1
|
de Almeida VA, Geraci A, Brasil FL, Azevedo IG, da Silva LD, Simion F, Alves Pereira S. Effects of early visual deprivation on face detection in premature newborns. Perception 2025; 54:349-361. [PMID: 40165592 DOI: 10.1177/03010066251323778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
This study examined whether preterm infants possess a predisposition to follow face-like patterns and investigated the potential consequences of limited visual exposure to faces during the first weeks of life in preterm infants who experienced temporary visual deprivation due to phototherapy. The orienting responses (i.e., eyes and head movements toward two types of stimuli [face-like vs. scrambled]) of preterm infants were compared using a visual tracking paradigm. They were divided into two groups: preterm infants who underwent phototherapy for hyperbilirubinemia (experimental group) were compared with those who did not receive phototherapy and had no hyperbilirubinemia (control group). Both groups were assessed at 7 and 14 days of life (i.e., before and after phototherapy for the experimental group). Results demonstrated that both groups presented a preference for face-like stimuli at 7 days of life, which decreased in the experimental group at 14 days. This decrease may be due to the lack of visual experience with faces from wearing safety glasses during phototherapy. The findings supported theoretical views on how visual experiences mediate changes in face preferences.
Collapse
|
2
|
Brandt JP, Ackerman SD. Astrocyte regulation of critical period plasticity across neural circuits. Curr Opin Neurobiol 2025; 90:102948. [PMID: 39709647 DOI: 10.1016/j.conb.2024.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Critical periods are brief windows of heightened neural circuit plasticity that allow circuits to permanently reset their structure and function to facilitate robust organismal behavior. Understanding the cellular and molecular mechanisms that instruct critical period timing is of broad clinical interest, as altered developmental plasticity is linked to multiple neurodevelopmental disorders. While intrinsic, neuronal mechanisms shape both neural circuit remodeling and critical period timing, recent data indicate that signaling from astrocytes and surrounding glia can both promote and limit critical period plasticity. In this short review, we discuss recent breakthroughs in our understanding of astrocytes in critical period plasticity and highlight pioneering work in Drosophila.
Collapse
Affiliation(s)
- Jacob P Brandt
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Brain Immunology and Glia Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sarah D Ackerman
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Brain Immunology and Glia Center, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
3
|
Birch EE, Duffy KR. Leveraging neural plasticity for the treatment of amblyopia. Surv Ophthalmol 2024; 69:818-832. [PMID: 38763223 PMCID: PMC11380599 DOI: 10.1016/j.survophthal.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Amblyopia is a form of visual cortical impairment that arises from abnormal visual experience early in life. Most often, amblyopia is a unilateral visual impairment that can develop as a result of strabismus, anisometropia, or a combination of these conditions that result in discordant binocular experience. Characterized by reduced visual acuity and impaired binocular function, amblyopia places a substantial burden on the developing child. Although frontline treatment with glasses and patching can improve visual acuity, residual amblyopia remains for most children. Newer binocular-based therapies can elicit rapid recovery of visual acuity and may also improve stereoacuity in some children. Nevertheless, for both treatment modalities full recovery is elusive, recurrence of amblyopia is common, and improvements are negligible when treatment is administered at older ages. Insights derived from animal models about the factors that govern neural plasticity have been leveraged to develop innovative treatments for amblyopia. These novel therapies exhibit efficacy to promote recovery, and some are effective even at ages when conventional treatments fail to yield benefit. Approaches for enhancing visual system plasticity and promoting recovery from amblyopia include altering the balance between excitatory and inhibitory mechanisms, reversing the accumulation of proteins that inhibit plasticity, and harnessing the principles of metaplasticity. Although these therapies have exhibited promising results in animal models, their safety and ability to remediate amblyopia need to be evaluated in humans.
Collapse
Affiliation(s)
- Eileen E Birch
- Crystal Charity Ball Pediatric Vision Laboratory, Retina Foundation, Dallas, TX, USA; University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Shallow MC, Tian L, Lin H, Lefton KB, Chen S, Dougherty JD, Culver JP, Lambo ME, Hengen KB. At the onset of active whisking, the input layer of barrel cortex exhibits a 24 h window of increased excitability that depends on prior experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597353. [PMID: 38895408 PMCID: PMC11185658 DOI: 10.1101/2024.06.04.597353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The development of motor control over sensory organs is a critical milestone in sensory processing, enabling active exploration and shaping of the sensory environment. However, whether the onset of sensory organ motor control directly influences the development of corresponding sensory cortices remains unknown. Here, we exploit the late onset of whisking behavior in mice to address this question in the somatosensory system. Using ex vivo electrophysiology, we discovered a transient increase in the intrinsic excitability of excitatory neurons in layer IV of the barrel cortex, which processes whisker input, precisely coinciding with the onset of active whisking at postnatal day 14 (P14). This increase in neuronal gain was specific to layer IV, independent of changes in synaptic strength, and required prior sensory experience. Strikingly, the effect was not observed in layer II/III of the barrel cortex or in the visual cortex upon eye opening, suggesting a unique interaction between the development of active sensing and the thalamocortical input layer in the somatosensory system. Predictive modeling indicated that changes in active membrane conductances alone could reliably distinguish P14 neurons in control but not whisker-deprived hemispheres. Our findings demonstrate an experience-dependent, lamina-specific refinement of neuronal excitability tightly linked to the emergence of active whisking. This transient increase in the gain of the thalamic input layer coincides with a critical period for synaptic plasticity in downstream layers, suggesting a role in facilitating cortical maturation and sensory processing. Together, our results provide evidence for a direct interaction between the development of motor control and sensory cortex, offering new insights into the experience-dependent development and refinement of sensory systems. These findings have broad implications for understanding the interplay between motor and sensory development, and how the mechanisms of perception cooperate with behavior.
Collapse
Affiliation(s)
| | - Lucy Tian
- Department of Biology, Washington University in Saint Louis
| | - Hudson Lin
- Department of Biology, Washington University in Saint Louis
| | - Katheryn B Lefton
- Department of Biology, Washington University in Saint Louis
- Department of Neuroscience, Washington University in Saint Louis
| | - Siyu Chen
- Department of Genetics, Washington University in Saint Louis
| | | | - Joe P Culver
- Department of Radiology, Washington University in Saint Louis
| | - Mary E Lambo
- Department of Biology, Washington University in Saint Louis
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis
| |
Collapse
|
5
|
Sancho L, Boisvert MM, Dawoodtabar T, Burgado J, Wang E, Allen NJ. Astrocyte CCN1 stabilizes neural circuits in the adult brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585077. [PMID: 38559139 PMCID: PMC10979986 DOI: 10.1101/2024.03.14.585077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Neural circuits in many brain regions are refined by experience. Sensory circuits support higher plasticity at younger ages during critical periods - times of circuit refinement and maturation - and limit plasticity in adulthood for circuit stability. The mechanisms underlying these differing plasticity levels and how they serve to maintain and stabilize the properties of sensory circuits remain largely unclear. By combining a transcriptomic approach with ex vivo electrophysiology and in vivo imaging techniques, we identify that astrocytes release cellular communication network factor 1 (CCN1) to maintain synapse and circuit stability in the visual cortex. By overexpressing CCN1 in critical period astrocytes, we find that it promotes the maturation of inhibitory circuits and limits ocular dominance plasticity. Conversely, by knocking out astrocyte CCN1 in adults, binocular circuits are destabilized. These studies establish CCN1 as a novel astrocyte-secreted factor that stabilizes neuronal circuits. Moreover, they demonstrate that the composition and properties of sensory circuits require ongoing maintenance in adulthood, and that these maintenance cues are provided by astrocytes.
Collapse
|
6
|
Zhang WJ, Shi HZ, Guo MN, Xu LF, Zhai HR, Liu ZZ, Zhu YQ, Zhang WN, Wang J. PGC-1α regulates critical period onset/closure, mediating cortical plasticity. Front Mol Neurosci 2023; 16:1149906. [PMID: 37822967 PMCID: PMC10563514 DOI: 10.3389/fnmol.2023.1149906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
Peroxisome proliferator-activated receptor PPARγ coactivator-α (PGC-1α) is concentrated in inhibitory interneurons and plays a vital role in neuropsychiatric diseases. We previously reported some characteristic features of schizophrenia (SZ) in GABAergic neuron-specific Pgc-1alpha knockout (KO) mice (Dlx5/6-Cre: Pgc-1alphaf/f). However, there is a fundamental gap in the molecular mechanism by which the Pgc-1alpha gene is involved in the neurobehavioral abnormalities of SZ. The loss of critical period (CP) triggers-maturations of parvalbumin interneurons (PVIs) and brakes-and the formation of perineuronal nets (PNNs) implicates mistimed trajectories during adult brain development. In this study, using the Pgc-1alpha KO mouse line, we investigated the association of Pgc-1alpha gene deletion with SZ-like behavioral deficits, PVI maturation, PNN integrity and synaptic ultrastructure. These findings suggest that Pgc-1alpha gene deletion resulted in a failure of CP onset and closure, thereby prolonging cortical plasticity timing. To determine whether the manipulation of the PNN structure is a potential method of altering neuronal plasticity, GM6001, a broad-spectrum matrix metalloproteinase (MMP)-inhibitor was applied. Here we confirmed that the treatment could effectively correct the CP plasticity window and ameliorate the synaptic ultrastructure in the Pgc-1alpha KO brain. Moreover, the intervention effect on neuronal plasticity was followed by the rescue of short-term habituation deficits and the mitigation of aberrant salience, which are some characteristic features of SZ. Taken collectively, these findings suggest that the role of PGC-1α in regulating cortical plasticity is mediated, at least partially, through the regulation of CP onset/closure. Strategically introduced reinforcement of molecular brakes may be a novel preventive therapy for psychiatric disorders associated with PGC-1α dysregulation.
Collapse
Affiliation(s)
- Wei-Jun Zhang
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hou-Zhen Shi
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei-Na Guo
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Long-Fei Xu
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hong-Ru Zhai
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zi-Zhong Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yong-Qiang Zhu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei-Ning Zhang
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jia Wang
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Jieshengrui Biotechnology Co., Ltd., Zhenjiang, Jiangsu, China
| |
Collapse
|
7
|
Medina E, Peterson S, Ford K, Singletary K, Peixoto L. Critical periods and Autism Spectrum Disorders, a role for sleep. Neurobiol Sleep Circadian Rhythms 2023; 14:100088. [PMID: 36632570 PMCID: PMC9826922 DOI: 10.1016/j.nbscr.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Sarah Peterson
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
8
|
Osanai Y, Battulga B, Yamazaki R, Kouki T, Yatabe M, Mizukami H, Kobayashi K, Shinohara Y, Yoshimura Y, Ohno N. Dark Rearing in the Visual Critical Period Causes Structural Changes in Myelinated Axons in the Adult Mouse Visual Pathway. Neurochem Res 2022; 47:2815-2825. [PMID: 35933550 DOI: 10.1007/s11064-022-03689-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022]
Abstract
An appropriate sensory experience during the early developmental period is important for brain maturation. Dark rearing during the visual critical period delays the maturation of neuronal circuits in the visual cortex. Although the formation and structural plasticity of the myelin sheaths on retinal ganglion cell axons modulate the visual function, the effects of dark rearing during the visual critical period on the structure of the retinal ganglion cell axons and their myelin sheaths are still unclear. To address this question, mice were reared in a dark box during the visual critical period and then normally reared to adulthood. We found that myelin sheaths on the retinal ganglion cell axons of dark-reared mice were thicker than those of normally reared mice in both the optic chiasm and optic nerve. Furthermore, whole-mount immunostaining with fluorescent axonal labeling and tissue clearing revealed that the myelin internodal length in dark-reared mice was shorter than that in normally reared mice in both the optic chiasm and optic nerve. These findings demonstrate that dark rearing during the visual critical period affects the morphology of myelin sheaths, shortens and thickens myelin sheaths in the visual pathway, despite the mice being reared in normal light/dark conditions after the dark rearing.
Collapse
Affiliation(s)
- Yasuyuki Osanai
- Division of Histology and Cell Biology, Department of Anatomy, School of Medicine, Jichi Medical University, Shimotsuke, Japan. .,Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia.
| | - Batpurev Battulga
- Division of Histology and Cell Biology, Department of Anatomy, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Reiji Yamazaki
- Division of Histology and Cell Biology, Department of Anatomy, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Tom Kouki
- Division of Histology and Cell Biology, Department of Anatomy, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Megumi Yatabe
- Division of Histology and Cell Biology, Department of Anatomy, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan.,SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Yoshiaki Shinohara
- Division of Histology and Cell Biology, Department of Anatomy, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yumiko Yoshimura
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.,Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, School of Medicine, Jichi Medical University, Shimotsuke, Japan. .,Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan.
| |
Collapse
|
9
|
Abstract
For four decades, investigations of the biological basis of critical periods in the developing mammalian visual cortex were dominated by study of the consequences of altered early visual experience in cats and nonhuman primates. The neural deficits thus revealed also provided insight into the origin and neural basis of human amblyopia that in turn motivated additional studies of humans with abnormal early visual input. Recent human studies point to deficits arising from alterations in all visual cortical areas and even in nonvisual cortical regions. As the new human data accumulated in parallel with a near-complete shift toward the use of rodent animal models for the study of neural mechanisms, it is now essential to review the human data and the earlier animal data obtained from cats and monkeys to infer general conclusions and to optimize future choice of the most appropriate animal model. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Donald E Mitchell
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada;
| | - Daphne Maurer
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada;
| |
Collapse
|
10
|
Martin KC, Ketchabaw WT, Turkeltaub PE. Plasticity of the language system in children and adults. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:397-414. [PMID: 35034751 PMCID: PMC10149040 DOI: 10.1016/b978-0-12-819410-2.00021-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The language system is perhaps the most unique feature of the human brain's cognitive architecture. It has long been a quest of cognitive neuroscience to understand the neural components that contribute to the hierarchical pattern processing and advanced rule learning required for language. The most important goal of this research is to understand how language becomes impaired when these neural components malfunction or are lost to stroke, and ultimately how we might recover language abilities under these circumstances. Additionally, understanding how the language system develops and how it can reorganize in the face of brain injury or dysfunction could help us to understand brain plasticity in cognitive networks more broadly. In this chapter we will discuss the earliest features of language organization in infants, and how deviations in typical development can-but in some cases, do not-lead to disordered language. We will then survey findings from adult stroke and aphasia research on the potential for recovering language processing in both the remaining left hemisphere tissue and in the non-dominant right hemisphere. Altogether, we hope to present a clear picture of what is known about the capacity for plastic change in the neurobiology of the human language system.
Collapse
Affiliation(s)
- Kelly C Martin
- Department of Neurology, Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States
| | - W Tyler Ketchabaw
- Department of Neurology, Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States
| | - Peter E Turkeltaub
- Department of Neurology, Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States; Research Division, MedStar National Rehabilitation Hospital, Washington, DC, United States.
| |
Collapse
|
11
|
Cortical Visual Impairment in Childhood: 'Blindsight' and the Sprague Effect Revisited. Brain Sci 2021; 11:brainsci11101279. [PMID: 34679344 PMCID: PMC8533908 DOI: 10.3390/brainsci11101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
The paper discusses and provides support for diverse processes of brain plasticity in visual function after damage in infancy and childhood in comparison with injury that occurs in the adult brain. We provide support and description of neuroplastic mechanisms in childhood that do not seemingly exist in the same way in the adult brain. Examples include the ability to foster the development of thalamocortical connectivities that can circumvent the lesion and reach their cortical destination in the occipital cortex as the developing brain is more efficient in building new connections. Supporting this claim is the fact that in those with central visual field defects we can note that the extrastriatal visual connectivities are greater when a lesion occurs earlier in life as opposed to in the neurologically mature adult. The result is a significantly more optimized system of visual and spatial exploration within the ‘blind’ field of view. The discussion is provided within the context of “blindsight” and the “Sprague Effect”.
Collapse
|
12
|
Li J, Kim S, Pappas SS, Dauer WT. CNS critical periods: implications for dystonia and other neurodevelopmental disorders. JCI Insight 2021; 6:142483. [PMID: 33616084 PMCID: PMC7934928 DOI: 10.1172/jci.insight.142483] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Critical periods are discrete developmental stages when the nervous system is especially sensitive to stimuli that facilitate circuit maturation. The distinctive landscapes assumed by the developing CNS create analogous periods of susceptibility to pathogenic insults and responsiveness to therapy. Here, we review critical periods in nervous system development and disease, with an emphasis on the neurodevelopmental disorder DYT1 dystonia. We highlight clinical and laboratory observations supporting the existence of a critical period during which the DYT1 mutation is uniquely harmful, and the implications for future therapeutic development.
Collapse
Affiliation(s)
- Jay Li
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Sumin Kim
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | | | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute
- Department of Neurology, and
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Nakamura M, Valerio P, Bhumika S, Barkat TR. Sequential Organization of Critical Periods in the Mouse Auditory System. Cell Rep 2020; 32:108070. [PMID: 32846128 DOI: 10.1016/j.celrep.2020.108070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/21/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022] Open
Abstract
Critical periods-time windows of heightened plasticity in postnatal development-are specific to sensory features and are asynchronous. Whether they are timed by a temporally precise developmental program or are sequentially organized is not known. We use electrophysiology and molecular or sensory manipulations to elucidate the biological constraints on critical period timing. Passive sound exposure shows that the cortical representations of two sound features, pure tone and frequency-modulated sweep (FMS), are not influencing each other. Enhancing inhibition before the critical period for pure tone accelerates it without changing the critical period for FMS. Similarly, delaying the critical period for pure tone with white noise exposure has no effect on the critical period for FMS. However, the critical period for FMS starts only if the one for pure tone has occurred. Together, these results indicate that distinct critical periods, although sequentially organized, can be temporally shifted independently of each other.
Collapse
Affiliation(s)
- Mari Nakamura
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| | - Patricia Valerio
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| | | | | |
Collapse
|
14
|
Abstract
During sensitive periods an individual's development is especially receptive to information from the environment in ways that it is not at earlier and later developmental stages. Here, we describe challenges in applying the concept of sensitive periods to the domain of socio-emotional development, review what applications of this approach have accomplished, and point to promising future directions. We also argue that since emotional development consists of higher-order cognitive processes, it likely involves multiple and overlapping sensitive periods tied to different mechanisms (e.g., facial recognition, reward processing, fear conditioning). Moreover, we note a distinction between the construct of a sensitive period versus the identification of an effect of early experience-two ideas that are often confused in the literature. Progress in the study of emotion will require understanding the mechanisms involved in developmental change and models that predict children's behavior based on their prior experience.
Collapse
|
15
|
Brown APY, Cossell L, Margrie TW. Visual Experience Regulates the Intrinsic Excitability of Visual Cortical Neurons to Maintain Sensory Function. Cell Rep 2020; 27:685-689.e4. [PMID: 30995467 PMCID: PMC6484778 DOI: 10.1016/j.celrep.2019.03.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/18/2019] [Accepted: 03/20/2019] [Indexed: 11/26/2022] Open
Abstract
This in vivo study shows that both intrinsic and sensory-evoked synaptic properties of layer 2/3 neurons in mouse visual cortex are modified by ongoing visual input. Following visual deprivation, intrinsic properties are significantly altered, although orientation selectivity across the population remains unchanged. We, therefore, suggest that cortical cells adjust their intrinsic excitability in an activity-dependent manner to compensate for changes in synaptic drive and maintain sensory network function. Intrinsic properties of V1 L2/3 neurons are modulated by ongoing sensory input Visually evoked synaptic responses are reduced after visual deprivation Deprivation has little effect on spiking or subthreshold orientation selectivity Cortical cells preserve sensory function despite long-term changes in synaptic drive
Collapse
Affiliation(s)
- Alexander P Y Brown
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Lee Cossell
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Troy W Margrie
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK.
| |
Collapse
|
16
|
Glomerulus-Selective Regulation of a Critical Period for Interneuron Plasticity in the Drosophila Antennal Lobe. J Neurosci 2020; 40:5549-5560. [PMID: 32532889 PMCID: PMC7363474 DOI: 10.1523/jneurosci.2192-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022] Open
Abstract
Several features of the adult nervous systems develop in a "critical period" (CP), during which high levels of plasticity allow neural circuits to be tuned for optimal performance. Through an analysis of long-term olfactory habituation (LTH) in female Drosophila, we provide new insight into mechanisms by which CPs are regulated in vivo LTH manifests as a persistently reduced behavioral response to an odorant encountered for 4 continuous days and occurs together with the growth of specific, odorant-responsive glomeruli in the antennal lobe. We show that the CP for behavioral and structural plasticity induced by ethyl butyrate (EB) or carbon dioxide (CO2) closes within 48 h after eclosion. The elaboration of excitatory projection neuron (PN) processes likely contribute to glomerular volume increases, as follows: both occur together and similarly require cAMP signaling in the antennal lobe inhibitory local interneurons. Further, the CP for structural plasticity could be extended beyond 48 h if EB- or CO2-responsive olfactory sensory neurons (OSNs) are silenced after eclosion; thus, OSN activity is required for closing the CP. Strikingly, silencing of glomerulus-selective OSNs extends the CP for structural plasticity only in respective target glomeruli. This indicates the existence of a local, short-range mechanism for regulating CP closure. Such a local mechanism for CP regulation can explain why plasticity induced by the odorant geranyl acetate (which is attractive) shows no CP although it involves the same core plasticity mechanisms as CO2 and EB. Local control of closure mechanisms during the critical period can potentially impart evolutionarily adaptive, odorant-specific features to behavioral plasticity.SIGNIFICANCE STATEMENT The critical period for plasticity represents a stage of life at which animals learn specific tasks or features with particular facility. This work provides fresh evidence that mechanisms for regulating critical periods are broadly conserved across evolution. Thus, a critical period for long-term olfactory habituation in Drosophila, which closes early in adulthood can, like the critical period for ocular dominance plasticity in mammals, be extended by blocking sensory neurons early in life. Further observations show that critical periods for plasticity can be regulated by spatially restricted mechanisms, potentially allowing varied critical periods for plasticity to stimuli of different ethological relevance.
Collapse
|
17
|
Murase S, Winkowski D, Liu J, Kanold PO, Quinlan EM. Homeostatic regulation of perisynaptic matrix metalloproteinase 9 (MMP9) activity in the amblyopic visual cortex. eLife 2019; 8:52503. [PMID: 31868167 PMCID: PMC6961978 DOI: 10.7554/elife.52503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
Dark exposure (DE) followed by light reintroduction (LRx) reactivates robust synaptic plasticity in adult mouse primary visual cortex (V1), which allows subsequent recovery from amblyopia. Previously we showed that perisynaptic proteolysis by MMP9 mediates the enhancement of plasticity by LRx in binocular adult mice (Murase et al., 2017). However, it was unknown if a visual system compromised by amblyopia could engage this pathway. Here we show that LRx to adult amblyopic mice induces perisynaptic MMP2/9 activity and extracellular matrix (ECM) degradation in deprived and non-deprived V1. Indeed, LRx restricted to the amblyopic eye is sufficient to induce robust MMP2/9 activity at thalamo-cortical synapses and ECM degradation in deprived V1. Two-photon live imaging demonstrates that the history of visual experience regulates MMP2/9 activity in V1, and that DE lowers the threshold for the proteinase activation. The homeostatic reduction of the MMP2/9 activation threshold by DE enables visual input from the amblyopic pathway to trigger robust perisynaptic proteolysis.
Collapse
Affiliation(s)
- Sachiko Murase
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Dan Winkowski
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Ji Liu
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Elizabeth M Quinlan
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| |
Collapse
|
18
|
Xie J, Jusuf PR, Bui BV, Goodbourn PT. Experience-dependent development of visual sensitivity in larval zebrafish. Sci Rep 2019; 9:18931. [PMID: 31831839 PMCID: PMC6908733 DOI: 10.1038/s41598-019-54958-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
The zebrafish (Danio rerio) is a popular vertebrate model for studying visual development, especially at the larval stage. For many vertebrates, post-natal visual experience is essential to fine-tune visual development, but it is unknown how experience shapes larval zebrafish vision. Zebrafish swim with a moving texture; in the wild, this innate optomotor response (OMR) stabilises larvae in moving water, but it can be exploited in the laboratory to assess zebrafish visual function. Here, we compared spatial-frequency tuning inferred from OMR between visually naïve and experienced larvae from 5 to 7 days post-fertilisation. We also examined development of synaptic connections between neurons by quantifying post-synaptic density 95 (PSD-95) in larval retinae. PSD-95 is closely associated with N-methyl-D-aspartate (NMDA) receptors, the neurotransmitter-receptor proteins underlying experience-dependent visual development. We found that rather than following an experience-independent genetic programme, developmental changes in visual spatial-frequency tuning at the larval stage required visual experience. Exposure to motion evoking OMR yielded no greater improvement than exposure to static form, suggesting that increased sensitivity as indexed by OMR was driven not by motor practice but by visual experience itself. PSD-95 density varied with visual sensitivity, suggesting that experience may have up-regulated clustering of PSD-95 for synaptic maturation in visual development.
Collapse
Affiliation(s)
- Jiaheng Xie
- School of Biosciences, The University of Melbourne, Melbourne, Australia
| | - Patricia R Jusuf
- School of Biosciences, The University of Melbourne, Melbourne, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Patrick T Goodbourn
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
19
|
Modification of Peak Plasticity Induced by Brief Dark Exposure. Neural Plast 2019; 2019:3198285. [PMID: 31565047 PMCID: PMC6745115 DOI: 10.1155/2019/3198285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022] Open
Abstract
The capacity for neural plasticity in the mammalian central visual system adheres to a temporal profile in which plasticity peaks early in postnatal development and then declines to reach enduring negligible levels. Early studies to delineate the critical period in cats employed a fixed duration of monocular deprivation to measure the extent of ocular dominance changes induced at different ages. The largest deprivation effects were observed at about 4 weeks postnatal, with a steady decline in plasticity thereafter so that by about 16 weeks only small changes were measured. The capacity for plasticity is regulated by a changing landscape of molecules in the visual system across the lifespan. Studies in rodents and cats have demonstrated that the critical period can be altered by environmental or pharmacological manipulations that enhance plasticity at ages when it would normally be low. Immersion in complete darkness for long durations (dark rearing) has long been known to alter plasticity capacity by modifying plasticity-related molecules and slowing progress of the critical period. In this study, we investigated the possibility that brief darkness (dark exposure) imposed just prior to the critical period peak can enhance the level of plasticity beyond that observed naturally. We examined the level of plasticity by measuring two sensitive markers of monocular deprivation, namely, soma size of neurons and neurofilament labeling within the dorsal lateral geniculate nucleus. Significantly larger modification of soma size, but not neurofilament labeling, was observed at the critical period peak when dark exposure preceded monocular deprivation. This indicated that the natural plasticity ceiling is modifiable and also that brief darkness does not simply slow progress of the critical period. As an antecedent to traditional amblyopia treatment, darkness may increase treatment efficacy even at ages when plasticity is at its highest.
Collapse
|
20
|
Voss P, Thomas ME, Guercio GD, de Villers-Sidani E. Dysregulation of auditory neuroplasticity in schizophrenia. Schizophr Res 2019; 207:3-11. [PMID: 29703662 DOI: 10.1016/j.schres.2018.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a complex brain syndrome characterized by an array of positive symptoms (delusions, hallucinations, disorganized speech), negative symptoms (alogia, apathy, avolition) and cognitive impairments (memory, executive functions). Although investigations of the cognitive deficits in schizophrenia have primarily concentrated on disturbances affecting higher-order cognitive processes, there is an increasing realization that schizophrenia also affects early sensory processing, which might, in fact, play a significant role in the development of higher-order cognitive impairments. Recent evidence suggests that many of these early sensory processing impairments possibly arise from a dysregulation of plasticity regulators in schizophrenia, resulting in either reduced plasticity or excessive unregulated plasticity. The purpose of the present manuscript is to provide a concise overview of how the dysregulation of cortical plasticity mechanisms contributes to schizophrenia symptoms with an emphasis on auditory dysplasticity and to discuss its relevance for treatment outcomes. The idea that plasticity mechanisms are not constrained only within sensitive periods suggests that many functional properties of sensory neurons can be altered throughout the lifetime.
Collapse
Affiliation(s)
- Patrice Voss
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Maryse E Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gerson D Guercio
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Etienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
21
|
Neuronal mechanisms regulating the critical period of sensory experience-dependent song learning. Neurosci Res 2019; 140:53-58. [DOI: 10.1016/j.neures.2018.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/09/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
|
22
|
Changes in neuroplasticity following early-life social adversities: the possible role of brain-derived neurotrophic factor. Pediatr Res 2019; 85:225-233. [PMID: 30341412 DOI: 10.1038/s41390-018-0205-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
Social adversities experienced in childhood can have a profound impact on the developing brain, leading to the emergence of psychopathologies in adulthood. Despite the burden this places on both the individual and society, the neurobiological aspects mediating this transition remain unclear. Recent advances in preclinical and clinical research have begun examining neuroplasticity-the nervous system's ability to form adaptive changes in response to new experience-in the context of early-life vulnerability to social adversities and plasticity-related alterations following such traumatic events. A key mediator of plasticity-related molecular processes is the brain-derived neurotrophic factor (BDNF), which has also been implicated in various psychiatric disorders related to childhood social adversities. Preclinical and clinical data suggest early-life social adversities (ELSA) might be associated with accelerated maturation of social network circuitry, a possible ontogenic adaptation to the adverse environment. Neural plasticity decreases by adulthood, lessening the efficacy of treatment in ELSA-related psychiatric disorders. However, literature data suggest that by increasing BDNF/TrkB signalling through antidepressant treatment a juvenile-like plasticity state can be induced, which allows for reorganization of the social circuitry when guided by psychotherapy and surrounded by a safe and positive environment.
Collapse
|
23
|
Coppola DM, White LE. Forever young: Neoteny, neurogenesis and a critique of critical periods in olfaction. J Bioenerg Biomembr 2018; 51:53-63. [PMID: 30421031 DOI: 10.1007/s10863-018-9778-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
The critical period concept has been one of the most transcendent in science, education, and society forming the basis of our fixation on 'quality' of childhood experiences. The neural basis of this process has been revealed in developmental studies of visual, auditory and somatosensory maps and their enduring modification through manipulations of experience early in life. Olfaction, too, possesses a number of phenomena that share key characteristics with classical critical periods like sensitive temporal windows and experience dependence. In this review, we analyze the candidate critical period-like phenomena in olfaction and find them disanalogous to classical critical periods in other sensory systems in several important ways. This leads us to speculate as to why olfaction may be alone among exteroceptive systems in lacking classical critical periods and how life-long neurogenesis of olfactory sensory neurons and bulbar interneurons-a neotenic vestige-- relates to the structure and function of the mammalian olfactory system.
Collapse
Affiliation(s)
- David M Coppola
- Department of Biology, Randolph Macon College, Ashland, VA, 23005, USA.
| | - Leonard E White
- Department of Neurology, Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC, 27708, USA
| |
Collapse
|
24
|
Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev 2018; 94:179-195. [PMID: 30201220 PMCID: PMC6526538 DOI: 10.1016/j.neubiorev.2018.09.005] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
Abstract
The transition from adolescence to adulthood is characterized by improvements in higher-order cognitive abilities and corresponding refinements of the structure and function of the brain regions that support them. Whereas the neurobiological mechanisms that govern early development of sensory systems are well-understood, the mechanisms that drive developmental plasticity of association cortices, such as prefrontal cortex (PFC), during adolescence remain to be explained. In this review, we synthesize neurodevelopmental findings at the cellular, circuit, and systems levels in PFC and evaluate them through the lens of established critical period (CP) mechanisms that guide early sensory development. We find remarkable correspondence between these neurodevelopmental processes and the mechanisms driving CP plasticity, supporting the hypothesis that adolescent development is driven by CP mechanisms that guide the rapid development of neurobiology and cognitive ability during adolescence and their subsequent stability in adulthood. Critically, understanding adolescence as a CP not only provides a mechanism for normative adolescent development, it provides a framework for understanding the role of experience and neurobiology in the emergence of psychopathology that occurs during this developmental period.
Collapse
Affiliation(s)
- Bart Larsen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States.
| | - Beatriz Luna
- Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| |
Collapse
|
25
|
Erchova I, Vasalauskaite A, Longo V, Sengpiel F. Enhancement of visual cortex plasticity by dark exposure. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0159. [PMID: 28093553 PMCID: PMC5247591 DOI: 10.1098/rstb.2016.0159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 11/12/2022] Open
Abstract
Dark rearing is known to delay the time course of the critical period for ocular dominance plasticity in the visual cortex. Recent evidence suggests that a period of dark exposure (DE) may enhance or reinstate plasticity even after closure of the critical period, mediated through modification of the excitatory-inhibitory balance and/or removal of structural brakes on plasticity. Here, we investigated the effects of a week of DE on the recovery from a month of monocular deprivation (MD) in the primary visual cortex (V1) of juvenile mice. Optical imaging of intrinsic signals revealed that ocular dominance in V1 of mice that had received DE recovered slightly more quickly than of mice that had not, but the level of recovery after three weeks was similar in both groups. Two-photon calcium imaging showed no significant difference in the recovery of orientation selectivity of excitatory neurons between the two groups. Parvalbumin-positive (PV+) interneurons exhibited a smaller ocular dominance shift during MD but again no differences in subsequent recovery. The percentage of PV+ cells surrounded by perineuronal nets, a structural brake on plasticity, was lower in mice with than those without DE. Overall, DE causes a modest enhancement of mouse visual cortex plasticity.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Irina Erchova
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Asta Vasalauskaite
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Valentina Longo
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Frank Sengpiel
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
26
|
Voss P, Thomas ME, Cisneros-Franco JM, de Villers-Sidani É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front Psychol 2017; 8:1657. [PMID: 29085312 PMCID: PMC5649212 DOI: 10.3389/fpsyg.2017.01657] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
A growing number of research publications have illustrated the remarkable ability of the brain to reorganize itself in response to various sensory experiences. A traditional view of this plastic nature of the brain is that it is predominantly limited to short epochs during early development. Although examples showing that neuroplasticity exists outside of these finite time-windows have existed for some time, it is only recently that we have started to develop a fuller understanding of the different regulators that modulate and underlie plasticity. In this article, we will provide several lines of evidence indicating that mechanisms of neuroplasticity are extremely variable across individuals and throughout the lifetime. This variability is attributable to several factors including inhibitory network function, neuromodulator systems, age, sex, brain disease, and psychological traits. We will also provide evidence of how neuroplasticity can be manipulated in both the healthy and diseased brain, including recent data in both young and aged rats demonstrating how plasticity within auditory cortex can be manipulated pharmacologically and by varying the quality of sensory inputs. We propose that a better understanding of the individual differences that exist within the various mechanisms that govern experience-dependent neuroplasticity will improve our ability to harness brain plasticity for the development of personalized translational strategies for learning and recovery following brain injury or disease.
Collapse
Affiliation(s)
- Patrice Voss
- *Correspondence: Étienne de Villers-Sidani, Patrice Voss,
| | | | | | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealQC, Canada
| |
Collapse
|
27
|
Sun ZY, Bozzelli PL, Caccavano A, Allen M, Balmuth J, Vicini S, Wu JY, Conant K. Disruption of perineuronal nets increases the frequency of sharp wave ripple events. Hippocampus 2017; 28:42-52. [PMID: 28921856 DOI: 10.1002/hipo.22804] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 12/30/2022]
Abstract
Hippocampal sharp wave ripples (SWRs) represent irregularly occurring synchronous neuronal population events that are observed during phases of rest and slow wave sleep. SWR activity that follows learning involves sequential replay of training-associated neuronal assemblies and is critical for systems level memory consolidation. SWRs are initiated by CA2 or CA3 pyramidal cells (PCs) and require initial excitation of CA1 PCs as well as participation of parvalbumin (PV) expressing fast spiking (FS) inhibitory interneurons. These interneurons are relatively unique in that they represent the major neuronal cell type known to be surrounded by perineuronal nets (PNNs), lattice like structures composed of a hyaluronin backbone that surround the cell soma and proximal dendrites. Though the function of the PNN is not completely understood, previous studies suggest it may serve to localize glutamatergic input to synaptic contacts and thus influence the activity of ensheathed cells. Noting that FS PV interneurons impact the activity of PCs thought to initiate SWRs, and that their activity is critical to ripple expression, we examine the effects of PNN integrity on SWR activity in the hippocampus. Extracellular recordings from the stratum radiatum of horizontal murine hippocampal hemisections demonstrate SWRs that occur spontaneously in CA1. As compared with vehicle, pre-treatment (120 min) of paired hemislices with hyaluronidase, which cleaves the hyaluronin backbone of the PNN, decreases PNN integrity and increases SWR frequency. Pre-treatment with chondroitinase, which cleaves PNN side chains, also increases SWR frequency. Together, these data contribute to an emerging appreciation of extracellular matrix as a regulator of neuronal plasticity and suggest that one function of mature perineuronal nets could be to modulate the frequency of SWR events.
Collapse
Affiliation(s)
- Zhi Yong Sun
- Jilin Women and Children's Health Hospital, Changchun, Jilin, China
| | - P Lorenzo Bozzelli
- Department of Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia.,Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia
| | - Adam Caccavano
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia.,Department of Pharmacology, Georgetown University School of Medicine, Washington, District of Columbia
| | - Megan Allen
- Department of Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia.,Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia
| | - Jason Balmuth
- Applied Physics Laboratory, Johns Hopkins University, Baltimore, Maryland
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia.,Department of Pharmacology, Georgetown University School of Medicine, Washington, District of Columbia
| | - Jian-Young Wu
- Department of Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia.,Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia
| | - Katherine Conant
- Department of Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia.,Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, District of Columbia
| |
Collapse
|
28
|
Murase S, Lantz CL, Quinlan EM. Light reintroduction after dark exposure reactivates plasticity in adults via perisynaptic activation of MMP-9. eLife 2017; 6:27345. [PMID: 28875930 PMCID: PMC5630258 DOI: 10.7554/elife.27345] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
The sensitivity of ocular dominance to regulation by monocular deprivation is the canonical model of plasticity confined to a critical period. However, we have previously shown that visual deprivation through dark exposure (DE) reactivates critical period plasticity in adults. Previous work assumed that the elimination of visual input was sufficient to enhance plasticity in the adult mouse visual cortex. In contrast, here we show that light reintroduction (LRx) after DE is responsible for the reactivation of plasticity. LRx triggers degradation of the ECM, which is blocked by pharmacological inhibition or genetic ablation of matrix metalloproteinase-9 (MMP-9). LRx induces an increase in MMP-9 activity that is perisynaptic and enriched at thalamo-cortical synapses. The reactivation of plasticity by LRx is absent in Mmp9−/− mice, and is rescued by hyaluronidase, an enzyme that degrades core ECM components. Thus, the LRx-induced increase in MMP-9 removes constraints on structural and functional plasticity in the mature cortex.
Collapse
Affiliation(s)
- Sachiko Murase
- Neuroscience and Cognitive Sciences Program, Department of Biology, University of Maryland, Maryland, United States
| | - Crystal L Lantz
- Neuroscience and Cognitive Sciences Program, Department of Biology, University of Maryland, Maryland, United States
| | - Elizabeth M Quinlan
- Neuroscience and Cognitive Sciences Program, Department of Biology, University of Maryland, Maryland, United States
| |
Collapse
|
29
|
Maternal Loss of Ube3a Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex. J Neurosci 2017; 36:4888-94. [PMID: 27122043 DOI: 10.1523/jneurosci.4204-15.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/24/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Dendritic spines are a morphological feature of the majority of excitatory synapses in the mammalian neocortex and are motile structures with shapes and lifetimes that change throughout development. Proper cortical development and function, including cortical contributions to learning and memory formation, require appropriate experience-dependent dendritic spine remodeling. Dendritic spine abnormalities have been reported for many neurodevelopmental disorders, including Angelman syndrome (AS), which is caused by the loss of the maternally inherited UBE3A allele (encoding ubiquitin protein ligase E3A). Prior studies revealed that UBE3A protein loss leads to reductions in dendritic spine density and diminished excitatory synaptic transmission. However, the decrease in spine density could come from either a reduction in spine formation or an increase in spine elimination. Here, we used acute and longitudinal in vivo two-photon microscopy to investigate developmental and experience-dependent changes in the numbers, dynamics, and morphology of layer 5 pyramidal neuron apical dendritic spines in the primary visual cortex of control and AS model mice (Ube3a(m-/p+) mice). We found that neurons in AS model mice undergo a greater elimination of dendritic spines than wild-type mice during the end of the first postnatal month. However, when raised in darkness, spine density and dynamics were indistinguishable between control and AS model mice, which indicates that decreased spine density in AS model mice reflects impaired experience-driven spine maintenance. Our data thus demonstrate an experience-dependent anatomical substrate by which the loss of UBE3A reduces dendritic spine density and disrupts cortical circuitry. SIGNIFICANCE STATEMENT Reduced dendritic spine densities are common in the neurodevelopmental disorder Angelman syndrome (AS). Because prior reports were based on postmortem tissue, it was unknown whether this anatomical deficit arises from decreased spine formation and/or increased spine elimination. Here, we used in vivo two-photon imaging to track spines over multiple days in a mouse model of AS. We found that spine formation is normal, but experience-dependent spine maintenance is reduced in the visual cortex of AS model mice. Our data pinpoint the anatomical process underlying the loss of dendritic spines, which can account for the decreased excitatory synaptic connectivity associated with AS. Therefore, normalizing spine maintenance is a potential therapeutic strategy.
Collapse
|
30
|
Experience Affects Critical Period Plasticity in the Visual Cortex through an Epigenetic Regulation of Histone Post-Translational Modifications. J Neurosci 2016; 36:3430-40. [PMID: 27013673 DOI: 10.1523/jneurosci.1787-15.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED During an early phase of enhanced sensitivity called the critical period (CP), monocular deprivation causes a shift in the response of visual cortex binocular neurons in favor of the nondeprived eye, a process named ocular dominance (OD) plasticity. While the time course of the CP for OD plasticity can be modulated by genetic/pharmacological interventions targeting GABAergic inhibition, whether an increased sensory-motor experience can affect this major plastic phenomenon is not known. We report that exposure to environmental enrichment (EE) accelerated the closure of the CP for OD plasticity in the rat visual cortex. Histone H3 acetylation was developmentally regulated in primary visual cortex, with enhanced levels being detectable early in enriched pups, and chromatin immunoprecipitation revealed an increase at the level of the BDNF P3 promoter. Administration of the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) to animals reared in a standard cage mimicked the increase in H3 acetylation observed in the visual cortex and resulted in an accelerated decay of OD plasticity. Finally, exposure to EE in adulthood upregulated H3 acetylation and was paralleled by a reopening of the CP. These findings demonstrate a critical involvement of the epigenetic machinery as a mediator of visual cortex developmental plasticity and of the impact of EE on OD plasticity. SIGNIFICANCE STATEMENT While it is known that an epigenetic remodeling of chromatin structure controls developmental plasticity in the visual cortex, three main questions have remained open. Which is the physiological time course of histone modifications? Is it possible, by manipulating the chromatin epigenetic state, to modulate plasticity levels during the critical period? How can we regulate histone acetylation in the adult brain in a noninvasive manner? We show that the early exposure of rat pups to enriching environmental conditions accelerates the critical period for plasticity in the primary visual cortex, linking this effect to increased histone acetylation, specifically at the BDNF gene level. Moreover, we report that the exposure of adult animals to environmental enrichment enhances histone acetylation and reopens juvenile-like plasticity.
Collapse
|
31
|
Pan G, Yang JM, Hu XY, Li XM. Postnatal development of the electrophysiological properties of somatostatin interneurons in the anterior cingulate cortex of mice. Sci Rep 2016; 6:28137. [PMID: 27319800 PMCID: PMC4913317 DOI: 10.1038/srep28137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/01/2016] [Indexed: 11/09/2022] Open
Abstract
Somatostatin (SST)-positive interneurons in the anterior cingulate cortex (ACC) play important roles in neuronal diseases, memory and cognitive functions. However, their development in the ACC remains unclear. Using postnatal day 3 (P3) to P45 GIN mice, we found that most of the intrinsic membrane properties of SST interneurons in the ACC were developmentally mature after the second postnatal week and that the development of these neurons differed from that of parvalbumin (PV) interneurons in the prefrontal cortex. In addition, electrical coupling between SST interneurons appeared primarily between P12-14. The coupling probability plateaued at approximately P21-30, with a non-age-dependent development of coupling strength. The development of excitatory chemical afferents to SST interneurons occurred earlier than the development of inhibitory chemical afferents. Furthermore, eye closure attenuated the development of electrical coupling probability at P21-30 but had no effect on coupling strength. Eye closure also delayed the development of inhibitory chemical afferent frequency but had no effect on the excitatory chemical afferent amplitude, frequency or rise time. Our data suggest that SST interneurons in the ACC exhibit inherent developmental characteristics distinct from other interneuron subtypes, such as PV interneurons, and that some of these characteristics are subject to environmental regulation.
Collapse
Affiliation(s)
- Geng Pan
- Department of Neurology, Brain Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058 China
| | - Jian-Ming Yang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058 China
| | - Xing-Yue Hu
- Department of Neurology, Brain Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058 China
| | - Xiao-Ming Li
- Department of Neurology, Brain Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058 China.,Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058 China.,Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, 310058 China
| |
Collapse
|
32
|
Duffy KR, Lingley AJ, Holman KD, Mitchell DE. Susceptibility to monocular deprivation following immersion in darkness either late into or beyond the critical period. J Comp Neurol 2016; 524:2643-53. [PMID: 26878686 DOI: 10.1002/cne.23985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 01/04/2023]
Abstract
An extended duration of darkness starting near the time of birth preserves immature neuronal characteristics and prolongs the accentuated plasticity observed in young animals. Brief periods of complete darkness have emerged as an effective means of restoring a high capacity for neural plasticity and of promoting recovery from the effects of monocular deprivation (MD). We examined whether 10 days of darkness imposed in adulthood or beyond the peak of the critical period could rejuvenate the ability of MD to reduce the size of neuron somata within deprived layers of the cat dorsal lateral geniculate nucleus (dLGN). For adult cats subjected to 10 days of darkness before 7 days of MD, we observed no alteration in neuron size or neurofilament labeling within the dLGN. At 12 weeks of age, MD that followed immediately after 10 days of darkness produced an enhanced reduction of neuron soma size within deprived dLGN layers. For this age we observed that 10 days of darkness also enhanced the loss of neurofilament protein within deprived dLGN layers. These results indicate that, although 10 days of darkness in adulthood does not enhance the susceptibility to 7 days of MD, darkness imposed near the trailing edge of the critical period can restore a heightened susceptibility to MD more typical of an earlier developmental stage. The loss of neurofilament in juveniles exposed to darkness prior to MD suggests that the enhanced capacity for structural plasticity is partially rooted in the ability of darkness to modulate molecules that inhibit plasticity. J. Comp. Neurol. 524:2643-2653, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University Life Sciences Centre, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Alexander J Lingley
- Department of Psychology and Neuroscience, Dalhousie University Life Sciences Centre, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Kaitlyn D Holman
- Department of Psychology and Neuroscience, Dalhousie University Life Sciences Centre, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Donald E Mitchell
- Department of Psychology and Neuroscience, Dalhousie University Life Sciences Centre, Halifax, Nova Scotia, Canada, B3H 4R2
| |
Collapse
|
33
|
Experience-dependent emergence of beta and gamma band oscillations in the primary visual cortex during the critical period. Sci Rep 2015; 5:17847. [PMID: 26648548 PMCID: PMC4673459 DOI: 10.1038/srep17847] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/06/2015] [Indexed: 11/30/2022] Open
Abstract
Neural oscillatory activities have been shown to play important roles in neural information processing and the shaping of circuit connections during development. However, it remains unknown whether and how specific neural oscillations emerge during a postnatal critical period (CP), in which neuronal connections are most substantially modified by neural activity and experience. By recording local field potentials (LFPs) and single unit activity in developing primary visual cortex (V1) of head-fixed awake mice, we here demonstrate an emergence of characteristic oscillatory activities during the CP. From the pre-CP to CP, the peak frequency of spontaneous fast oscillatory activities shifts from the beta band (15–35 Hz) to the gamma band (40–70 Hz), accompanied by a decrease of cross-frequency coupling (CFC) and broadband spike-field coherence (SFC). Moreover, visual stimulation induced a large increase of beta-band activity but a reduction of gamma-band activity specifically from the CP onwards. Dark rearing of animals from the birth delayed this emergence of oscillatory activities during the CP, suggesting its dependence on early visual experience. These findings suggest that the characteristic neuronal oscillatory activities emerged specifically during the CP may represent as neural activity trait markers for the experience-dependent maturation of developing visual cortical circuits.
Collapse
|
34
|
The neural development of the biological motion processing system does not rely on early visual input. Cortex 2015; 71:359-67. [DOI: 10.1016/j.cortex.2015.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/02/2015] [Accepted: 07/17/2015] [Indexed: 11/22/2022]
|
35
|
Roy S, Sharma HP, Nag TC, Velpandian T, Upadhyay AD, Mathur R, Jain S. BDNF mediated activity dependent maturation of visual Wulst following prenatal repetitive auditory stimulation at a critical developmental period in domestic chicks (Gallus domesticus). Brain Res Bull 2014; 109:99-108. [PMID: 25305344 DOI: 10.1016/j.brainresbull.2014.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/14/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The developing visual circuitry attains its mature adult pattern through the process of activity-dependent refinement in which photic stimulation plays the major role. However, auditory stimulation can also facilitate the developing visual Wulst synaptic plasticity and postnatal perceptual behavior, though the underlying mechanism is unclear. We exposed the fertilized eggs of white Leghorn chickens during incubation to either species-specific calls or no sound for varying time periods depending on the functional development of the auditory and/or visual systems. The visual evoked potential (VEP) from the Wulst was recorded at embryonic days (E) 19, 20 and posthatch days (PH) 1-3, to assess functional maturation. A significant attenuation in latencies and higher amplitudes at PH1-3 in the stimulated groups that received exposure during visual system maturation, suggest beneficial effect of auditory inputs only during critical periods. Concomitant with this, there was a significant increase in the expression of BDNF and levels of neurotransmitters GABA, glutamate, norepinephrine and serotonin from E18 only in both hemispheres of the visual Wulst. A significant inter-hemispheric difference in expression was also found in all groups. These results suggest the role of BDNF in activity driven structural and functional maturation of the visual system following prenatal repetitive auditory stimulation.
Collapse
Affiliation(s)
- Saborni Roy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Hanuman Prasad Sharma
- Department of Ocular Pharmacology & Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology & Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| | - Ashish Datt Upadhyay
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India.
| | - Rashmi Mathur
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
36
|
Ganesh S, Arora P, Sethi S, Gandhi TK, Kalia A, Chatterjee G, Sinha P. Results of late surgical intervention in children with early-onset bilateral cataracts. Br J Ophthalmol 2014; 98:1424-8. [PMID: 24879807 PMCID: PMC4841630 DOI: 10.1136/bjophthalmol-2013-304475] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Cataracts are a major cause of childhood blindness globally. Although surgically treatable, it is unclear whether children would benefit from such interventions beyond the first few years of life, which are believed to constitute 'critical' periods for visual development. AIMS To study visual acuity outcomes after late treatment of early-onset cataracts and also to determine whether there are longitudinal changes in postoperative acuity. METHODS We identified 53 children with dense cataracts with an onset within the first half-year after birth through a survey of over 20,000 rural children in India. All had accompanying nystagmus and were older than 8 years of age at the time of treatment. They underwent bilateral cataract surgery and intraocular lens implantation. We then assessed their best-corrected visual acuity 6 weeks and 6 months after surgery. RESULTS 48 children from the pool of 53 showed improvement in their visual acuity after surgery. Our longitudinal assessments demonstrated further improvements in visual acuity for the majority of these children proceeding from the 6-week to 6-month assessment. Interestingly, older children in our subject pool did not differ significantly from the younger ones in the extent of improvement they exhibit. CONCLUSIONS AND RELEVANCE Our results demonstrate that not only can significant vision be acquired until late in childhood, but that neural processes underlying even basic aspects of vision like resolution acuity remain malleable until at least adolescence. These data argue for the provision of cataract treatment to all children, irrespective of their age.
Collapse
Affiliation(s)
- Suma Ganesh
- Department of Paediatric Ophthalmology, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Priyanka Arora
- Department of Ophthalmology, Dayanand Medical College and Hospital, Punjab, India
| | - Sumita Sethi
- Department of Ophthalmology, BPS Government Medical College for Women, Haryana, India
| | - Tapan K Gandhi
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amy Kalia
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Garga Chatterjee
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Pawan Sinha
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
37
|
Laskowska-Macios K, Zapasnik M, Hu TT, Kossut M, Arckens L, Burnat K. Zif268 mRNA Expression Patterns Reveal a Distinct Impact of Early Pattern Vision Deprivation on the Development of Primary Visual Cortical Areas in the Cat. Cereb Cortex 2014; 25:3515-26. [PMID: 25205660 PMCID: PMC4585500 DOI: 10.1093/cercor/bhu192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pattern vision deprivation (BD) can induce permanent deficits in global motion perception. The impact of timing and duration of BD on the maturation of the central and peripheral visual field representations in cat primary visual areas 17 and 18 remains unknown. We compared early BD, from eye opening for 2, 4, or 6 months, with late onset BD, after 2 months of normal vision, using the expression pattern of the visually driven activity reporter gene zif268 as readout. Decreasing zif268 mRNA levels between months 2 and 4 characterized the normal maturation of the (supra)granular layers of the central and peripheral visual field representations in areas 17 and 18. In general, all BD conditions had higher than normal zif268 levels. In area 17, early BD induced a delayed decrease, beginning later in peripheral than in central area 17. In contrast, the decrease occurred between months 2 and 4 throughout area 18. Lack of pattern vision stimulation during the first 4 months of life therefore has a different impact on the development of areas 17 and 18. A high zif268 expression level at a time when normal vision is restored seems to predict the capacity of a visual area to compensate for BD.
Collapse
Affiliation(s)
- Karolina Laskowska-Macios
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Monika Zapasnik
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland
| | - Tjing-Tjing Hu
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Malgorzata Kossut
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Kalina Burnat
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland
| |
Collapse
|
38
|
Medini P. Experience-dependent plasticity of visual cortical microcircuits. Neuroscience 2014; 278:367-84. [PMID: 25171791 DOI: 10.1016/j.neuroscience.2014.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022]
Abstract
The recent decade testified a tremendous increase in our knowledge on how cell-type-specific microcircuits process sensory information in the neocortex and on how such circuitry reacts to manipulations of the sensory environment. Experience-dependent plasticity has now been investigated with techniques endowed with cell resolution during both postnatal development and in adult animals. This review recapitulates the main recent findings in the field using mainly the primary visual cortex as a model system to highlight the more important questions and physiological principles (such as the role of non-competitive mechanisms, the role of inhibition in excitatory cell plasticity, the functional importance of spine and axonal plasticity on a microscale level). I will also discuss on which scientific problems the debate and controversies are more pronounced. New technologies that allow to perturbate cell-type-specific subcircuits will certainly shine new light in the years to come at least on some of the still open questions.
Collapse
Affiliation(s)
- P Medini
- Institutionen för Molekylärbiologi, and Institutionen för Integrativ Medicinsk Biologi (IMB), Fysiologi Avdelning, Umeå Universitet, 90187 Umeå, Sweden.
| |
Collapse
|
39
|
Stettler O, Moya KL. Distinct roles of homeoproteins in brain topographic mapping and in neural circuit formation. Semin Cell Dev Biol 2014; 35:165-72. [PMID: 25042849 DOI: 10.1016/j.semcdb.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 01/02/2023]
Abstract
The construction of the brain is a highly regulated process, requiring coordination of various cellular and molecular mechanisms that together ensure the stability of the cerebrum architecture and functions. The mature brain is an organ that performs complex computational operations using specific sensory information from the outside world and this requires precise organization within sensory networks and a separation of sensory modalities during development. We review here the role of homeoproteins in the arealization of the brain according to sensorimotor functions, the micropartition of its cytoarchitecture, and the maturation of its sensory circuitry. One of the most interesting observation about homeoproteins in recent years concerns their ability to act both in a cell-autonomous and non-cell-autonomous manner. The highlights in the present review collectively show how these two modes of action of homeoproteins confer various functions in shaping cortical maps.
Collapse
Affiliation(s)
- Olivier Stettler
- Laboratoire CRRET EAC 7149, Université Paris-Est Créteil, 61, Av. du Général de Gaulle, 94010 Créteil Cedex, France.
| | - Kenneth L Moya
- Collège de France, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, 11 place Marcelin Berthelot, 75005 Paris, France; Labex Memolife, PSL Research University, France
| |
Collapse
|
40
|
Bonaccorsi J, Berardi N, Sale A. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning. Front Neural Circuits 2014; 8:82. [PMID: 25076874 PMCID: PMC4100600 DOI: 10.3389/fncir.2014.00082] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1–5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat.
Collapse
Affiliation(s)
- Joyce Bonaccorsi
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy
| | - Nicoletta Berardi
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy ; Department of Psychology, Florence University Florence, Italy
| | - Alessandro Sale
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy
| |
Collapse
|
41
|
Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex. J Neurosci 2014; 34:2940-55. [PMID: 24553935 DOI: 10.1523/jneurosci.2640-13.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Classical studies on the development of ocular dominance (OD) organization in primary visual cortex (V1) have revealed a postnatal critical period (CP), during which visual inputs between the two eyes are most effective in shaping cortical circuits through synaptic competition. A brief closure of one eye during CP caused a pronounced shift of response preference of V1 neurons toward the open eye, a form of CP plasticity in the developing V1. However, it remains unclear what particular property of binocular inputs during CP is responsible for mediating this experience-dependent OD plasticity. Using whole-cell recording in mouse V1, we found that visually driven synaptic inputs from the two eyes to binocular cells in layers 2/3 and 4 became highly coincident during CP. Enhancing cortical GABAergic transmission activity by brain infusion with diazepam not only caused a precocious onset of the high coincidence of binocular inputs and OD plasticity in pre-CP mice, but rescued both of them in dark-reared mice, suggesting a tight link between coincident binocular inputs and CP plasticity. In Thy1-ChR2 mice, chronic disruption of this binocular input coincidence during CP by asynchronous optogenetic activation of retinal ganglion cells abolished the OD plasticity. Computational simulation using a feed-forward network model further suggests that the coincident inputs could mediate this CP plasticity through a homeostatic synaptic learning mechanism with synaptic competition. These results suggest that the high-level correlation of binocular inputs is a hallmark of the CP of developing V1 and serves as neural substrate for the induction of OD plasticity.
Collapse
|
42
|
Griffen TC, Maffei A. GABAergic synapses: their plasticity and role in sensory cortex. Front Cell Neurosci 2014; 8:91. [PMID: 24723851 PMCID: PMC3972456 DOI: 10.3389/fncel.2014.00091] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/12/2014] [Indexed: 12/17/2022] Open
Abstract
The mammalian neocortex is composed of a variety of cell types organized in a highly interconnected circuit. GABAergic neurons account for only about 20% of cortical neurons. However, they show widespread connectivity and a high degree of diversity in morphology, location, electrophysiological properties and gene expression. In addition, distinct populations of inhibitory neurons have different sensory response properties, capacities for plasticity and sensitivities to changes in sensory experience. In this review we summarize experimental evidence regarding the properties of GABAergic neurons in primary sensory cortex. We will discuss how distinct GABAergic neurons and different forms of GABAergic inhibitory plasticity may contribute to shaping sensory cortical circuit activity and function.
Collapse
Affiliation(s)
- Trevor C Griffen
- SUNY Eye Research Consortium Buffalo, NY, USA ; Program in Neuroscience, SUNY - Stony Brook Stony Brook, NY, USA ; Medical Scientist Training Program, SUNY - Stony Brook Stony Brook, NY, USA
| | - Arianna Maffei
- SUNY Eye Research Consortium Buffalo, NY, USA ; Department of Neurobiology and Behavior, SUNY - Stony Brook Stony Brook, NY, USA
| |
Collapse
|
43
|
Abstract
Visual plasticity peaks during early critical periods of normal visual development. Studies in animals and humans provide converging evidence that gains in visual function are minimal and deficits are most severe when visual deprivation persists beyond the critical period. Here we demonstrate visual development in a unique sample of patients who experienced extended early-onset blindness (beginning before 1 y of age and lasting 8-17 y) before removal of bilateral cataracts. These patients show surprising improvements in contrast sensitivity, an assay of basic spatial vision. We find that contrast sensitivity development is independent of the age of sight onset and that individual rates of improvement can exceed those exhibited by normally developing infants. These results reveal that the visual system can retain considerable plasticity, even after early blindness that extends beyond critical periods.
Collapse
|
44
|
Abstract
Visual circuits mature and are refined by sensory experience. However, significant gaps remain in our understanding how deprivation influences the development of visual acuity in mice. Here, we perform a longitudinal study assessing the effects of chronic deprivation on the development of the mouse subcortical and cortical visual circuits using a combination of behavioral optomotor testing, in vivo visual evoked responses (VEP) and single-unit cortical recordings. As previously reported, orientation tuning was degraded and onset of ocular dominance plasticity was delayed and remained open in chronically deprived mice. Surprisingly, we found that the development of optomotor threshold and VEP acuity can occur in an experience-independent manner, although at a significantly slower rate. Moreover, monocular deprivation elicited amblyopia only during a discrete period of development in the dark. The rate of recovery of optomotor threshold upon exposure of deprived mice to light confirmed a maturational transition regardless of visual input. Together our results revealed a dissociable developmental trajectory for visual receptive-field properties in dark-reared mice suggesting a differential role for spontaneous activity within thalamocortical and intracortical circuits.
Collapse
|
45
|
Zapasnik M, Burnat K. Binocular pattern deprivation with delayed onset has impact on motion perception in adulthood. Neuroscience 2013; 255:99-109. [PMID: 24120559 DOI: 10.1016/j.neuroscience.2013.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/25/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
Abstract
The quality of motion perception depends on visual input during early development. Even 1month of binocular deprivation (BD) from birth impairs motion coherence thresholds when tested in kittens; conversely BD with a 1-month delayed onset does not impair it (Mitchell et al., 2009). We showed that 6months of BD applied from birth induces a selective impairment in a Global Motion Detection task, but not in global form perception, when tested in adulthood (Burnat et al., 2002, 2005). In these animals cell counts of the retinal motion-sensitive alpha ganglion revealed a life-long increase in OFF-type ganglion cell (Burnat et al., 2012). Here we examined in adult cats the effect of BD on global motion perception using an array of tasks with gradually increasing perceptual difficulty. Two conditions of BD were applied: from birth, lasting for 1, 2, 4 or 6months, and with a delayed onset with first 2months of normal vision followed by 2months of BD. Cats deprived from birth for a 6-month period had Global Motion Detection impaired, as compared to the normal group. Velocity and low contrast-defined motion processing was impaired when BD was applied exclusively in months 3-4 of life. The cats deprived from birth for 1 or 2months were not impaired in any of the tested motion tasks. Motion coherence thresholds, when tested at the end of a long motion training were not affected by BD and did not differ from those obtained for the normal group. Impaired extraction of low contrast-defined motion signal was found in cats deprived solely in months 3-4 of life. Surprisingly, binocular pattern deprivation during the first 2months of life did not weaken motion sensitivity, revealing the occurrence of a critical period for motion perception later in development than previously suggested.
Collapse
Affiliation(s)
- M Zapasnik
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland
| | | |
Collapse
|
46
|
Wang BS, Feng L, Liu M, Liu X, Cang J. Environmental enrichment rescues binocular matching of orientation preference in mice that have a precocious critical period. Neuron 2013; 80:198-209. [PMID: 24012279 DOI: 10.1016/j.neuron.2013.07.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 01/12/2023]
Abstract
Experience shapes neural circuits during critical periods in early life. The timing of critical periods is regulated by both genetics and the environment. Here we study the functional significance of such temporal regulations in the mouse primary visual cortex, where critical period plasticity drives binocular matching of orientation preference. We find that the binocular matching is permanently disrupted in mice that have a precocious critical period due to genetically enhanced inhibition. The disruption is specific to one type of neuron, the complex cells, which, as we reveal, normally match after the simple cells. Early environmental enrichment completely rescues the deficit by inducing histone acetylation and consequently advancing the matching process to coincide with the precocious plasticity. Our experiments thus demonstrate that the proper timing of the critical period is essential for establishing normal binocularity and the detrimental impact of its genetic misregulation can be ameliorated by environmental manipulations via epigenetic mechanisms.
Collapse
Affiliation(s)
- Bor-Shuen Wang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
47
|
Age and dark rearing bidirectionally regulate the level and laminar pattern of expression of Abelson interacting protein 2 (Abi-2): a novel candidate visual cortical plasticity gene. J Mol Neurosci 2013; 51:647-54. [PMID: 23828391 DOI: 10.1007/s12031-013-0037-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/21/2013] [Indexed: 01/21/2023]
Abstract
Electrophysiological studies indicate that cat visual cortical critical period neuronal plasticity peaks around 5 weeks and largely disappears by 20 weeks. Dark rearing slows this time course. Normal cats are more plastic than dark-reared cats at 5 weeks, but the opposite is true at 20 weeks. Thus, a stringent criterion for identifying genes controlling neuronal plasticity is that normal and dark rearing produce opposite direction differences in expression between young and older animals. Differential display polymerase chain reaction identified Abelson interacting protein 2 (Abi-2) as a candidate plasticity gene regulated according to this criterion. Western blotting showed bidirectional regulation of Abi-2 protein levels in cats and mice that was specific to visual cortex and did not occur in frontal cortex. Immunohistochemistry indicated developmental changes in Abi-2 laminar expression in cat visual cortex. Dark rearing altered laminar expression such that at 5 weeks, dark-reared cats were similar to 1-week normally reared cats, and at 20 weeks, dark-reared cats were similar to 5-10-week normally reared animals. The effect of dark rearing on both Abi-2 expression levels and laminar expression patterns was to slow the normal developmental process, the same effect seen on physiologically assessed plasticity in visual cortex.
Collapse
|
48
|
|
49
|
Yoneda T, Kameyama K, Esumi K, Daimyo Y, Watanabe M, Hata Y. Developmental and visual input-dependent regulation of the CB1 cannabinoid receptor in the mouse visual cortex. PLoS One 2013; 8:e53082. [PMID: 23308141 PMCID: PMC3540079 DOI: 10.1371/journal.pone.0053082] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/23/2012] [Indexed: 11/18/2022] Open
Abstract
The mammalian visual system exhibits significant experience-induced plasticity in the early postnatal period. While physiological studies have revealed the contribution of the CB1 cannabinoid receptor (CB1) to developmental plasticity in the primary visual cortex (V1), it remains unknown whether the expression and localization of CB1 is regulated during development or by visual experience. To explore a possible role of the endocannabinoid system in visual cortical plasticity, we examined the expression of CB1 in the visual cortex of mice. We found intense CB1 immunoreactivity in layers II/III and VI. CB1 mainly localized at vesicular GABA transporter-positive inhibitory nerve terminals. The amount of CB1 protein increased throughout development, and the specific laminar pattern of CB1 appeared at P20 and remained until adulthood. Dark rearing from birth to P30 decreased the amount of CB1 protein in V1 and altered the synaptic localization of CB1 in the deep layer. Dark rearing until P50, however, did not influence the expression of CB1. Brief monocular deprivation for 2 days upregulated the localization of CB1 at inhibitory nerve terminals in the deep layer. Taken together, the expression and the localization of CB1 are developmentally regulated, and both parameters are influenced by visual experience.
Collapse
Affiliation(s)
- Taisuke Yoneda
- Division of Integrative Bioscience, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Sciences, Yonago, Japan
| | - Katsuro Kameyama
- Division of Integrative Bioscience, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Sciences, Yonago, Japan
| | - Kazusa Esumi
- Division of Integrative Bioscience, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Sciences, Yonago, Japan
| | - Yohei Daimyo
- Division of Neurobiology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshio Hata
- Division of Integrative Bioscience, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Sciences, Yonago, Japan
- Division of Neurobiology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
- * E-mail:
| |
Collapse
|
50
|
Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci 2012; 32:9429-37. [PMID: 22764251 DOI: 10.1523/jneurosci.0394-12.2012] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Specific transfer of (orthodenticle homeobox 2) Otx2 homeoprotein into GABAergic interneurons expressing parvalbumin (PV) is necessary and sufficient to open, then close, a critical period (CP) of plasticity in the developing mouse visual cortex. The accumulation of endogenous Otx2 in PV cells suggests the presence of specific Otx2 binding sites. Here, we find that perineuronal nets (PNNs) on the surfaces of PV cells permit the specific, constitutive capture of Otx2. We identify a 15 aa domain containing an arginine-lysine doublet (RK peptide) within Otx2, bearing prototypic traits of a glycosaminoglycan (GAG) binding sequence that mediates Otx2 binding to PNNs, and specifically to chondroitin sulfate D and E, with high affinity. Accordingly, PNN hydrolysis by chondroitinase ABC reduces the amount of endogenous Otx2 in PV cells. Direct infusion of RK peptide similarly disrupts endogenous Otx2 localization to PV cells, reduces PV and PNN expression, and reopens plasticity in adult mice. The closure of one eye during this transient window reduces cortical acuity and is specific to the RK motif, as an Alanine-Alanine variant or a scrambled peptide fails to reactivate plasticity. Conversely, this transient reopening of plasticity in the adult restores binocular vision in amblyopic mice. Thus, one function of PNNs is to facilitate the persistent internalization of Otx2 by PV cells to maintain CP closure. The pharmacological use of the Otx2 GAG binding domain offers a novel, potent therapeutic tool with which to restore cortical plasticity in the mature brain.
Collapse
|