1
|
Vakalopoulos C. Neuropharmacology of cognition and memory: A unifying theory of neuromodulator imbalance in psychiatry and amnesia. Med Hypotheses 2006; 66:394-431. [PMID: 16300905 DOI: 10.1016/j.mehy.2005.09.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/23/2005] [Accepted: 09/27/2005] [Indexed: 12/14/2022]
Abstract
The case of HM, a man with intractable epilepsy who became amnesic following bilateral medial temporal lobe surgery nearly half a century ago has instigated ongoing research and theoretical speculation on the nature of memory and the role of the hippocampus. Neuropsychological testing showed that although HM had extensive anterograde memory loss he could still acquire motor and cognitive skills implicitly, but could not remember the context of this learning. This has lead to declarative and procedural descriptions of the memory process. Cholinergic and monoaminergic neurotransmitter systems have also been implicated in the memory process and anticholinergic drugs traditionally have been associated with impairment of declarative memory. The cholinergic hypothesis of Alzheimer's disease is a classic example of an application of these neuropharmacological findings. In schizophrenia, preattentive deficits have been amply demonstrated by unconscious priming studies. Memory processes are also impaired in these patients. Dopamine, glutamate and even cholinergic dysfunction has been implicated in the clinical picture of schizophrenia. The present paper will attempt to bring together both the anatomical and pharmacological data from these disparate fields of research under a cohesive theory of cognition and memory. A hypothesis is presented for an inverse relationship between monoaminergic and cholinergic systems in the modulation of implicit (unconscious) and explicit (conscious) cognitive processes. It is postulated that muscarinic cholinergic receptors and monoaminergic systems facilitate unconscious and conscious processes, respectively, and they disfacilitate conscious and unconscious processes, respectively (the purported inverse relationship). In fact, the muscarinic and monoaminergic modulations of a neural network are proposed to be finely balanced such that, if, the activity of one receptor system is modified then this by necessity has effects on the other system. It takes into account receptor subtypes and their effects mediated through excitatory and inhibitory G-protein complexes. For example, m1/D2 and D1/m4 paired receptor subtypes, colocalized on separate neurons would have opposing functional effects. A theory is then presented that the critical underlying pathophysiology of schizophrenia involves a hypofunctional muscarinic cholinergic system, which induces abnormal facilitation of monoaminergic subsystems such as dopamine (e.g., a decrease in m1R function would potentiate D2R function). This extends the idea of an inverted U function for optimal monoaminergic concentrations. Not only would this impair unconscious preattentive processes, but according to the hypothesis, explicit cognition as well including memory deficits and would underlie the mechanism of psychosis. Contrary to current thinking a different view is also presented for the role of the hippocampus in the memory process. It is postulated that long-term explicit memory traces in the neocortex are laid down by phasic coactivation of forebrain projecting monoaminergic systems above some basal firing rate, such as the rostral serotonergic raphe, which projects diffusely to the cortex and according to a modified Hebbian principle. This is the proposed principal function of the hippocampal theta rhythm. The phasic activation of the cholinergic basal forebrain is mediated by projections from a separate cortical structure, possibly the lateral prefrontal cortex. Phasic muscarinic receptor activation is proposed to strengthen implicit memory traces (at a synaptic level) in the neocortex. Thus, the latter are spared by medial temporal surgery explaining the dissociation of explicit from implicit memory.
Collapse
|
2
|
Zhang Y, Dyck RH, Hamilton SE, Nathanson NM, Yan J. Disrupted tonotopy of the auditory cortex in mice lacking M1 muscarinic acetylcholine receptor. Hear Res 2005; 201:145-55. [PMID: 15721569 DOI: 10.1016/j.heares.2004.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 10/15/2004] [Indexed: 10/26/2022]
Abstract
Sensory cortices have multiple and distinct functional maps that systematically represent environmental information. Development of these maps is precisely controlled by a number of intrinsic and extrinsic factors. Cortical cholinergic regulation is a crucial factor for normal cortical morphogenesis. In this study, we test the role of the M1 muscarinic acetylcholine receptor, the main muscarinic receptor subtype in the neocortex in the development of tonotopic maps in the auditory cortex. Mice lacking M1 receptors have normal hearing sensitivity but exhibit disrupted tonotopic organization and frequency tuning in the auditory cortex. In contrast, tonotopic organization and frequency tuning remain normal in the auditory midbrain. In addition, cortical layer IV neurons of M1 mutants exhibit significantly shorter or sparser dendrites compared to neurons of wildtype mice. In summary, our data suggest that the M1 receptor appears to be critical for the refinement or normal maturation of cortical tonotopy that is guided by thalamocortical inputs during early development.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Physiology and Biophysics, Neuroscience Research Group, Faculty of Medicine, University of Calgary, Calgary, Alb., T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
3
|
Abstract
Acetylcholine is involved in a variety of brain functions. In the visual cortex, the pattern of cholinergic innervation varies considerably across different mammalian species and across different cortical layers within the same species. The physiological effects of acetylcholine in the visual cortex display complex responses, which are likely due to cholinergic receptor subtype composition in cytoplasm membrane as well as interaction with other transmitter systems within the local neural circuitry. The functional role of acetylcholine in visual cortex is believed to improve the signal-to-noise ratio of cortical neurons during visual information processing. Available evidence suggests that acetylcholine is also involved in experience-dependent visual cortex plasticity. At the level of synaptic transmission, activation of muscarinic receptors has been shown to play a permissive role in visual cortex plasticity. Among the muscarinic receptor subtypes, the M(1) receptor seems to make a predominant contribution towards modifications of neural circuitry. The signal transduction cascade of the cholinergic pathway may act synergistically with that of the NMDA receptor pathway, whose activation is a prerequisite for cortical plasticity.
Collapse
Affiliation(s)
- Qiang Gu
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
4
|
Wahle P, Di Cristo G, Schwerdtfeger G, Engelhardt M, Berardi N, Maffei L. Differential effects of cortical neurotrophic factors on development of lateral geniculate nucleus and superior colliculus neurons: anterograde and retrograde actions. Development 2003; 130:611-22. [PMID: 12490566 DOI: 10.1242/dev.00224] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neurotrophins strongly affect visual system development and plasticity. However, the mode of delivery and targets of neurotrophin action are still under debate. For instance, cortical NT-4/5 (neurotrophin 4/5; Ntf4/5) was shown to rescue lateral geniculate nucleus (LGN) neurons from monocular deprivation-induced atrophy suggesting a retrograde action on thalamic afferents. It is still unclear whether LGN neurons respond to NT-4/5 and other neurotrophins during development in animals with normal vision. We now show that infusions of NT-4/5 and NGF (nerve growth factor) into visual cortex at the onset and the peak of the critical period accelerated LGN neuron growth. BDNF (brain-derived neurotrophic factor) was ineffective. The effects of neurotrophin on LGN development were clearly dissociated from the effects at cortical level because soma growth of cortical layer IV and VI neurons was strongly promoted by BDNF. NT-4/5 was only effective at the onset, but no longer at the peak of the critical period suggesting a switch in neurotrophin dependency for these cortical cell classes. To dissociate retrograde and anterograde effects of the TrkB ligands, we analyzed the stratum griseum superficiale (SGS) of the superior colliculus, a target of visual cortical efferents. Indeed, TrkB-expressing inhibitory SGS neurons responded to cortical NT-4/5 infusion with somatic growth. Strikingly, the TrkB-expressing excitatory tectothalamic calbindin neurons in the SGS did not respond. This demonstrated for the first time a selective cell type-specific anterograde action of NT-4/5 and suggested for the LGN that anterograde as well as retrograde effects contribute to soma size regulation. Strikingly, cortical infusion of the cytokine LIF, which affects development of visual cortex neurochemical architecture, transiently inhibited growth of neurons in LGN, cortical layer IV and VI and SGS. In summary, the study presents three important results. First, central neurons regulate soma size development in an age-and ligand-specific fashion. Second, NT-4/5 and NGF accelerate LGN development in rats with normal vision while LIF delays growth. Third, anterogradely transported NT-4/5 effectively promotes neuronal maturation. These differential actions on subcortical neurons may contribute to the different effects of neurotrophins on visual system development and plasticity.
Collapse
Affiliation(s)
- Petra Wahle
- AG Entwicklungsneurobiologie ND 6/72, Fakultät für Biologie, Ruhr-Universität, 44780 Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
Nishimura A, Hohmann CF, Johnston MV, Blue ME. Neonatal electrolytic lesions of the basal forebrain stunt plasticity in mouse barrel field cortex. Int J Dev Neurosci 2002; 20:481-9. [PMID: 12392751 DOI: 10.1016/s0736-5748(02)00078-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Previous studies have shown that neonatal electrolytic lesions of basal forebrain cholinergic projections in mice lead to a transient cholinergic depletion of neocortex and to permanent alterations in cortical cytoarchitecture and in cognitive performance. The present study examines whether neonatal electrolytic lesions of the basal forebrain modify neocortical plasticity. Using cytochrome oxidase histochemistry, we compared cross-sectional areas of individual barrels in the barrel field of four groups of postnatal day 8 (P8) old mice that on P1 received either (1) right electrolytic lesions of the basal forebrain, (2) left C row 1-4 whisker follicle ablations, (3) combined lesion treatments or (4) ice anesthesia only. The size of barrels in basal forebrain lesioned animals was not significantly different from controls. However, the plastic response to whisker removal was compromised in basal forebrain lesioned animals. An index of plasticity, the ratio of row D/row C areas, was reduced significantly in the combined nBM lesioned/follicle ablation group. Compared to whisker-lesioned mice, the expansion in rows B and D and the shrinkage in the lesioned row C area were diminished in the combined treatment group. The present findings correspond to those from a study of rats injected with a cholinergic immunotoxin [Cereb. Cortex 8 (1998) 63]. These results suggest that cholinergic inputs play a role in regulating plasticity as well as in the morphogenesis of mouse sensory-motor cortex.
Collapse
Affiliation(s)
- Akira Nishimura
- Neuroscience Laboratory, The Kennedy Krieger Research Institute, 707 North Broadway, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Cortical neuromodulatory transmitter systems refer to those classical neurotransmitters such as acetylcholine and monoamines, which share a number of common features. For instance, their centers are located in subcortical regions and send long projection axons to innervate the cortex. The same transmitter can either excite or inhibit cortical neurons depending on the composition of postsynaptic transmitter receptor subtypes. The overall functions of these transmitters are believed to serve as chemical bases of arousal, attention and motivation. The anatomy and physiology of neuromodulatory transmitter systems and their innervations in the cerebral cortex have been well characterized. In addition, ample evidence is available indicating that neuromodulatory transmitters also play roles in development and plasticity of the cortex. In this article, the anatomical organization and physiological function of each of the following neuromodulatory transmitters, acetylcholine, noradrenaline, serotonin, dopamine, and histamine, in the cortex will be described. The involvement of these transmitters in cortical plasticity will then be discussed. Available data suggest that neuromodulatory transmitters can modulate the excitability of cortical neurons, enhance the signal-to-noise ratio of cortical responses, and modify the threshold for activity-dependent synaptic modifications. Synaptic transmissions of these neuromodulatory transmitters are mediated via numerous subtype receptors, which are linked to multiple signal transduction mechanisms. Among the neuromodulatory transmitter receptor subtypes, cholinergic M(1), noradrenergic beta(1) and serotonergic 5-HT(2C) receptors appear to be more important than other receptor subtypes for cortical plasticity. In general, the contribution of neuromodulatory transmitter systems to cortical plasticity may be made through a facilitation of NMDA receptor-gated processes.
Collapse
Affiliation(s)
- Q Gu
- Brain Research Center, and Department of Ophthalmology, University of British Columbia, and Vancouver Hospital and Health Sciences Center, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9.
| |
Collapse
|
7
|
Erisir A, Levey AI, Aoki C. Muscarinic receptor M(2) in cat visual cortex: laminar distribution, relationship to gamma-aminobutyric acidergic neurons, and effect of cingulate lesions. J Comp Neurol 2001; 441:168-85. [PMID: 11745643 DOI: 10.1002/cne.1405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acetylcholine can have diverse effects on visual cortical neurons as a result of variations in postsynaptic receptor subtypes as well as the types of neurons and subcellular sites targeted. This study examines the cellular basis for cholinergic activation in visual cortex via M(2) type muscarinic receptors in gamma-aminobutyric acid (GABA)-ergic and non-GABAergic cells, using immunocytochemical techniques. At light microscopic resolution, M(2) immunoreactivity (-ir) was seen in all layers except area and sublayer specific bands in layer 4. Subcellularly, M(2)-ir occurred in both dendrites and terminals that form symmetric and asymmetric junctions. Layers 5 and 6 were characterized by axosomatic contacts that displayed labeling in the presynaptic component, and layer 6 displayed perikaryal postsynaptic staining, suggesting that corticofugal output neurons may be modulated particularly strongly via M(2). Infragranular layers differed from the supragranular layers in that more labeled profiles were axonal than dendritic, indicating a dominant presynaptic effect by acetylcholine via M(2) there. Unilateral cingulate cortex cuts caused reduction of cholinergic and noradrenergic fibers in the lesioned hemisphere at light microscopic resolution; at electron microscopic resolution, the synapse density and axonal M(2) labeling were reduced, suggesting that M(2) was localized presynaptically on extrathalamic modulatory inputs. Dual labeling with GABA in visual cortex layer 5 showed that half of M(2)-labeled dendrites originated from GABAergic neurons. Given that only one-fifth of all cortical dendritic profiles are GABAergic, this prevalence of dual labeling indicates an enrichment of M(2) within GABAergic dendrites and, thus, implicates abundant postsynaptic action on GABAergic neurons via M(2). In contrast, only one-tenth of M(2)-labeled terminals originated from GABAergic neurons, suggesting that the presynaptic action of acetylcholine via M(2) receptors would be more selective for non-GABAergic terminals.
Collapse
Affiliation(s)
- A Erisir
- Department of Psychology, University of Virginia, 102 Gilmer Hall, Charlottesville, VA 22904, USA.
| | | | | |
Collapse
|
8
|
Kojic L, Gu Q, Douglas RM, Cynader MS. Laminar distribution of cholinergic- and serotonergic-dependent plasticity within kitten visual cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 126:157-62. [PMID: 11248349 DOI: 10.1016/s0165-3806(00)00146-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both cholinergic and serotonergic modulatory projections to mammalian striate cortex have been demonstrated to be involved in the regulation of postnatal plasticity, and a striking alteration in the number and intracortical distribution of cholinergic and serotonergic receptors takes place during the critical period for cortical plasticity. As well, agonists of cholinergic and serotonergic receptors have been demonstrated to facilitate induction of long-term synaptic plasticity in visual cortical slices supporting their involvement in the control of activity-dependent plasticity. We recorded field potentials from layers 4 and 2/3 in visual cortex slices of 60--80 day old kittens after white matter stimulation, before and after a period of high frequency stimulation (HFS), in the absence or presence of either cholinergic or serotonergic agonists. At these ages, the HFS protocol alone almost never induced long-term changes of synaptic plasticity in either layers 2/3 or 4. In layer 2/3, agonist stimulation of m1 receptors facilitated induction of long-term potentiation (LTP) with HFS stimulation, while the activation of serotonergic receptors had only a modest effect. By contrast, a strong serotonin-dependent LTP facilitation and insignificant muscarinic effects were observed after HFS within layer 4. The results show that receptor-dependent laminar stratification of synaptic modifiability occurs in the cortex at these ages. This plasticity may underly a control system gating the experience-dependent changes of synaptic organization within developing visual cortex.
Collapse
Affiliation(s)
- L Kojic
- Brain Research Centre, University of British Columbia and Vancouver Hospital and Health Sciences Centre, 2550 Willow Street, Vancouver, British Columbia, Canada V5Z 3N9.
| | | | | | | |
Collapse
|
9
|
Aramakis VB, Bandrowski AE, Ashe JH. Role of muscarinic receptors, G-proteins, and intracellular messengers in muscarinic modulation of NMDA receptor-mediated synaptic transmission. Synapse 1999; 32:262-75. [PMID: 10332802 DOI: 10.1002/(sici)1098-2396(19990615)32:4<262::aid-syn3>3.0.co;2-j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previously, we reported that activation of muscarinic receptors modulates N-methyl-D-aspartate (NMDA) receptor-mediated synaptic transmission in auditory neocortex [Aramakis et al. (1997a) Exp Brain Res 113:484-496]. Here, we describe the muscarinic subtypes responsible for these modulatory effects, and a role for G-proteins and intracellular messengers. The muscarinic agonist oxotremorine-M (oxo-M), at 25-100 microM, produced a long-lasting enhancement of NMDA-induced membrane depolarizations. We examined the postsynaptic G-protein dependence of the modulatory effects of oxo-M with the use of the G-protein activator GTP gamma S and the nonhydrolyzable GDP analog GDP beta S. Intracellular infusion of GTP gamma S mimicked the facilitating actions of oxo-M. After obtaining the whole-cell recording configuration, there was a gradual, time-dependent increase of the NMDA receptor-mediated slow-EPSP, and of iontophoretic NMDA-induced membrane depolarizations. In contrast, intracellular infusion of either GDP beta S or the IP3 receptor antagonist heparin prevented oxo-M mediated enhancement of NMDA depolarizations. The muscarinic receptor involved in enhancement of NMDA iontophoretic responses is likely the M1 receptor, because the increase was prevented by pirenzepine, but not the M2 antagonists methoctramine or AF-DX 116. Oxo-M also reduced the amplitude of the pharmacologically isolated slow-EPSP, and this effect was blocked by M2 antagonists. Thus, muscarinic-mediated enhancement of NMDA responses involves activation of M1 receptors, leading to the engagement of a postsynaptic G-protein and subsequent IP3 receptor activity.
Collapse
MESH Headings
- Animals
- Auditory Cortex/drug effects
- Auditory Cortex/physiology
- Calcium Channels/chemistry
- Excitatory Postsynaptic Potentials/drug effects
- GTP-Binding Proteins/drug effects
- GTP-Binding Proteins/physiology
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Guanosine Diphosphate/analogs & derivatives
- Guanosine Diphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate Receptors
- Male
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Oxotremorine/analogs & derivatives
- Oxotremorine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Muscarinic M1
- Receptor, Muscarinic M2
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Second Messenger Systems/drug effects
- Second Messenger Systems/physiology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Thionucleotides/pharmacology
Collapse
Affiliation(s)
- V B Aramakis
- Department of Neuroscience, University of California, Riverside 92521, USA
| | | | | |
Collapse
|
10
|
Gu Q, Liu Y, Dyck RH, Booth V, Cynader MS. Effects of tetrodotoxin treatment in LGN on neuromodulatory receptor expression in developing visual cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 106:93-9. [PMID: 9554966 DOI: 10.1016/s0165-3806(97)00200-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression and distribution patterns of transmitter receptors change dramatically during pre- and post-natal development of the visual cortex, but the factors that control these processes are largely unknown. We have tested the hypothesis that input activity from the lateral geniculate nucleus (LGN), one major input source to visual cortex, may contribute to the processes underlying transmitter receptor redistributions in the visual cortex during development. We found that a short period of tetrodotoxin (TTX) treatment in LGN retarded the developmental expression and age-dependent reorganization of neuromodulatory receptors, including muscarinic, serotonergic and adrenergic receptors, in kitten primary visual cortex. The visual cortices ipsilateral to the TTX infusion site displayed a 'younger' receptor pattern than that of their contralateral control counterparts in the same animals. The results suggest that active input from LGN regulates the expression profile of a broad range of receptors in the developing visual cortex.
Collapse
Affiliation(s)
- Q Gu
- Department of Ophthalmology, University of British Columbia, Vancouver, Canada.
| | | | | | | | | |
Collapse
|
11
|
Ortega A, del Guante MA, Prado-Alcalá RA, Alemán V. Changes in rat brain muscarinic receptors after inhibitory avoidance learning. Life Sci 1996; 58:799-809. [PMID: 8632727 DOI: 10.1016/0024-3205(95)02358-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It is widely accepted that cerebral acetylcholine is necessary for learning and memory, but little is known about the type of muscarinic receptors involved in these functions. To investigate this problem, [3H]-N-methyl-scopolamine which binds to different types of muscarinic receptors, [3H]-Pirenzepine an M1 receptor antagonist, and [3H]-Oxotremorine-M which binds mainly to M2 receptors, were used as ligands to look for possible changes in muscarinic receptor density in neostriatum (NEO), hippocampus (HIP), amygdala (AMY), and temporo-parietal neocortex (CTX), after testing for retention of inhibitory avoidance, trained with high or low footshock intensities. After low reinforcement there was an M1 postsynaptic receptor up-regulation in NEO, HIP, and CTX, and an M2 presynaptic receptor down-regulation in HIP, which suggests a concerted pre- and postsynaptic cholinergic activation in this area. An up-regulation of both M1 and M2 receptors was detected in CTX of low and high footshocked animals, which indicates the presence of a cortical postsynaptic M2 receptor.
Collapse
Affiliation(s)
- A Ortega
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, IPN, México
| | | | | | | |
Collapse
|
12
|
Głazewski S, Kossut M, Skangiel-Kramska J. NMDA receptors in mouse barrel cortex during normal development and following vibrissectomy. Int J Dev Neurosci 1995; 13:505-14. [PMID: 8553884 DOI: 10.1016/0736-5748(95)00051-h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The development of N-methyl-D-aspartate (NMDA) receptors and the effects of vibrissectomy upon [3H]MK-801 binding were examined in the barrel cortex of mice. Autoradiographic studies showed that initially very low binding of [3H]MK-801 sharply increased during the second postnatal week reaching the adult level by the end of the third week. Scatchard analysis performed on cortical membrane preparations indicated that this rise of [3H]MK-801 labelling was due to an increase in the number of binding sites and a decrease of Kd at postnatal day 15 and 28. The interlaminar differences of labelling were registered from postnatal day 8. Changes of interlaminar distribution were found during the second and third postnatal weeks. In adult barrel cortex the highest binding was found in supragranular layers. In layer IV of the cortex, the pattern of binding resembled the pattern of barrels. Unilateral denervation of vibrissae performed in neonatal and adult mice did not alter the intensity of [3H]MK-801 labelling or the laminar distribution of binding sites. These results suggest that NMDA receptor binding does not reflect the plastic changes occurring in the barrel cortex.
Collapse
Affiliation(s)
- S Głazewski
- Department of Neurophysiology, Nencki Institute, Warsaw, Poland
| | | | | |
Collapse
|
13
|
Hohmann CF, Potter ED, Levey AI. Development of muscarinic receptor subtypes in the forebrain of the mouse. J Comp Neurol 1995; 358:88-101. [PMID: 7560279 DOI: 10.1002/cne.903580106] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cholinergic mechanisms are involved in the regulation of developmental events in the nervous system. Muscarinic cholinergic receptors are thought to be the predominant mediator of cholinergic neurotransmission in the forebrain; however, their developmental role is less well understood. The present study takes advantage of subtype-specific antibodies to muscarinic receptor proteins to investigate the cellular localization of the subtypes in developing mouse forebrain. Receptor protein expression was assessed between postnatal day (PND) 5 and adulthood by immunocytochemical methods with antibodies to m1, m2, and m4 receptors, the most abundant subtypes in rodent brain. We have found dramatic developmental changes in the distribution of all three receptors. In the adult mouse, m1 and m2 receptor immunoreactivity displayed complementary staining patterns in most forebrain areas with m4 sharing similarities in pattern with both m1 and m2. Furthermore, each receptor was expressed transiently in gray matter areas or fiber bundles at various developmental stages. The m4 receptor was also expressed in developing blood vessels. Such transient immunoreactivity was usually associated with times and areas of dynamic morphogenesis, thus suggesting distinct roles for the receptor subtypes in ontogenetic events.
Collapse
Affiliation(s)
- C F Hohmann
- Morgan State University, Department of Biology, Baltimore, MD 21239, USA
| | | | | |
Collapse
|
14
|
Jia WW, Liu Y, Lepore F, Ptito M, Cynader M. Development and regulation of alpha adrenoceptors in kitten visual cortex. Neuroscience 1994; 63:179-90. [PMID: 7898647 DOI: 10.1016/0306-4522(94)90015-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alpha-1 and alpha-2 adrenergic receptors were localized in developing cat visual cortex by using [3H]prazosin and [3H]rauwolscine, respectively as selective ligands. The effects of neuronal input on the development of the two receptor subtypes were also studied in animals with lesions at various sites within the central visual pathways. Binding densities for both ligands increased during the first few postnatal weeks and declined thereafter. For both receptor subtypes, the highest concentration of binding sites was found in the subplate zone of the cortex in neonatal animals. Both ligands showed their highest concentrations in cortical layer IV beginning at postnatal day 30 and in the superficial cortical layers in adulthood. However, the developmental redistribution of alpha-1 receptors began at earlier ages than that of the alpha-2 sites. The alpha-1 sites were still concentrated in the subplate zone up to 60 days postnatal, while the alpha-2 sites in this region disappeared much earlier. Receptor binding densities were also examined in animals with quinolinic acid lesions within cortex, lesions of the lateral geniculate nucleus and lesions of the optic tract. The results indicate that both alpha-adrenoceptor subtypes were mainly located on cortical cells, and that the absence of neuronal activity during development resulted in a reduction of the binding density for both subtypes in the visual cortex. An additional major reduction in alpha-2 but not alpha-1 binding sites was observed following the lateral geniculate nucleus lesion, suggesting that the development of alpha-2 receptors is also dependent on input from the lateral geniculate nucleus. Removal of the lateral geniculate nucleus early in life resulted in a significant increase in alpha-1 receptors in the subplate region, indicating that receptor densities in this zone may be negatively regulated by the lateral geniculate nucleus afferents. These results show that adrenergic receptors reorganize during postnatal cortical development with a strong temporary concentration in the subplate zone. The reorganization process is heavily influenced by cortical inputs.
Collapse
MESH Headings
- Animals
- Animals, Newborn/physiology
- Autoradiography
- Cats
- Densitometry
- Geniculate Bodies/growth & development
- Geniculate Bodies/metabolism
- Ligands
- Prazosin
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/metabolism
- Visual Cortex/growth & development
- Visual Cortex/metabolism
- Yohimbine
Collapse
Affiliation(s)
- W W Jia
- Department of Ophthalmology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
15
|
Gupta N, McAllister R, Drance SM, Rootman J, Cynader MS. Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography. Br J Ophthalmol 1994; 78:555-9. [PMID: 7918268 PMCID: PMC504863 DOI: 10.1136/bjo.78.7.555] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Muscarinic cholinergic agents are used to lower intraocular pressure in the medical management of glaucoma and subtypes of muscarinic receptors have now been recognised in many tissues including the eye. To localise muscarinic receptors and their M1 and M2 subtypes in the human eye, in vitro ligand binding and autoradiographic techniques with densitometric quantitation on postmortem eye sections were used. As ligands, [3H] quinuclydinyl benzylate (QNB) (non-subtype specific muscarinic antagonist), [3H]pirenzipine (M1 antagonist), [3H]oxotremorine (M2 muscarinic agonist), [3H]AFDX-116(11[(2[diethylaminomethyl]1-piperidinyl)acetyl]5 , 11dihydro-6H-pyrido [2,3b][1,4]benzodiazepine-6-one) (M2 antagonist) were studied. Specific binding sites for QNB, pirenzipine, and AFDX-116 were localised in the entire ciliary muscle, the iris, and ciliary epithelium. [3H]oxotremorine localised only in the longitudinal portion of the ciliary muscle, and additionally, was not localised in the iris or ciliary epithelium. These results suggest that oxotremorine, by binding selectively to receptors on the longitudinal ciliary muscle and inducing its contraction, may modulate outflow facility independently from accommodation and miosis.
Collapse
Affiliation(s)
- N Gupta
- Department of Ophthalmology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
16
|
Liu Y, Jia W, Gu Q, Cynader M. Involvement of muscarinic acetylcholine receptors in regulation of kitten visual cortex plasticity. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 79:63-71. [PMID: 8070065 DOI: 10.1016/0165-3806(94)90049-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Receptor autoradiographic methods specific for M3 and M1 muscarinic acetylcholine receptors were used to investigate the development and input-dependent laminar redistribution of these receptor populations during the critical period for kitten visual cortex plasticity. Analysis of the binding curves of [3H]4-diphenylacetyl-N-methyl-piperidine (4-DAMP) and [3H]pirenzepine (PZ) indicated that these two ligands bound heterogeneously to muscarinic acetylcholine receptors with different affinities. While [3H]4-DAMP showed a high affinity for M3 receptors and much lower affinities for M1 and M2 receptors, [3H]PZ displayed higher affinity for M1 receptors. By carefully choosing concentrations of labelled and unlabeled ligands, the patterns of laminar distribution for both receptor subtypes within visual cortex were obtained. Both receptors were most concentrated in cortical layer IV immediately after birth and during the most sensitive period of visual cortex plasticity. The binding density for both receptor subtypes thinned out progressively in this layer to concentrate in more superficial layers as plasticity waned with age. Moreover, interruption of visual or spontaneous input to visual cortex induced either by lesion or by tetrodotoxin infusion into lateral geniculate nucleus prevented the developmental redistribution of these receptors from layer IV to superficial layers, that is, the pattern of laminar distribution remained that of the age at which the lesion or tetrodotoxin infusion into the lateral geniculate nucleus was performed. The results indicate that the developmental expression of M3 and M1 muscarinic acetylcholine receptors in kitten visual cortex depends on cortical inputs.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Liu
- Department of Ophthalmology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
17
|
Cline HT, McDonald JW, Constantine-Paton M. Glutamate receptor binding in juvenile and adult Rana pipiens CNS. JOURNAL OF NEUROBIOLOGY 1994; 25:488-502. [PMID: 8071657 DOI: 10.1002/neu.480250504] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Autoradiographic methods were used to map NMDA- and quisqualate-sensitive glutamate binding sites in the brain of mature and juvenile Rana pipiens frogs. NMDA- and quisqualate-sensitive sites were consistently co-localized in the CNS. The highest glutamate binding occurred in the telencephalon, hypothalamus, and cerebellum. Glutamate binding sites were also specifically localized in visual pathways, including the superficial neuropil of the optic tectum, consistent with glutamate being the retinal ganglion cell neurotransmitter. The distribution of glutamate binding sites in the brain of juvenile postmetamorphic frogs was similar to that in adults. In general, Quis binding increased about twofold in adults compared to juveniles, whereas NMDA binding did not show a comparable developmental increase. To test whether glutamate binding sites are located on retinal axon terminals or on tectal cell dendrites in the optic tectum, juvenile postmetamorphic frogs were enucleated unilaterally, and receptor binding was performed following 1, 3, 7, and 14 days survival. The denervated tectal neuropil showed a delayed decrease in NMDA- and quisqualate-sensitive binding, consistent with the receptors being located on postsynaptic tectal cell dendrites.
Collapse
Affiliation(s)
- H T Cline
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
18
|
Liu Y, Jia W, Strosberg AD, Cynader M. Development and regulation of beta adrenergic receptors in kitten visual cortex: an immunocytochemical and autoradiographic study. Brain Res 1993; 632:274-86. [PMID: 8149233 DOI: 10.1016/0006-8993(93)91162-l] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The developmental pattern and laminar distribution of beta 1 and beta 2 adrenergic receptor subtypes were studied in cat visual cortex with autoradiography using [125I]iodocyanopindolol as a ligand and also with immunocytochemistry using a monoclonal antibody directed against beta adrenergic receptors. In the primary visual cortex of adult cats, the laminar distributions of both beta 1 and beta 2 adrenergic receptors revealed by autoradiography were very similar, with concentrations in layers I, II, III and VI. In young kittens (postnatal days 1 and 10), fewer beta adrenergic receptors were present, and they were concentrated in the deep cortical layers (V-VI) and subcortical white matter. Between postnatal days 15 and 40, beta adrenergic receptors increased in density more quickly in the superficial layers than they did in the deep and middle cortical layers. By postnatal day 40, the adult pattern was achieved, with two bands of intense binding in the superficial and deep cortical layers and a lower density in layer IV. Immunocytochemical techniques applied to adult cat cortex showed that beta adrenergic receptor-like immunoreactivity was found in different populations of neurons and glial cells. The immunoreactive neural cells were most dense in layers II, III and VI. About 50% of these immunoreactive neural cells were glial cells, primarily astrocytes. Immunoreactive pyramidal cells were mostly located in layers III and V. In layer IV, many stellate cells were stained. Immunoreactive astrocytes in the subplate and white matter progressively increased in number during development until adulthood. The pattern of laminar distribution and the developmental process was not affected by interrupting noradrenergic innervation from locus coeruleus either before or after the critical period. However, when visual input was interrupted by lesions of the lateral geniculate nucleus in young kittens (postnatal day 10), the density of both beta adrenergic receptor subtypes decreased significantly in the deep cortical layers. Lateral geniculate nucleus lesions in adult cats resulted in a pronounced decrease in beta adrenergic receptor density in layer IV.
Collapse
Affiliation(s)
- Y Liu
- Department of Ophthalmology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
19
|
Gu Q, Singer W. Effects of intracortical infusion of anticholinergic drugs on neuronal plasticity in kitten striate cortex. Eur J Neurosci 1993; 5:475-85. [PMID: 8261123 DOI: 10.1111/j.1460-9568.1993.tb00514.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During a critical period of postnatal development the mammalian visual cortex is highly susceptible to experience-dependent alterations of neuronal response properties. These modifications are facilitated by the neuromodulators noradrenaline and acetylcholine. To identify the cholinergic mechanisms responsible for this facilitation, muscarinic and nicotinic antagonists were infused into the visual cortex of kittens while the animals were subject to monocular deprivation. Subsequently the ocular dominance of cortical cells was assessed by single-unit recording. Ocular dominance changes were suppressed by scopolamine and pirenzepine but not by gallamine, hexamethonium and mecamylamine. This blocking effect was concentration-dependent, and control experiments revealed that it was not due to suppression of neuronal responses to light. It is concluded from these results that acetylcholine facilitates neuronal plasticity in the visual cortex through mechanisms activated by muscarinic M1 receptors.
Collapse
Affiliation(s)
- Q Gu
- Department of Physiology, Max Planck Institute for Brain Research, Frankfurt, Germany
| | | |
Collapse
|
20
|
Skangiel-Kramska J, Rajkowska G, Kosmal A, Kossut M. The distribution of cholinergic muscarinic receptors in the dog frontal lobe. J Chem Neuroanat 1992; 5:391-8. [PMID: 1418752 DOI: 10.1016/0891-0618(92)90055-u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The topographical distribution of cholinergic muscarinic receptor (MChR) sites was studied by means of quantitative receptor autoradiography using [3H]quinuclidinyl benzilate ([3H]QNB) in the frontal (prefrontal, premotor and motor) cortex of the dog. The mean binding value in the frontal cortex was 408 +/- 5.0 fmol/mg tissue and the only area that differed significantly from the mean was the primary motor cortex, where the binding value was significantly lower. In the dorsal part of the prefrontal and premotor cortical subregions studied, a tri-laminar pattern of [3H]QNB labelling was observed, with a superficial dense band of label corresponding to cortical layers I, II and III. The deep high density band overlaid layer V and the upper part of the layer VI. In the ventral part of the prefrontal cortex this pattern gradually disappeared and in the most ventral part no laminar differences were seen. In contrast, in primary motor areas, the deep band of labelling corresponding to layer V was much less pronounced than in the frontal association cortex. Variations in the distribution of MChR sites seem to reflect to some extent the greater cytoarchitectonic differentiation of the dorsal zone and also the similarity between the ventral zone and the limbic cortex described by us previously.
Collapse
|
21
|
Liu Y, Jia WG, Strosberg AD, Cynader M. Morphology and distribution of neurons and glial cells expressing beta-adrenergic receptors in developing kitten visual cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 65:269-73. [PMID: 1315226 DOI: 10.1016/0165-3806(92)90188-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The morphology and distribution of cells expressing beta-adrenergic receptors has been studied in developing kitten visual cortex using a monoclonal antibody which recognizes both beta-1 and beta-2 adrenergic receptors. We found specific populations of neurons and glial cells which express beta-adrenergic receptor immunoreactivity in the kitten visual cortex. In adult animals, the receptors are most concentrated in the superficial and deep cortical layers (layers I, II, III and VI). About 50% of the stained neural cells in adult cat visual cortex are glial cells. Most of the immunoreactive neurons in layers III and V are pyramidal cells while those in layers II and IV are more likely to be nonpyramidal cells. In neonatal kittens, staining is weaker than that in adult cats and it appears to be concentrated in neurons of the deep cortical layers and in the subcortical plate and white matter. Only a few immunoreactive glial cells were found at this age. Receptor numbers increase after birth and by 24 days of age, the laminar distribution of beta-adrenergic receptors approaches that of adult animals. Immunoreactive glial cells in the white matter show a progressive increase in number throughout postnatal development.
Collapse
Affiliation(s)
- Y Liu
- Department of Ophthalmology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
22
|
Lin Y, Phillis JW. Muscarinic receptor agonist-mediated modulation of neuronal activity in rat cerebral cortex. Eur J Pharmacol 1991; 200:45-52. [PMID: 1722754 DOI: 10.1016/0014-2999(91)90663-b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple cortical neuronal responses were elicited by the iontophoretic application of muscarinic receptor agonists and antagonists in the rat cerebral sensorimotor cortex in vivo. (1) The muscarinic receptor agonist, oxotremorine-M induced a biphasic effect on spontaneous firing. This was evident as an early brief increase in the firing rate over the spontaneous discharge followed by secondary inhibition of spontaneous activity. The excitation could be blocked by the muscarinic receptor non-selective antagonist atropine and by both the M1 receptor antagonist pirenzepine and the M2 receptor antagonists gallamine or methoctramine. Oxotremorine-M inhibition of spontaneous activity was not affected by the M1 receptor antagonist pirenzepine, while evaluation of its sensitivity to gallamine and methoctramine was not possible since these two M2 receptor antagonists also depressed spontaneous activity, unlike pirenzepine. Of the other two muscarinic receptor agonists, oxotremorine had inconsistent and weak excitatory effects whilst McN-A-343 had only weak excitatory or inhibitory effects on spontaneous activity. (2) Oxotremorine-M, oxotremorine and McN-A-343 had a depressant action on neuronal discharges evoked by glutamate or acetylcholine. A depressant effect of oxotremorine-M was also demonstrated on the early excitation evoked by subsequent applications of oxotremorine-M itself. Of the three muscarinic receptor agonists tested, oxotremorine-M was the most potent in evoking a long-term depression of evoked discharges, lasting from several minutes (greater than 5 min) to as long as 40 min. Oxotremorine-M-induced depression of evoked responses was most sensitive to the M2 receptor antagonists, whereas oxotremorine-induced depression was more sensitive to the M1 receptor antagonist pirenzepine.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Lin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201
| | | |
Collapse
|
23
|
Lin Y, Phillis JW. Muscarinic agonist oxotremorine-M-induced long-term depression in rat cerebral cortex. Brain Res Bull 1991; 27:115-7. [PMID: 1682019 DOI: 10.1016/0361-9230(91)90291-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A long-lasting depression (LTD) of neuronal-evoked responses was induced in a dose-dependent fashion in neurons of rat sensorimotor cortex by a brief application of the muscarinic agonist oxotremorine-M. The depression was characterized as being of rapid onset (within 30 seconds), long duration (up to 40 minutes), and was evident for both glutamate- and acetylcholine-evoked discharges. Antagonism could be achieved by application of the nonspecific muscarinic antagonist atropine, and with the M2 antagonists gallamine or methoctramine. The M1 antagonist pirenzepine displayed only a weak effect. LTD could also be induced by the muscarinic agonists, oxotremorine and McN-A-343, but their potencies were lower than that of oxotremorine-M. Oxotremorine-M may be a useful tool for studies of long-term changes in synaptic efficacy.
Collapse
Affiliation(s)
- Y Lin
- Department of Physiology, Wayne State University, School of Medicine, Detroit, MI 48201
| | | |
Collapse
|