1
|
Nohmi T, Watanabe M. Mutagenicity of carcinogenic heterocyclic amines in Salmonella typhimurium YG strains and transgenic rodents including gpt delta. Genes Environ 2021; 43:38. [PMID: 34526143 PMCID: PMC8444484 DOI: 10.1186/s41021-021-00207-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Chemical carcinogens to humans have been usually identified by epidemiological studies on the relationships between occupational or environmental exposure to the agents and specific cancer induction. In contrast, carcinogenic heterocyclic amines were identified under the principle that mutagens in bacterial in the Ames test are possible human carcinogens. In the 1970s to 1990s, more than 10 heterocyclic amines were isolated from pyrolysates of amino acids, proteins, meat or fish as mutagens in the Ames test, and they were demonstrated as carcinogens in rodents. In the 1980s and 1990s, we have developed derivatives of the Ames tester strains that overexpressed acetyltransferase of Salmonella typhimurium. These strains such as Salmonella typhimurium YG1024 exhibited a high sensitivity to the mutagenicity of the carcinogenic heterocyclic amines. Because of the high sensitivity, YG1024 and other YG strains were used for various purposes, e.g., identification of novel heterocyclic amines, mechanisms of metabolic activation, comparison of mutagenic potencies of various heterocyclic amines, and the co-mutagenic effects. In the 1990s and 2000s, we developed transgenic mice and rats for the detection of mutagenicity of chemicals in vivo. The transgenics were generated by the introduction of reporter genes for mutations into fertilized eggs of mice and rats. We named the transgenics as gpt delta because the gpt gene of Escherichia coli was used for detection of point mutations such as base substitutions and frameshifts and the red/gam genes of λ phage were employed to detect deletion mutations. The transgenic rodents gpt delta and other transgenics with lacI or lacZ as reporter genes have been utilized for characterization of mutagenicity of heterocyclic amines in vivo. In this review, we summarized the in vitro mutagenicity of heterocyclic amines in Salmonella typhimurium YG strains and the in vivo mutagenicity in transgenic rodents. We discussed the relationships between in vitro and in vivo mutagenicity of the heterocyclic amines and their relations to the carcinogenicity.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| | - Masahiko Watanabe
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516 Japan
| |
Collapse
|
2
|
Kirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res 2011; 721:27-73. [PMID: 21238603 DOI: 10.1016/j.mrgentox.2010.12.015] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 01/27/2023]
Abstract
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster LS24 0AS, United Kingdom.
| | | | | | | |
Collapse
|
3
|
Zenser TV, Lakshmi VM, Schut HAJ, Zhou HJ, Josephy PD. Activation of aminoimidazole carcinogens by nitrosation: mutagenicity and nucleotide adducts. Mutat Res 2009; 673:109-15. [PMID: 19449459 PMCID: PMC2775548 DOI: 10.1016/j.mrgentox.2008.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline(MeIQx) are heterocyclic amines (HCAs) derived from high temperature cooking of meat and thought to cause colon cancer in humans. Reactive nitrogen oxygen species, which are mediators of the inflammatory response, can convert these amines to the corresponding N-nitrosamines, N-NO-IQ and N-NO-MeIQx. This study was designed to evaluate whether these N-nitrosamines are genotoxic and could be responsible, in part, for the high incidence of colon cancer in individuals with colitis. Such an association would counsel reduced intake of well-done red meat by colitis patients. Mutagenicity was evaluated by reversion of a lacZ frameshift allele in three different E. coli strains. Strains DJ701 and DJ702 express recombinant(S. typhimurium) aromatic amine N-acetyltransferase (NAT); DJ702 also expresses recombinant human cytochrome P450 1A2 and NADPH-P450 reductase; and DJ2002 served as an N-acetyltransferase negative control. In strain DJ701, N-NO-IQ and N-NO-MeIQx elicited dose-dependent mutagenicity,which was not further increased in DJ702. Neither nitrosamine was mutagenic in strain DJ2002. While both N-nitrosamines are stable for >4 h (pH 7.4, 37 degrees C), they react with DNA or 2'-deoxyguanosine 3'-monophosphate at lower pH (5.5) to form adducts. HOCl, a component of the inflammatory response,increased adduct formation, as measured by 32P-postlabeling. Following treatment with nuclease P1and separation by two-dimensional thin-layer chromatography and then HPLC, N-NO-IQ and N-NOMeIQxwere shown to form the same adducts as those formed by N-OH-MeIQx or N-OH-IQ, namely N-(deoxyguanosin-8-yl) adducts. In summary, these N-nitrosamines are genotoxic and might be alternatives to their hydroxylamine analogues as activated intermediates leading to initiation of colon cancer in individuals with colitis.
Collapse
Affiliation(s)
| | | | | | - Hui-jia Zhou
- Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - P. David Josephy
- Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
4
|
Abstract
Heterocyclic amines (HAs) occur at the ppb range in foods. Most of them demonstrate potent mutagenicity in bacteria mutagenicity test, and some of them have been classified by the International Agency for Research on Cancer as probable/possible human carcinogens. Their capability of formation even during ordinary cooking practices implies frequent exposure by the general public. Over the past 30 years, numerous studies have been stimulated aiming to alleviate human health risk associated with HAs. These studies contribute to the understanding of their formation, characterization, and quantification in foods; their mutagenesis/carcinogenesis, mechanisms of antimutagenesis by chemical or phytogenic modulators; and strategies to inhibit their formation. The chemistry of HAs, their implications in human health, factors influencing their formation, and feasible ways of suppression will be briefly reviewed. Their occurrence in trace amounts in foods necessitates continuous development and amelioration of analytical techniques. Various inhibitory strategies, ranging from modifying cooking conditions to incorporation of different modulators, have been developed. This will remain one of the foremost areas of research in the field of food chemistry and safety.
Collapse
Affiliation(s)
- Ka-Wing Cheng
- Department of Botany, The University of Hong Kong, Hong Kong, PR China
| | | | | |
Collapse
|
5
|
Hiraku Y, Murata M, Kawanishi S. Role of Oxidative DNA Damage in Dietary Carcinogenesis. Genes Environ 2006. [DOI: 10.3123/jemsge.28.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Kitamura Y, Umemura T, Okazaki K, Kanki K, Imazawa T, Masegi T, Nishikawa A, Hirose M. Enhancing effects of simultaneous treatment with sodium nitrite on 2-amino-3-methylimidazo[4,5-f]quinoline-induced rat liver, colon and Zymbal's gland carcinogenesis after initiation with diethylnitrosamine and 1,2-dimethylhydrazine. Int J Cancer 2006; 118:2399-404. [PMID: 16353153 DOI: 10.1002/ijc.21649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combined effects of sodium nitrite (NaNO2) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) on liver, colon and Zymbal's gland carcinogenesis were assessed using a rat two-stage carcinogenesis model, with a focus on involvement of oxidative stress. Male 6-week-old F344 rats were given a single intraperitoneal injection of 200 mg/kg of diethylnitrosamine and 4 subcutaneous injections of 40 mg/kg of 1,2-dimethylhydrazine for initiation. Then, they were administered 0 or 300 ppm IQ in the diet or 0, 0.1 or 0.2% NaNO2 in their drinking water for 27 weeks. The treatment with NaNO2+IQ significantly enhanced colon and Zymbal's gland carcinogenesis and tended to enhance hepatocarcinogenesis. The incidence of lung tumors in the IQ-treated groups was significantly increased as compared with the initiation alone group. In a second experiment, male rats were given IQ or NaNO2 under the same conditions as before for 1 week, and at sacrifice, their liver and colon tissue or mucosa were collected for analysis of 8-hydroxydeoxyguanosine (8-OHdG), thiobarbituric acid reactive substances (TBARS), acrolein-modified protein and the bromodeoxyuridine-labeling index (BrdU-LI) (in the colon). In the colon, 8-OHdG, acrolein-modified protein levels and BrdU-LI were significantly increased by the combined treatment. These results indicate that the treatment with NaNO2 enhances IQ-induced colon and Zymbal's gland carcinogenesis in rats and that oxidative DNA damage and lipid peroxidation may partly be involved, especially in the colon. In addition, this experiment showed that IQ can act as a potent lung carcinogen in rats.
Collapse
Affiliation(s)
- Yasuki Kitamura
- Division of Pathology, National Institute of Health Sciences, Tokyo 158-8501, and Department of Veterinary Pathology, Faculty of Agriculture, Gifu University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lakshmi VM, Schut HAJ, Zenser TV. 2-Nitrosoamino-3-methylimidazo[4,5-f]quinoline activated by the inflammatory response forms nucleotide adducts. Food Chem Toxicol 2005; 43:1607-17. [PMID: 15964673 DOI: 10.1016/j.fct.2005.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 05/02/2005] [Accepted: 05/11/2005] [Indexed: 10/25/2022]
Abstract
Heterocyclic amines and inflammation have been implicated in the etiology of colon cancer. We have recently demonstrated that during autoxidation of the inflammatory mediator nitric oxide 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) undergoes nitrosation to form 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ). This study evaluates the genotoxicity of N-NO-IQ and compares the adducts it forms to those of 2-hydroxyamino-3-methylimidazo[4,5-f]quinoline (N-OH-IQ). N-NO-IQ was incubated with 2'-deoxyguanosine 3'-monophosphate (dGp) under a variety of inflammatory conditions. 32P-Postlabeling demonstrated the presence of multiple adducts. Incubation of N-OH-IQ with dGp at pH 7.4, 5.5, or 2.0 resulted in the formation of a single major adduct, N-(deoxyguanosin-8-yl)-IQ (dG-C8-IQ). Using a combination of 32P-postlabeling, HPLC, and nuclease P1 treatment, N-NO-IQ was shown to produce dG-C8-IQ under several different conditions. HOCl oxidation of N-NO-IQ increased dG-C8-IQ formation, and this was further increased as pH decreased from 7.4 to 5.5. Oxidation of N-NO-IQ formed a new adduct, adduct 2, while in the absence of oxidants adduct m was the major adduct. Adducts 2 and m were not formed by N-OH-IQ and not further identified. The results demonstrate that N-NO-IQ forms N-(deoxyguanosin-8-yl)-IQ, is genotoxic, is activated by conditions that mediate inflammatory responses, and is a possible cancer risk factor for individuals with colitis, inflammation of the colon.
Collapse
Affiliation(s)
- Vijaya M Lakshmi
- VA Medical Center, and Division of Geriatric Medicine, 11G-JB, St. Louis University School of Medicine, St. Louis, MO 63125, United States
| | | | | |
Collapse
|
8
|
Ogawa K, Masutani M, Kato K, Tang M, Kamada N, Suzuki H, Nakagama H, Sugimura T, Shirai T. Parp-1 deficiency does not enhance liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline in mice. Cancer Lett 2005; 236:32-8. [PMID: 15955622 DOI: 10.1016/j.canlet.2005.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/25/2005] [Accepted: 04/28/2005] [Indexed: 10/25/2022]
Abstract
The susceptibility of poly(ADP-ribose) polymerase-1 (Parp-1) knockout mice to 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-induced liver carcinogenesis was analyzed. Twelve-week-old male Parp-1(+/+), Parp-1(+/-) and Parp-1(-/-) mice of the C57BL/6 congenic strain were fed a diet containing IQ at a concentration of 300 ppm or a control diet for 60 weeks. Hepatocellular carcinomas were observed only in 1/19, 2/18 and 1/17 of the Parp-1(-/-), Parp-1(+/-) and Parp-1(+/+) mice, respectively. Parp-1 deficiency did not affect the susceptibility of mice to carcinogenicity of IQ, which produces bulky DNA adducts that are repaired mainly through the nucleotide excision repair pathway. This result is in sharp contrast to the increased susceptibility of Parp-1(-/-) mice to carcinogenesis induced by alkylating agents that produce DNA damage repaired mainly through base excision repair and DNA strand break repair pathways.
Collapse
Affiliation(s)
- Kumiko Ogawa
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Arylamines and heterocyclic arylamines (HAAs) are of particular interest because of demonstrated carcinogenicity in animals and humans and the broad exposure to many of these compounds. The activation of these, and also some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 (P450). P450 1A2 plays a prominent role in these reactions. However, P450 1A1 and 1B1 and other P450s are also important in humans as well as experimental animals. Some arylamines (including drugs) are N-hydroxylated predominantly by P450s other than those in Family 1. Other oxygenases can also have roles. An important issue is extrapolation between species in predicting cancer risks, as shown by the low rates of HAA activation by rat P450 1A2 and low levels of P450 1A2 expression in some nonhuman primates.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
10
|
Oda Y. Analysis of the involvement of human N-acetyltransferase 1 in the genotoxic activation of bladder carcinogenic arylamines using a SOS/umu assay system. Mutat Res 2004; 554:399-406. [PMID: 15450435 DOI: 10.1016/j.mrfmmm.2004.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 06/25/2004] [Indexed: 04/30/2023]
Abstract
Human acetyltransferase genes NAT1 or NAT2 were expressed in a Salmonella typhimurium strain used to detect the genotoxicity of bladder carcinogens. To clarify whether the human and rodent bladder carcinogenic arylamines are activated via either NAT1 or NAT2 to cause genotoxicity, a SOS/umu genotoxicity assay was used, with the strains S. typhimurium NM6001 (NAT1-overexpressing strain), S. typhimurium NM6002 (NAT2-overexpressing strain), and S. typhimurium NM6000 (O-AT-deficient parent strain). Genotoxicity was measured by induction of SOS/umuC gene expression in the system, which contained both an umuC"lacZ fusion gene and NAT1 or NAT2 plasmids. 4-Aminobiphenyl, 2-acetylaminofluorene, beta-naphthylamine, o-tolidine, o-anisidine, and benzidine exhibited dose-dependent induction of the umuC gene in strain NM6001. Although the induction of umuC by these chemicals was observed in the NM6002 strain, the induction was considerably lower than in the NM6001 strain. In the parent strain, NM6000, none of these compounds induced umuC gene expression. We also determined activation of these chemicals by recombinant human cytochrome P450 (P450 or CYP) 1A2 enzyme in three S. typhimurium tester strains. The activation of the chemicals was stronger in the NM6001 strain than that in NM6002. The specific NAT1 inhibitor 5-iodosalicylic acid inhibited umuC gene expression induced by aromatic amines used. These results could provide evidence that the bladder carcinogenic aromatic amines are mainly activated by the NAT1 enzyme to produce DNA damage rather than NAT2. The NAT1-overexpressing strain can be used to determine the genotoxic activation of bladder carcinogenic arylamines in the umu test and could provide a tool for predicting the carcinogenic potential of arylamines.
Collapse
Affiliation(s)
- Yoshimitsu Oda
- Osaka Prefectural Institute of Public Health, 3-69, Nakamichi 1-chome, Higashinari-ku, 537-0025, Japan.
| |
Collapse
|
11
|
Darwish IA, Blake DA. One-step competitive immunoassay for cadmium ions: development and validation for environmental water samples. Anal Chem 2001; 73:1889-95. [PMID: 11338607 DOI: 10.1021/ac0012905] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rapid, simple, and reliable competitive immunoassay was developed and validated for measurement of Cd(II) in environmental water samples. This assay employed a monoclonal antibody that recognizes Cd(II)-EDTA complexes as capture reagent and a Cd(II)-EDTA conjugate of horseradish peroxidase as an enzyme label. The assay depended on a competitive binding reaction between the enzyme conjugate and Cd(II)-EDTA complexes, derived from the environmental water sample, for the binding sites of the immobilized antibody. The concentration of Cd(II) in the sample was quantified by the ability of its EDTA complexes to inhibit the binding of the enzyme conjugate to the antibody and, subsequently, color formation in the assay. The assay was specific to Cd(II), with a limit of detection of 0.3 ppb. Ca(II), Mg(II), and Fe(III), the metal ions commonly found in ambient water at relatively high concentrations, did not interfere with the assay. Mean analytical recovery of added Cd(II) was 100.29 +/- 3.60. The precision of the assay was satisfactory; coefficients of variation were 3.6-10.9 and 4.81-10.21% for intra- and interassay precision, respectively. The assay compared favorably with graphite furnace atomic absorption spectroscopy in its ability to accurately measure Cd(II) spiked into water samples from a Louisiana bayou.
Collapse
Affiliation(s)
- I A Darwish
- Tulane University Health Sciences Center and the Tulane-Xavier Center for Bioenvironmental Research, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
12
|
Abstract
The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology. Very recently, a series of new discoveries have been made that are bound to have distinguished implications for bioenergetics, physiology, human pathology, and clinical diagnosis and that suggest that deregulation of the creatine kinase (CK) system is associated with a variety of diseases. Disturbances of the CK system have been observed in muscle, brain, cardiac, and renal diseases as well as in cancer. On the other hand, Cr and Cr analogs such as cyclocreatine were found to have antitumor, antiviral, and antidiabetic effects and to protect tissues from hypoxic, ischemic, neurodegenerative, or muscle damage. Oral Cr ingestion is used in sports as an ergogenic aid, and some data suggest that Cr and creatinine may be precursors of food mutagens and uremic toxins. These findings are discussed in depth, the interrelationships are outlined, and all is put into a broader context to provide a more detailed understanding of the biological functions of Cr and of the CK system.
Collapse
Affiliation(s)
- M Wyss
- F. Hoffmann-La Roche, Vitamins and Fine Chemicals Division, Basel, Switzerland.
| | | |
Collapse
|
13
|
Wolz E, Pfau W, Degen GH. Bioactivation of the food mutagen 2-amino-3-methyl-imidazo[4, 5-f]quinoline (IQ) by prostaglandin-H synthase and by monooxygenases: DNA adduct analysis. Food Chem Toxicol 2000; 38:513-22. [PMID: 10828503 DOI: 10.1016/s0278-6915(00)00038-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) is a known multisite carcinogen in rodents and a potent mutagen in acetyltransferase-proficient Salmonella typhimurium strains on activation by either monooxygenases (MFO) or by prostaglandin H synthase (PHS). The primary metabolites formed by MFO- or PHS-mediated IQ-oxidation are different ([Wolz]), but secondary metabolism could ultimately result in the same DNA-binding intermediates. For further investigations, the DNA adduct pattern was now studied by means of (32)P-postlabelling analysis in vitro on PHS-activation and compared to that formed on MFO-mediated activation of IQ in hepatocytes. The C8-dG-IQ-adduct N-(deoxyguanosin-8-yl)-IQ was the major adduct in all samples, that is, in DNA isolated from S. typhimurium YG1024 treated with PHS-oxidized IQ or its nitro-derivative, from ovine seminal vesicle cells, and from hepatocytes exposed to IQ or nitro-IQ. This speaks for the formation of a common DNA-reactive species, presumably an arylnitrenium ion, generated by different pathways in these cellular model systems. The similarity of critical biochemical DNA lesions suggests that PHS can contribute to the bioactivation of IQ in vivo: this is of particular interest in extrahepatic tissues since expression of cytochrome P450 isoenzymes known to be involved in the N-oxidation of IQ is largely confined to the liver.
Collapse
Affiliation(s)
- E Wolz
- Institut für Arbeitsphysiologie an der Universität Dortmund, Germany
| | | | | |
Collapse
|
14
|
Zenser TV, Lakshmi VM, Hsu FF, Davis BB. Peroxygenase metabolism of N-acetylbenzidine by prostaglandin H synthase. Formation of an N-hydroxylamine. J Biol Chem 1999; 274:14850-6. [PMID: 10329684 DOI: 10.1074/jbc.274.21.14850] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of prostaglandin H2 by prostaglandin H synthase (PHS) results in a two-electron oxidation of the enzyme. An active reduced enzyme is regenerated by reducing cofactors, which become oxidized. This report examines the mechanism by which PHS from ram seminal vesicle microsomes catalyzes the oxidation of the reducing cofactor N-acetylbenzidine (ABZ). During the conversion of 0.06 mM ABZ to its final end product, 4'-nitro-4-acetylaminobiphenyl, a new metabolite was observed when 1 mM ascorbic acid was present. Similar results were observed whether 0.2 mM arachidonic acid or 0.5 mM H2O2 was used as the substrate. This metabolite co-eluted with synthetic N'-hydroxy-N-acetylbenzidine (N'HA), but not with N-hydroxy-N-acetylbenzidine. The new metabolite was identified as N'HA by electrospray ionization/MS/MS. N'HA represented as much as 10% of the total radioactivity recovered by high pressure liquid chromatography. When N'HA was substituted for ABZ, PHS metabolized N'HA to 4'-nitro-4-acetylaminobiphenyl. Inhibitor studies demonstrated that metabolism was due to PHS, not cytochrome P-450. The lack of effect of 5,5-dimethyl-1-pyrroline N-oxide, mannitol, and superoxide dismutase suggests the lack of involvement of one-electron transfer reactions and suggests that hydroxyl radicals and superoxide are not sources of oxygen or oxidants. Oxygen uptake studies did not demonstrate a requirement for molecular oxygen. When [18O]H2O2 was used as the substrate, 18O enrichment was observed for 4'-nitro-4-acetylaminobiphenyl, but not for N'HA. A 97% enrichment was observed for one atom of 18O, and a 17 +/- 7% enrichment was observed for two 18O atoms. The rapid exchange of 18O-N'HA with water was suggested to explain the lack of enrichment of N'HA and the low enrichment of two 18O atoms into 4'-nitro-4-acetylaminobiphenyl. Results demonstrate a peroxygenase oxidation of ABZ and N'HA by PHS and suggest a stepwise oxidation of ABZ to N'-hydroxy, 4'-nitroso, and 4'-nitro products.
Collapse
Affiliation(s)
- T V Zenser
- VA Medical Center, Division of Geriatric Medicine, St. Louis University School of Medicine, St. Louis, Missouri 63125, USA.
| | | | | | | |
Collapse
|
15
|
Schut HA, Snyderwine EG. DNA adducts of heterocyclic amine food mutagens: implications for mutagenesis and carcinogenesis. Carcinogenesis 1999; 20:353-68. [PMID: 10190547 DOI: 10.1093/carcin/20.3.353] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The heterocyclic amines (HCAs) are a family of mutagenic/carcinogenic compounds produced during the pyrolysis of creatine, amino acids and proteins. The major subclass of HCAs found in the human diet comprise the aminoimidazoazaarenes (AIAs) 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). All, except DiMeIQx, have been shown to be carcinogenic in animals. These compounds are present in cooked muscle meats at the p.p.b. level. Since the discovery of the HCAs in the late 1970s, many studies have examined the DNA adducts of these compounds. This review compiles the literature on AIA-DNA adducts including their identification and characterization, pathways of formation, mutagenesis in vitro and in vivo, and their association with carcinogenesis in animal models. It is now known that metabolic activation leading to the formation of DNA adducts is critical for mutagenicity and carcinogenicity of these compounds. All of the AIAs studied adduct to the guanine base, the major adduct being formed at the C8 position. Two AIAs, IQ and MeIQx, also form minor adducts at the N2 position of guanine. A growing body of literature has reported on the mutation spectra induced by AIA-guanine adducts. Studies of animal tumors induced by AIAs have begun to relate AIA-DNA adduct-induced mutagenic events with the mutations found in critical genes associated with oncogenesis. Several studies have demonstrated the feasibility of chemoprevention of AIA tumorigenesis. Only a few studies have reported on the detection of AIA-DNA adducts in human tissues; difficulties persist in the routine detection of AIA-DNA adducts in humans for the purpose of biomonitoring of exposure to AIAs. The AIAs are nevertheless regarded as possible human carcinogens, and future research on AIA-DNA adducts is likely to help address the role of AIAs in human cancer.
Collapse
Affiliation(s)
- H A Schut
- Department of Pathology, Medical College of Ohio, Toledo 43614-5806, USA
| | | |
Collapse
|
16
|
Abstract
Bacterial mutagenicity assays have been widely used in genotoxicology research for two decades. We discuss the development of such assays, especially the Ames test, with particular attention to strain engineering. Genes encoding enzymes of mutagen bioactivation, including N-acetyltransferase, nitroreductase, and cytochrome P450, have been introduced into tester strains. The processing of DNA damage by the bacterial strains has also been modified in several ways, so as to enhance mutagenesis. These efforts have greatly increased the sensitivity of mutation assays and have illuminated the molecular mechanisms of mutagenesis. We also discuss the relationship between bacterial assays and in vivo mutation assays which use transgenic rodents.
Collapse
Affiliation(s)
- P D Josephy
- Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry and Biochemistry, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
17
|
Wolz E, Wild D, Degen GH. Prostaglandin-H synthase mediated metabolism and mutagenic activation of 2-amino-3-methylimidazo [4,5-f] quinoline (IQ). Arch Toxicol 1995; 69:171-9. [PMID: 7717873 DOI: 10.1007/s002040050154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prostaglandin-H synthase (PHS), a mammalian peroxidase of interest for the extrahepatic formation of reactive intermediates of carcinogens, catalyzes in vitro the metabolic activation of the mutagen and carcinogen 2-amino-3-methylimidazo-[4,5-f]quinoline (IQ). Incubation of 14C-labeled IQ with ram seminal vesicle microsomes (RSVM), a rich source of PHS, resulted in protein binding and generated products mutagenic in S. typhimurium YG1024. The mutagenic activity produced in IQ/PHS incubations was stable and extractable with ethyl acetate. Upon fractionation of such extracts by HPLC and subsequent analysis, two metabolites were identified as 2,2'-azo-bis-3-methylimidazo[4,5-f]quinoline (azo-IQ) and 3-methyl-2-nitro-imidazo[4,5-f]quinoline (nitro-IQ) confirmed by comparison of HPLC retention times, UV/VIS-, 1H-NMR-spectroscopy, and mass spectrometry of synthesized standards. Azo-IQ was obtained by chemical oxidation of IQ with meta-sodium periodate. It was the major metabolite in PHS incubations, but has not been detected in monooxygenase incubations. Azo-IQ, without metabolic activation, was much less mutagenic in S. typhimurium YG1024 (308 rev/nmol) than nitro-IQ and 3-methyl-2-nitroso-imidazo[4,5-f]quinoline (nitroso-IQ), two other S9-independent mutagens which have been synthesized by chemical oxidation of IQ with sodium nitrite. Nitro-IQ was formed only in trace amounts but due to its potent mutagenicity in S. typhimurium YG1024 (2 x 10(6) rev/nmol) it accounted for most of the mutagenic activity of the incubations. These data show that PHS-mediated in vitro metabolism of IQ results in its metabolic activation; thus PHS may contribute to the genotoxicity of IQ in extrahepatic tissues.
Collapse
Affiliation(s)
- E Wolz
- Institut für Toxikologie und SFB 172, Universität Würzburg, Germany
| | | | | |
Collapse
|