotransmitter release was measured using [3H]-norepinephrine overflow from 340 to 360 g Sprague–Dawley rat atria in response to right stellate ganglia stimulation. Upregulation of SERCA2a resulted in greater neurotransmitter release in response to stellate stimulation compared with control (empty: 98.7±20.5 cpm, n=7; SERCA: 186.5±28.41 cpm, n=8; P<0.05). In isolated Sprague–Dawley rat stellate neurons, SERCA2a overexpression facilitated greater depolarization-induced Ca2+ transients (empty: 0.64±0.03 au, n=57; SERCA: 0.75±0.03 au, n=68; P<0.05), along with increased endoplasmic reticulum and mitochondria Ca2+ load. Similar results were observed in Wistar Kyoto and age-matched spontaneously hypertensive rats, despite no further increase in endoplasmic reticulum load being observed in the spontaneously hypertensive rat (spontaneously hypertensive rats: empty, 0.16±0.04 au, n=18; SERCA: 0.17±0.02 au, n=25). In conclusion, SERCA2a upregulation in cardiac sympathetic neurons resulted in increased neurotransmission and increased Ca2+ loading into intracellular stores. Whether the increased Ca2+ transient and neurotransmission after SERCA2A overexpression contributes to enhanced sympathoexcitation in heart failure patients remains to be determined.
Collapse
Affiliation(s)
- Julia Shanks
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Oxford, United Kingdom (J.S., N.H., K.L., D.L., D.J.P.); and Sir William Dunn School of Pathology, Oxford, United Kingdom (E.J.)
| | - Neil Herring
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Oxford, United Kingdom (J.S., N.H., K.L., D.L., D.J.P.); and Sir William Dunn School of Pathology, Oxford, United Kingdom (E.J.)
| | - Errin Johnson
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Oxford, United Kingdom (J.S., N.H., K.L., D.L., D.J.P.); and Sir William Dunn School of Pathology, Oxford, United Kingdom (E.J.)
| | - Kun Liu
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Oxford, United Kingdom (J.S., N.H., K.L., D.L., D.J.P.); and Sir William Dunn School of Pathology, Oxford, United Kingdom (E.J.)
| | - Dan Li
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Oxford, United Kingdom (J.S., N.H., K.L., D.L., D.J.P.); and Sir William Dunn School of Pathology, Oxford, United Kingdom (E.J.)
| | - David J Paterson
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Oxford, United Kingdom (J.S., N.H., K.L., D.L., D.J.P.); and Sir William Dunn School of Pathology, Oxford, United Kingdom (E.J.).
| |
Collapse
|
8
|
Laufenberg LJ, Weller GE, Lang CH, Ruiz-Velasco V. Nociceptin receptor signaling in sympathetic neurons from septic rats. J Surg Res 2013; 184:973-80. [PMID: 23608620 PMCID: PMC3728175 DOI: 10.1016/j.jss.2013.03.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/13/2013] [Accepted: 03/21/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND The endogenous opioid peptide, nociception (Noc), contributes to the regulation of systemic blood pressure and regional blood flow. Recent clinical and animal studies have reported that Noc and its receptor (nociceptin/orphanin FQ [NOP]) are involved in inflammation and sepsis. The purpose of the present study was to examine the modulation of Ca(2+) channels by Noc in acutely isolated stellate ganglion (SG) neurons from control and septic rats. MATERIALS AND METHODS Sepsis was induced in male Sprague-Dawley rats via cecal ligation and puncture. SG neurons were isolated 24 and 72 h after sepsis induction. Thereafter, the concentration-response relationships for the Noc-stimulated NOP receptor Ca(2+) current inhibition were determined using the whole-cell patch clamp technique. In addition, the Noc precursor (prepronociceptin [PNOC]) and NOP receptor messenger RNA (mRNA) levels were determined by quantitative real-time polymerase chain reaction, and PNOC protein levels were measured by Western blot analysis. RESULTS Comparison of the Noc concentration-response relationships in SG neurons from control and septic rats 24 h after sepsis revealed similar potency and efficacy. Moreover, 72 h after sepsis, neurons from control and septic rats exhibited an increased potency compared with both groups at the 24-h time point--an effect that was more pronounced in neurons from septic rats. PNOC mRNA levels were significantly greater in SG neurons isolated from septic rats compared with control neurons, but NOP receptor mRNA levels remained unchanged during the 72-h period. CONCLUSIONS Our study demonstrates the cecal ligation and puncture model-induced temporal upregulation of components within the NOP receptor signaling pathway in rat sympathetic neurons. As SG neurons provide the main sympathetic input to the heart, an increased Noc release and potency during sepsis may compromise cardiovascular function.
Collapse
Affiliation(s)
| | - Gregory E. Weller
- Department of Anesthesiology, Penn State College of Medicine, Hershey, PA
| | - Charles H. Lang
- Department of Surgery, Penn State College of Medicine, Hershey, PA
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | | |
Collapse
|
9
|
Wehrwein EA, Parker LM, Wright AA, Spitsbergen JM, Novotny M, Babankova D, Swain GM, Habecker BA, Kreulen DL. Cardiac norepinephrine transporter protein expression is inversely correlated to chamber norepinephrine content. Am J Physiol Regul Integr Comp Physiol 2008; 295:R857-63. [PMID: 18565836 DOI: 10.1152/ajpregu.00190.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiac neuronal norepinephrine (NE) transporter (NET) in sympathetic neurons is responsible for uptake of released NE from the neuroeffector junction. The purpose of this study was to assess the chamber distribution of cardiac NET protein measured using [(3)H]nisoxetine binding in rat heart membranes and to correlate NE content to NET amount. In whole mounts of atria, NET was colocalized in nerve fibers with tyrosine hydroxylase (TH) immunoreactivity. NE content expressed as micrograms NE per gram tissue was lowest in the ventricles; however, NET binding was significantly higher in the left ventricle than the right ventricle and atria (P < 0.05), resulting in a significant negative correlation (r(2) = 0.922; P < 0.05) of NET to NE content. The neurotoxin 6-hydroxydopamine, an NET substrate, reduced NE content more in the ventricles than the atria, demonstrating functional significance of high ventricular NET binding. In summary, there is a ventricular predominance of NET binding that corresponds to a high NE reuptake capacity in the ventricles, yet negatively correlates to tissue NE content.
Collapse
Affiliation(s)
- Erica A Wehrwein
- Dept. of Physiology, Michigan State Univ., East Lansing, MI 48823, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang Q, Sumner AD, Puhl HL, Ruiz-Velasco V. M1 and M2 Muscarinic Acetylcholine Receptor Subtypes Mediate Ca2+ Channel Current Inhibition in Rat Sympathetic Stellate Ganglion Neurons. J Neurophysiol 2006; 96:2479-87. [PMID: 17005606 DOI: 10.1152/jn.00093.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) are known to mediate the acetylcholine inhibition of Ca2+ channels in central and peripheral neurons. Stellate ganglion (SG) neurons provide the main sympathetic input to the heart and contribute to the regulation of heart rate and myocardial contractility. Little information is available regarding mAChR regulation of Ca2+ channels in SG neurons. The purpose of this study was to identify the mAChR subtypes that modulate Ca2+ channel currents in rat SG neurons innervating heart muscle. Accordingly, the modulation of Ca2+ channel currents by the muscarinic cholinergic agonist, oxotremorine-methiodide (Oxo-M), and mAChR blockers was examined. Oxo-M–mediated mAChR stimulation led to inhibition of Ca2+ currents through voltage-dependent (VD) and voltage-independent (VI) pathways. Pre-exposure of SG neurons to the M1 receptor blocker, M1-toxin, resulted in VD inhibition of Ca2+ currents after Oxo-M application. On the other hand, VI modulation of Ca2+ currents was observed after pretreatment of cells with methoctramine (M2 mAChR blocker). The Oxo-M–mediated inhibition was nearly eliminated in the presence of both M1 and M2 mAChR blockers but was unaltered when SG neurons were exposed to the M4 mAChR toxin, M4-toxin. Finally, the results from single-cell RT-PCR and immunofluorescence assays indicated that M1 and M2 receptors are expressed and located on the surface of SG neurons. Overall, the results indicate that SG neurons that innervate cardiac muscle express M1 and M2 mAChR, and activation of these receptors leads to inhibition of Ca2+ channel currents through VI and VD pathways, respectively.
Collapse
Affiliation(s)
- Qing Yang
- Department of Anesthesiology, H187, Penn State College of Medicine, 500 University Dr., Hershey, PA 17033-0850, USA
| | | | | | | |
Collapse
|
11
|
Richardson RJ, Grkovic I, Allen AM, Anderson CR. Separate neurochemical classes of sympathetic postganglionic neurons project to the left ventricle of the rat heart. Cell Tissue Res 2006; 324:9-16. [PMID: 16418838 DOI: 10.1007/s00441-005-0105-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 10/25/2005] [Indexed: 11/26/2022]
Abstract
The sympathetic innervation of the rat heart was investigated by retrograde neuronal tracing and multiple label immunohistochemistry. Injections of Fast Blue made into the left ventricular wall labelled sympathetic neurons that were located along the medial border of both the left and right stellate ganglia. Cardiac projecting sympathetic postganglionic neurons could be grouped into one of four neurochemical populations, characterised by their content of calbindin and/or neuropeptide Y (NPY). The subpopulations of neurons contained immunoreactivity to both calbindin and NPY, immunoreactivity to calbindin only, immunoreactivity to NPY only and no immunoreactivity to calbindin or NPY. Sympathetic postganglionic neurons were also labelled in vitro with rhodamine dextran applied to the cut end of a cardiac nerve. The same neurochemical subpopulations of sympathetic neurons were identified by using this technique but in different proportions to those labelled from the left ventricle. Preganglionic terminals that were immunoreactive for another calcium-binding protein, calretinin, preferentially surrounded retrogradely labelled neurons that were immunoreactive for both calbindin and NPY. The separate sympathetic pathways projecting to the rat heart may control different cardiac functions.
Collapse
Affiliation(s)
- R J Richardson
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
12
|
Ruiz-Velasco V, Puhl HL, Fuller BC, Sumner AD. Modulation of Ca2+ channels by opioid receptor-like 1 receptors natively expressed in rat stellate ganglion neurons innervating cardiac muscle. J Pharmacol Exp Ther 2005; 314:987-94. [PMID: 15937148 DOI: 10.1124/jpet.105.089284] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Postganglionic sympathetic nerve terminals innervate cardiac muscle and express opioid receptor-like 1 (ORL1) receptors, the most recently described member of the opioid receptor subclass. ORL1 receptors are stimulated by the endogenous heptadecapeptide nociceptin (Noc). To better understand how the signaling events by Noc regulate sympathetic neuron excitability, the goal of the present study was to determine whether sympathetic stellate ganglion (SG) neurons, innervating the heart, natively express ORL1 opioid receptors and couple to Ca(2+) channels. SG neurons in adult male rats were retrograde-labeled with a fluorescent tracer via injection of the ventricular muscle employing ultrasound imaging. Thereafter, N-type Ca(2+) channel modulation was investigated using the whole-cell variant of the patch-clamp technique. Exposure of labeled SG neurons to Noc resulted in a concentration-dependent inhibition of Ca(2+) currents (with an estimated EC(50) of 193 +/- 14 nM). Pre-exposure of SG neurons to the ORL1 receptor blocker, [Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2) (UFP-101), significantly decreased the Noc-mediated Ca(2+) current inhibition. The Ca(2+) current inhibition was also blocked by pertussis toxin pretreatment, indicating that signaling occurs via Galpha(i/o) G proteins. Finally, the full-length ORL1 receptor cDNA in SG neurons was cloned and sequenced. Of the two known alternatively spliced variants in rats, sequencing analysis showed that the ORL1 receptor expressed in SG neurons is the short form. Overall, these results suggest that stimulation of postsynaptic ORL1 receptors by Noc in SG neurons regulate cardiac sympathetic activity.
Collapse
Affiliation(s)
- Victor Ruiz-Velasco
- Department of Anesthesiology, Penn State College of Medicine, Hershey, 17033-0850, USA.
| | | | | | | |
Collapse
|
13
|
Backs J, Haunstetter A, Gerber SH, Metz J, Borst MM, Strasser RH, Kübler W, Haass M. The neuronal norepinephrine transporter in experimental heart failure: evidence for a posttranscriptional downregulation. J Mol Cell Cardiol 2001; 33:461-72. [PMID: 11181015 DOI: 10.1006/jmcc.2000.1319] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An impairment of norepinephrine (NE) re-uptake by the neuronal NE transporter (NET) has been shown to contribute to the increased cardiac net-release of NE in congestive heart failure (CHF). The present study investigated which mechanisms are involved in the impairment of NET. Rats with supracoronary aortic banding characterized by myocardial hypertrophy, elevated left ventricular end diastolic pressures and severe pulmonary congestion were used as an experimental model for CHF. Compared to sham-operated controls, aortic-banded rats had enhanced plasma NE concentrations and decreased cardiac NE stores. In isolated perfused hearts of aortic-banded rats, functional impairment of NET was indicated by a 37% reduction in [(3)H]-NE-uptake. In addition, pharmacological blockade of NET with desipramine led to a markedly attenuated increase in the overflow of endogenous NE from hearts of aortic-banded rats. Determination of cardiac NET protein and of NET mRNA in the left stellate ganglion by [(3)H]-desipramine binding and competitive RT-PCR, respectively, revealed a 41% reduction of binding sites but no difference in gene expression. The density of sympathetic nerve fibers within the heart was unchanged, as shown by glyoxylic acid-induced histofluorescence. In conclusion, as impairment of intracardiac NE re-uptake by a reduction of NET binding sites is neither mediated by a decreased NET gene expression nor by a loss of noradrenergic nerve terminals, a posttranscriptional downregulation of NET per neuron is suggested in CHF.
Collapse
Affiliation(s)
- J Backs
- Department of Cardiology, University of Heidelberg, Bergheimer Str. 58, 69115 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kukwa W, Macioch T, Rola R, Szulczyk P. Kinetic and pharmacological properties of Ca(2+) currents in postganglionic sympathetic neurones projecting to muscular and cutaneous effectors. Brain Res 2000; 873:173-80. [PMID: 10915828 DOI: 10.1016/s0006-8993(00)02552-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Voltage-gated Ca(2+) channels are expressed in neurones and greatly influence neuronal activity by activating Ca(2+)-dependent K(+) channels. The whole cell patch-clamp technique was used to compare the kinetic and pharmacological properties of voltage-dependent Ca(2+) currents in two groups of sympathetic neurones identified by the fluorescent tracer Fast Blue: putative muscular sympathetic neurones (MSN) and putative cutaneous sympathetic neurones (CSN). The tracer was injected into the muscular part of the diaphragm (to mark MSN) and into the skin of the ear (to mark CSN). The capacitance of MSN (23.0 pF) was larger than the capacitance of CSN (12.6 pF). The maximum current in MSN (1.3 nA) was also larger than in CSN (0.93 nA). However, the current density was larger in CSN (77. 3 pA/pF) than in MSN (57.7 pA/pF) and the current activation rate was faster in CSN (0.27 nA/ms) than in MSN (0.19 nA/ms). V(1/2) and slope factors of activation and inactivation were not significantly different for MSN and CSN. The majority of Ca(2+) current was available for activation in both categories of neurones at resting membrane potential. Ca(2+) currents in MSN and CSN were blocked by nifedipine (7.0 and 3.6%, respectively), omega-Agatoxin-IVA (23.0 and 25.6%, respectively) and omega-conotoxin-GVIA (67.0 and 65.1%, respectively). We found that CSN are twice as small, have higher Ca(2+) current density and their Ca(2+) activation rate is faster in comparison to MSN. Such properties may lead to faster rise of Ca(2+) concentration in the cytoplasm of the CSN comparing to MSN and more effectively dampen their activity due to more effective activation of Ca(2+)-dependent K(+) current. Both kinds of neurones express high proportion of N and P/Q Ca(2+) current.
Collapse
Affiliation(s)
- W Kukwa
- The Medical University of Warsaw, Department of Experimental and Clinical Physiology, Warsaw, Poland
| | | | | | | |
Collapse
|
15
|
Rola R, Szulczyk P. Quantitative differences between kinetic properties of Na(+) currents in postganglionic sympathetic neurones projecting to muscular and cutaneous effectors. Brain Res 2000; 857:327-36. [PMID: 10700587 DOI: 10.1016/s0006-8993(99)02318-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The activity of muscular and cutaneous sympathetic neurones has been shown to be differentially regulated. The differences may partially stem from the different ionic channel expression and current kinetics in these neurones, particularly that of Na(+) channels, which play a critical role in action potential generation and modulation of neuronal excitability. The whole cell patch-clamp technique was used to compare the kinetic properties of Na(+) currents in two groups of sympathetic neurones identified by the fluorescent tracer Fast Blue: putative muscular sympathetic neurones (PMSN) and putative cutaneous sympathetic neurones (PSSN). The tracer was injected into the muscular part of the diaphragm (to mark PMSN) and into the skin of the ear (to mark PSSN). Both kinds of neurones expressed fast activating, fast inactivating, voltage dependent and TTX sensitive Na(+) currents. However, the electrical characteristics of the cells were markedly different: (1) The capacitance of PMSN (21.7 pF) was larger than PSSN (12.7 pF). Maximum current in PMSN (3.1 nA) was also larger than in PSSN (2.0 nA). Calculated current density was smaller in PMSN (148.0 pA/pF) than in PSSN (181.1 pA/pF). Slope conductance was larger in PMSN compared to PSSN (102.7 nS and 73.6 nS respectively). (2) V(1/2) of activation for PMSN (-20.9 mV) was more negative than the potential recorded for PSSN (-16.7 mV); the slope factors were not different. (3) V(1/2) for inactivation was more negative for PMSN than for PSSN (-66.3 vs. -60.8 mV); again, the slope factors for inactivation were not different. (4) The rate of recovery from inactivation could be described by the sum of two exponential functions. In PMSN the fast and slow recovery exponential factors tau(f) and tau(s) were 12.6 (66%) and 83.9 (34%) ms, while in PSSN they were shorter and equalled 8.2 (62%) and 41.9 (38%) ms, respectively. We conclude that the Na(+) currents of PMSN and PSSN have different kinetic properties.
Collapse
Affiliation(s)
- R Rola
- The Medical University of Warsaw, Department of Physiology, Krakowskie Przedmieście 26/28, Warsaw, Poland
| | | |
Collapse
|
16
|
Verberne ME, Gittenberger-De Groot AC, Van Iperen L, Poelmann RE. Contribution of the cervical sympathetic ganglia to the innervation of the pharyngeal arch arteries and the heart in the chick embryo. THE ANATOMICAL RECORD 1999; 255:407-19. [PMID: 10409814 DOI: 10.1002/(sici)1097-0185(19990801)255:4<407::aid-ar7>3.0.co;2-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the chick heart, sympathetic innervation is derived from the sympathetic neural crest (trunk neural crest arising from somite level 10-20). Since the trunk neural crest gives rise to sympathetic ganglia of their corresponding level, it suggests that the sympathetic neural crest develops into cervical ganglia 4-14. We therefore tested the hypothesis that, in addition to the first thoracic ganglia, the cervical ganglia might contribute to cardiac innervation as well. Putative sympathetic nerve connections between the cervical ganglia and the heart were demonstrated using the differentiation markers tyrosine hydroxylase and HNK-1. In addition, heterospecific transplantation (quail to chick) of the cardiac and trunk neural crest was used to study the relation between the sympathetic neural crest and the cervical ganglia. Quail cells were visualized using the quail nuclear antibody QCPN. The results by immunohistochemical study show that the superior and the middle cervical ganglia and possibly the carotid paraganglia contribute to the carotid nerve. This nerve subsequently joins the nodose ganglion of the vagal nerve via which it contributes to nerve fibers in cardiac vagal branches entering the arterial and venous pole of the heart. In addition, the carotid nerve contributes to nerve fibers connected to putative baro- and chemoreceptors in and near the wall of pharyngeal arch arteries suggesting a role of the superior and middle cervical ganglia and the paraganglia of the carotid plexus in sensory afferent innervation. The lower cervical ganglia 13 and 14 contribute predominantly to nerve branches entering the venous pole via the anterior cardinal veins. We did not observe a thoracic contribution. Heterospecific transplantation shows that the cervical ganglia 4-14 as well as the carotid paraganglia are derived from the sympathetic neural crest. The cardiac neural crest does not contribute to the neurons of the cervical ganglia. We conclude that the cervical ganglia contribute to cardiac innervation which explains the contribution of the sympathetic neural crest to the innervation of the chick heart.
Collapse
Affiliation(s)
- M E Verberne
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
17
|
Kukwa W, Macioch T, Szulczyk PJ. Stellate neurones innervating the rat heart express N, L and P/Q calcium channels. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 74:143-51. [PMID: 9915630 DOI: 10.1016/s0165-1838(98)00154-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of the study was to investigate the kinetic properties and identify the subtypes of Ca2+ currents in the cardiac postganglionic sympathetic neurones of rats. Neurones were labelled with a fluorescent tracer--Fast-Blue, injected into the pericardial cavity. Voltage-dependent Ca2+ currents were recorded from dispersed stellate ganglion cells that showed Fast Blue labelling. Only high threshold voltage-dependent Ca2+ currents were found in the somata of cardiac sympathetic neurones. Their maximum amplitude, mean cell capacitance and current density were respectively: 0.67 nA, 19.3 pF and 36.4 pA/pF (n = 21). The maximum Ca2+ conductance was 51.3 nS (n = 14). Half activation voltage equalled +11.0 mV and the slope factor for conductance 11.1 (n = 14). As tested with a 10 s pre-pulse, the Ca2+ current began to inactivate at -80 mV. Half inactivation voltage and slope factor for steady-state inactivation were -36.6 mV and 14.1 (n = 9), respectively. Saturating concentration of L channel blocker (nifedipine), N channel blocker (omega-conotoxin-GVIA), P/Q channel blocker (omega-Agatoxin-IVA) and N/P/Q channel blocker (omega-conotoxin-MVIIC) reduced the total Ca2+ current by 26.8% (n = 7), 57.1% (n = 12), 25.9% (n = 6) and 69.4% (n = 6), respectively. These results show that the somata of cardiac postganglionic cardiac sympathetic neurones contain significant populations of N, L and P/Q high threshold Ca2+ channels.
Collapse
Affiliation(s)
- W Kukwa
- Department of Physiology, The Medical University of Warsaw, Poland
| | | | | |
Collapse
|
18
|
Abstract
1. Sympathetic autonomic neurons show distinct patterns of expression of a range of neurochemicals that can be detected immunohistochemically. Often, functionally homologous neurons in the autonomic nervous system express identical combinations of substances that serve as a chemical code that allows them to be identified among other autonomic neurons. 2. In the rat stellate ganglion, where many neurons express either immunoreactivity (IR) to neuropeptide Y (NPY) or the calcium-binding protein calbindin, a population of large post-ganglionic neurons found along the medical border of the stellate ganglion, around the origin of the cardiac nerves, expressed intense IR to both substances at all ages examined, from early postnatal to adult. 3. In the heart, in the first few postnatal weeks, many nerve terminals were IR for both NPY and calbindin, but, with increasing age, calbindin-IR was progressively lost from NPY-IR terminals. Nerve terminals IR for both calbindin and NPY were not seen around pulmonary blood vessels or in the trachea or the thymus. 4. Nerve terminals IR for calretinin, another calcium-binding protein, were present in dense pericellular baskets around neurons in the stellate IR for both calbindin and NPY. The terminals also contained nitric oxide synthase (NOS)-IR. 5. It is suggested that the calbindin- and NPY-IR neurons in the stellate ganglion are the post-ganglionic neurons that innervate the heart and that the nerve terminal containing calretinin and NOS-IR that surround them are the cardiac preganglionic terminals. It thus appears possible, in the rat, to identify the sympathetic cardiac pathway arising in the spinal cord and controlling the heart purely on the basis of chemical coding.
Collapse
Affiliation(s)
- C R Anderson
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
Gilbert R, Ryan JS, Horackova M, Smith FM, Kelly ME. Actions of substance P on membrane potential and ionic currents in guinea pig stellate ganglion neurons. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C892-903. [PMID: 9575785 DOI: 10.1152/ajpcell.1998.274.4.c892] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuropeptides are known to modulate the excitability of mammalian sympathetic neurons by their actions on various types of K+ and Ca2+ channels. We used whole cell patch-clamp recording methods to study the actions of substance P (SP) on dissociated adult guinea pig stellate ganglion (SG) neurons. Under current-clamp conditions, SG neurons exhibited overshooting action potentials followed by afterhyperpolarizations (AHP). The K+ channel blocker tetraethylammonium (1 mM), the Ca2+ channel blocker Cd2+ (0.1-0.2 mM), and SP (500 nM) depolarized SG neurons, decreased the AHP amplitude, and increased the action potential duration. In the presence of Cd2+, the effect of SP on membrane potential and AHP was reduced. Under voltage-clamp conditions, several different K+ currents were observed, including a transient outward K+ conductance and a delayed rectifier outward K+ current (IK) consisting of Ca(2+)-sensitive [IK(Ca)] and Ca(2+)-insensitive components. SP (500 nM) inhibited IK. Pretreatment with Cd2+ (20-200 microM) or the high-voltage-activated Ca2+ channel blocker omega-conotoxin (10 microM) blocked SP's inhibitory effects on IK. This suggests that SP reduces IK primarily through the inhibition of IK(Ca) and that this may occur, in part, via a reduction of Ca2+ influx through voltage-dependent Ca2+ channels. SP's actions on IK were mediated by a pertussis toxin-insensitive G protein(s) coupled to NK1 tachykinin receptors. Furthermore, we have confirmed that 500 nM SP reduced an inward Cd(2+)- and omega-conotoxin-sensitive Ba2+ current in SG neurons. Thus the actions of SP on IK(Ca) may be due in part to a reduction in Ca2+ influx occurring via N-type Ca2+ channels. This study presents the first description of ionic currents in mammalian SG neurons and demonstrates that SP may modulate excitability in SG neurons via inhibitory actions on K+ and Ca2+ currents.
Collapse
Affiliation(s)
- R Gilbert
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
20
|
Kukuła K, Szulczyk PJ. Properties of Na+ currents in putative submandibular and cardiac sympathetic postganglionic neurones. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 69:12-20. [PMID: 9672119 DOI: 10.1016/s0165-1838(98)00003-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study was performed to compare the kinetic properties of Na+ currents in putative salivary and cardiac postganglionic sympathetic neurones isolated from the superior cervical and stellate ganglia, respectively. Neurones were labelled with a fluorescent tracer-Fast Blue, injected into the submandibular gland (in the case of salivary neurones) and into the pericardial cavity or left ventricular wall (in the case of cardiac neurones). Voltage-dependent Na+ current was then isolated and recorded from labelled cells. The major findings of this study were: (1) Peak Na+ current was larger in salivary than in cardiac neurones (5.7 nA vs. 2.4 nA; for 30 mM Na+ in extra- and 15 mM in the intracellular solution). (2) The somata of salivary neurones were twice as large as those of cardiac neurones, as indicated by the values of their membrane capacitance (36 pF vs. 18 pF). (3) There was a greater Na+ current density (169 pA/pF vs. 128 pA/pF) in salivary than in cardiac neurones. (4) Recovery from inactivation was faster in salivary neurones with 90% recovery time being 93 ms for salivary and 144 ms in cardiac neurones. (5) Half-activation times were voltage-dependent and consistently longer for salivary than for cardiac neurones. (6) Remaining parameters, such as current threshold, maximum current voltage and kinetics of steady-state inactivation did not significantly differ in salivary compared to cardiac neurones.
Collapse
Affiliation(s)
- K Kukuła
- Katedra i Zakład Fizjologii Czlowieka, Akademii Medycznej w Warszawie, Warsaw, Poland
| | | |
Collapse
|
21
|
Abstract
The influence of angiotensin II (ANG II) on sympathetic ganglionic transmission was examined in the in situ, normally perfused, superior cervical ganglion in pentobarbitone-anaesthetized rabbits. Compound action potentials were evoked in the external carotid nerve by repetitive electrical stimulation of the decentralized preganglionic cervical sympathetic nerve (supramaximal intensity, 1 ms, 0.5 Hz). A continuous partial nicotinic block was maintained by intravenous infusion of hexamethonium. The converting enzyme inhibitor captopril was infused to prevent the endogenous generation of ANG II. Graduated intravenous infusion of ANG II brought about graduated increases in the height of the S2 potential; the threshold rate of infusion for this effect was 40 ng min-1. At this infusion rate, the plasma concentration of ANG II was estimated to lie between 80 and 600 pg ml-1. While ANG II can modify sympathetic ganglionic transmission, it is unlikely that it has any effect at physiological plasma concentrations of circulating ANG II reported for the rabbit (2-80 pg ml-1).
Collapse
Affiliation(s)
- C J Sullivan
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
22
|
Grkovic I, Anderson CR. Calbindin D28K-immunoreactivity identifies distinct subpopulations of sympathetic pre- and postganglionic neurons in the rat. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970922)386:2<245::aid-cne6>3.0.co;2-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Abstract
The properties of the postganglionic sympathetic neurones supplying the heart and arising in the stellate and adjacent paravertebral ganglia of various species are discussed with respect to their location, morphology, synaptic input and membrane characteristics. Results from our laboratory on the morphology of rat stellate neurones projecting to the heart were obtained either by intracellular injection of hexammine cobaltic (III) chloride or by retrograde labelling of cells using cobalt-lysine complex. Intracellular recordings were made from cells using electrodes filled either with potassium chloride plus hexammine cobaltic chloride or potassium acetate. Neurones which projected axons into cardiac nerve branches arising from the stellate ganglion were termed putative cardiac neurones, because of the possibility that some supply pulmonary targets. Putative cardiac neurones had unbranched axons and were ovoid or polygonal in shape, but showed considerable variation in soma size and in the complexity of dendritic trees. The mean two-dimensional surface area was 463 microns2 and the mean number of primary dendrites was seven. Other studies have found that the morphology of rat stellate ganglion neurones is similar to that of superior cervical ganglion cells. However, in strains of rat displaying spontaneous hypertension, dendritic length may be increased. Histochemical studies do not, as yet, seem to have demonstrated a distinctive neurochemical profile for stellate cardiac neurones, but various types of peptide-containing intraganglionic nerve fibres have been identified in the guinea pig. In our electrophysiological studies, putative cardiac neurones were found to receive a complex presynaptic input arising from the caudal sympathetic trunk and from T1 and T2 thoracic rami. In addition, 16% of cardiac neurones received a synaptic input from the cardiac nerve. The properties of postganglionic parasympathetic neurones distributed in the cardiac plexus and termed intrinsic cardiac neurones are discussed, including the results of studies on cultures of these neurones.
Collapse
MESH Headings
- Animals
- Axons/physiology
- Cell Membrane/chemistry
- Cell Membrane/physiology
- Dendrites/physiology
- Electric Conductivity
- Ganglia, Autonomic/anatomy & histology
- Ganglia, Autonomic/cytology
- Ganglia, Autonomic/physiology
- Ganglia, Parasympathetic/anatomy & histology
- Ganglia, Parasympathetic/cytology
- Ganglia, Parasympathetic/physiology
- Ganglia, Sympathetic/anatomy & histology
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/physiology
- Heart/innervation
- Immunohistochemistry
- Rats
- Rats, Wistar
- Stellate Ganglion/anatomy & histology
- Stellate Ganglion/cytology
- Stellate Ganglion/physiology
Collapse
Affiliation(s)
- D Wallis
- School of Molecular and Medical Biosciences, University of Wales College of Cardiff, Wales
| | | | | |
Collapse
|