1
|
Wongdee K, Chanpaisaeng K, Teerapornpuntakit J, Charoenphandhu N. Intestinal Calcium Absorption. Compr Physiol 2021; 11:2047-2073. [PMID: 34058017 DOI: 10.1002/cphy.c200014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article, we focus on mammalian calcium absorption across the intestinal epithelium in normal physiology. Intestinal calcium transport is essential for supplying calcium for metabolism and bone mineralization. Dietary calcium is transported across the mucosal epithelia via saturable transcellular and nonsaturable paracellular pathways, both of which are under the regulation of 1,25-dihydroxyvitamin D3 and several other endocrine and paracrine factors, such as parathyroid hormone, prolactin, 17β-estradiol, calcitonin, and fibroblast growth factor-23. Calcium absorption occurs in several segments of the small and large intestine with varying rates and capacities. Segmental heterogeneity also includes differential expression of calcium transporters/carriers (e.g., transient receptor potential cation channel and calbindin-D9k ) and the presence of favorable factors (e.g., pH, luminal contents, and gut motility). Other proteins and transporters (e.g., plasma membrane vitamin D receptor and voltage-dependent calcium channels), as well as vesicular calcium transport that probably contributes to intestinal calcium absorption, are also discussed. © 2021 American Physiological Society. Compr Physiol 11:1-27, 2021.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krittikan Chanpaisaeng
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
2
|
Wongdee K, Rodrat M, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Factors inhibiting intestinal calcium absorption: hormones and luminal factors that prevent excessive calcium uptake. J Physiol Sci 2019; 69:683-696. [PMID: 31222614 PMCID: PMC10717634 DOI: 10.1007/s12576-019-00688-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022]
Abstract
Besides the two canonical calciotropic hormones, namely parathyroid hormone and 1,25-dihydroxyvitamin D [1,25(OH)2D3], there are several other endocrine and paracrine factors, such as prolactin, estrogen, and insulin-like growth factor that have been known to directly stimulate intestinal calcium absorption. Generally, to maintain an optimal plasma calcium level, these positive regulators enhance calcium absorption, which is indirectly counterbalanced by a long-loop negative feedback mechanism, i.e., through calcium-sensing receptor in the parathyroid chief cells. However, several lines of recent evidence have revealed the presence of calcium absorption inhibitors present in the intestinal lumen and extracellular fluid in close vicinity to enterocytes, which could also directly compromise calcium absorption. For example, luminal iron, circulating fibroblast growth factor (FGF)-23, and stanniocalcin can decrease calcium absorption, thereby preventing excessive calcium uptake under certain conditions. Interestingly, the intestinal epithelial cells themselves could lower their rate of calcium uptake after exposure to high luminal calcium concentration, suggesting a presence of an ultra-short negative feedback loop independent of systemic hormones. The existence of neural regulation is also plausible but this requires more supporting evidence. In the present review, we elaborate on the physiological significance of these negative feedback regulators of calcium absorption, and provide evidence to show how our body can efficiently restrict a flood of calcium influx in order to maintain calcium homeostasis.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mayuree Rodrat
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Nateetip Krishnamra
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand.
| |
Collapse
|
3
|
Meedeniya ACB, Schloithe AC, Toouli J, Saccone GTP. Characterization of the intrinsic and extrinsic innervation of the gall bladder epithelium in the Australian Brush-tailed possum (Trichosurus vulpecula). Neurogastroenterol Motil 2003; 15:383-92. [PMID: 12846726 DOI: 10.1046/j.1365-2982.2003.00417.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsic neurones of the gall bladder modulate its function. Nitric oxide synthase (NOS) and vasoactive intestinal polypeptide (VIP) are present in gall bladder neurones and nitric oxide and VIP modulate its epithelial functions. As an extensive extrinsic innervation of the gall bladder is also present, the source of the epithelial innervation is unclear. In this study the source of the gall bladder epithelial innervation is defined. Immunoreactivity for VIP, NOS, substance P (SP), calcitonin gene related peptide (CGRP) and tyrosine hydroxylase (TH) in organotypic cultured and freshly fixed gall bladder were compared. Retrograde tracing in vitro from the epithelium was used to identify putative intrinsic secretomotor neurones, which were then characterized by immunohistochemistry. Abundant spinal afferent and sympathetic innervation of the gall bladder epithelium was demonstrated by CGRP/SP and TH immunohistochemistry, respectively. The intrinsic secretomotor innervation of the epithelium is derived exclusively from neurones of the subepithelial plexus. A majority of these neurones were immunoreactive for NOS. Some of the NOS-immunoreactive neurones of the subepithelial plexus also contained VIP and/or SP. Gall bladder subepithelial plexus neurones, containing NOS and/or VIP/SP, innervate the epithelium, as do extrinsic neurones.
Collapse
Affiliation(s)
- A C B Meedeniya
- Department of General and Digestive Surgery, Centre for Neuroscience, Flinders University, Flinders Medical Centre, Australia
| | | | | | | |
Collapse
|
4
|
Nilsson B, Valantinas J, Hedin L, Friman S, Svanvik J. Acetazolamide inhibits stimulated feline liver and gallbladder bicarbonate secretion. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 174:117-23. [PMID: 11860373 DOI: 10.1046/j.1365-201x.2002.00929.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bile acidification is a key factor in preventing calcium carbonate precipitation and gallstone formation. Carbonic anhydrase II (CA II), that is inhibited by acetazolamide, plays a role in regulation of the acid-base balance in many tissues. This study examines the effect of acetazolamide on secretin- and vasoactive intestinal peptide (VIP)-stimulated gallbladder mucosal bicarbonate and acid secretion. Gallbladders in anaesthetized cats were perfused with a bicarbonate buffer bubbled with CO2 in air. In 20 experiments VIP (10 microg kg(-1) h(-1)) and in 10 experiments secretin (4 microg kg(-1) h(-1)) were infused continuously intravenous (i.v.). Hepatic bile and samples from the buffer before and after perfusion of the gallbladder were collected for calculation of ion and fluid transport. During basal conditions a continuous secretion of H+ by the gallbladder mucosa was seen. Intravenous infusion of vasoactive intestinal peptide (VIP) and secretin caused a secretion of bicarbonate from the gallbladder mucosa (P < 0.01). This secretion was reduced by intraluminal (i.l.) acetazolamide (P < 0.01). Bile flow was enhanced by infusion of VIP and secretin (P < 0.01) but this stimulated outflow was not affected by i.v. acetazolamide. The presence of CA II in the gallbladder was demonstrated by immunoblotting. Biliary CA activity has an important function in the regulation of VIP- and secretin-stimulated bicarbonate secretion across the gallbladder mucosa.
Collapse
Affiliation(s)
- B Nilsson
- Department of Surgery, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden
| | | | | | | | | |
Collapse
|