1
|
Kandasamey P, Peleg-Raibstein D. Programming the Brain: How Maternal Overnutrition Shapes Cognitive Aging in Offspring. Nutrients 2025; 17:988. [PMID: 40290018 PMCID: PMC11944564 DOI: 10.3390/nu17060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Maternal overnutrition critically influences offspring's long-term metabolic and cognitive health. While prior research indicates maternal diet can disrupt hippocampal function, the specific impact on spatial memory remains unclear. Methods: Female mice were fed a high-fat diet (HFD) for nine weeks before and during pregnancy. Offspring were weaned onto a standard diet and tested at postnatal day 90 using the dry maze, a spatial reference memory task. Results: HFD-exposed offspring exhibited significant learning acquisition impairments, with prolonged latencies in locating hidden rewards and diminished within-session improvements compared to controls. During the probe trial, they spent significantly less time in the target quadrant, indicating long-term spatial memory retention deficits. Notably, these cognitive impairments occurred independently of body weight differences at testing. Discussion: This study uniquely demonstrates that maternal HFD exposure induces specific spatial memory deficits in adult offspring, potentially through neurodevelopmental alterations preceding metabolic dysfunction. The results highlight the importance of prenatal nutrition in shaping cognitive outcomes later in life. Conclusions: These findings extend our understanding of how prenatal nutrition impacts cognitive aging and disease susceptibility. Given rising obesity rates among women of reproductive age, this research underscores the urgent need for targeted interventions to mitigate the intergenerational effects of maternal overnutrition on brain function.
Collapse
Affiliation(s)
- Pratheba Kandasamey
- Institute for Neuroscience, Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland;
| | - Daria Peleg-Raibstein
- Institute for Neuroscience, Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland;
- Neuroscience Center Zurich, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Žnidaršič N, Grgurevič N, Svete AN, Meden A, Snoj T. A comparison of cognitive decline in aged mice and mice treated with aftin-4. Sci Rep 2024; 14:28320. [PMID: 39550500 PMCID: PMC11569203 DOI: 10.1038/s41598-024-79792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Abstract
Dementia, especially Alzheimer's disease, presents a major clinical challenge, and researchers are still searching for an optimal animal model. To address this gap, we compared male and ovariectomized female C57BL/6 mice treated with 30 mg/kg aftin-4, which induces neurodegeneration, with naturally aged (15-16 months old) mice not treated with aftin-4. We performed a series of behavioral tests; measured postmortem plasma β-amyloid levels (Aβ1-40 and Aβ1-42) and the levels of the oxidative stress indicators glutathione peroxidase (GPx), superoxide dismutase (SOD) and malondialdehyde (MDA); and evaluated astrocytic reactivity in the brain using glial fibrillary acid protein (GFAP) levels. Our results revealed no behavioral changes in the aged or aftin-4-treated mice compared with the control mice. Aftin-4 mice presented lower brain MDA levels and no detectable changes in plasma Aβ levels. In general, female mice had higher GPx and SOD levels and lower Aβ1-42 levels than male mice did. In contrast, aged and aftin-4-treated male mice presented elevated levels of GFAP, indicating astrocyte damage. Our results could not confirm that either aftin-4-treated or aged mice are reliable models for dementia. However, the observed molecular changes suggest that male animals may be more susceptible to oxidative stress and brain damage than females are. This study demonstrates the complexity of modeling dementia in animals and the importance of future studies in this area.
Collapse
Affiliation(s)
- Neža Žnidaršič
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, 1000, Slovenia
| | - Neža Grgurevič
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, 1000, Slovenia
| | - Alenka Nemec Svete
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, 1000, Slovenia
| | - Anže Meden
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, 1000, Slovenia
| | - Tomaž Snoj
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, 1000, Slovenia.
| |
Collapse
|
3
|
Miranda M, Navas MC, Zanoni Saad MB, Piromalli Girado D, Weisstaub N, Bekinschtein P. Environmental enrichment in middle age rats improves spatial and object memory discrimination deficits. Front Behav Neurosci 2024; 18:1478656. [PMID: 39494036 PMCID: PMC11528545 DOI: 10.3389/fnbeh.2024.1478656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Changes in memory performance are one of the main symptoms of normal aging. The storage of similar experiences as different memories (ie. behavioral pattern separation), becomes less efficient as aging progresses. Studies have focused on hippocampus dependent spatial memories and their role in the aging related deficits in behavioral pattern separation (BPS) by targeting high similarity interference conditions. However, parahippocampal cortices such as the perirhinal cortex are also particularly vulnerable to aging. Middle age is thought to be the stage where mild mnemonic deficits begin to emerge. Therefore, a better understanding of the timing of the spatial and object domain memory impairment could shed light over how plasticity changes in the parahipocampal-hippocampal system affects mnemonic function in early aging. In the present work, we compared the performance of young and middle-aged rats in both spatial (spontaneous location recognition) and non-spatial (spontaneous object recognition) behavioral pattern separation tasks to understand the comparative progression of these deficits from early stages of aging. Moreover, we explored the impact of environmental enrichment (EE) as an intervention with important translational value. Although a bulk of studies have examined the contribution of EE for preventing age related memory decline in diverse cognitive domains, there is limited knowledge of how this intervention could specifically impact on BPS function in middle-aged animals. Here we evaluate the effects of EE as modulator of BPS, and its ability to revert the deficits caused by normal aging at early stages. We reveal a domain-dependent impairment in behavioral pattern separation in middle-aged rats, with spatial memories affected independently of the similarity of the experiences and object memories only affected when the stimuli are similar, an effect that could be linked to the higher interference seen in this group. Moreover, we found that EE significantly enhanced behavioral performance in middle-aged rats in the spatial and object domain, and this improvement is specific of the high similarity load condition. In conclusion, these results suggest that memory is differentially affected by aging in the object and spatial domains, but that BPS function is responsive to an EE intervention in a multidomain manner.
Collapse
|
4
|
Schell M, Foltyn-Dumitru M, Bendszus M, Vollmuth P. Automated hippocampal segmentation algorithms evaluated in stroke patients. Sci Rep 2023; 13:11712. [PMID: 37474622 PMCID: PMC10359355 DOI: 10.1038/s41598-023-38833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
Deep learning segmentation algorithms can produce reproducible results in a matter of seconds. However, their application to more complex datasets is uncertain and may fail in the presence of severe structural abnormalities-such as those commonly seen in stroke patients. In this investigation, six recent, deep learning-based hippocampal segmentation algorithms were tested on 641 stroke patients of a multicentric, open-source dataset ATLAS 2.0. The comparisons of the volumes showed that the methods are not interchangeable with concordance correlation coefficients from 0.266 to 0.816. While the segmentation algorithms demonstrated an overall good performance (volumetric similarity [VS] 0.816 to 0.972, DICE score 0.786 to 0.921, and Hausdorff distance [HD] 2.69 to 6.34), no single out-performing algorithm was identified: FastSurfer performed best in VS, QuickNat in DICE and average HD, and Hippodeep in HD. Segmentation performance was significantly lower for ipsilesional segmentation, with a decrease in performance as a function of lesion size due to the pathology-based domain shift. Only QuickNat showed a more robust performance in volumetric similarity. Even though there are many pre-trained segmentation methods, it is important to be aware of the possible decrease in performance for the segmentation results on the lesion side due to the pathology-based domain shift. The segmentation algorithm should be selected based on the research question and the evaluation parameter needed. More research is needed to improve current hippocampal segmentation methods.
Collapse
Affiliation(s)
- Marianne Schell
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Martha Foltyn-Dumitru
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Freire-Cobo C, Rothwell ES, Varghese M, Edwards M, Janssen WGM, Lacreuse A, Hof PR. Neuronal vulnerability to brain aging and neurodegeneration in cognitively impaired marmoset monkeys (Callithrix jacchus). Neurobiol Aging 2023; 123:49-62. [PMID: 36638681 PMCID: PMC9892246 DOI: 10.1016/j.neurobiolaging.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The investigation of neurobiological and neuropathological changes that affect synaptic integrity and function with aging is key to understanding why the aging brain is vulnerable to Alzheimer's disease. We investigated the cellular characteristics in the cerebral cortex of behaviorally characterized marmosets, based on their trajectories of cognitive learning as they transitioned to old age. We found increased astrogliosis, increased phagocytic activity of microglial cells and differences in resting and reactive microglial cell phenotypes in cognitively impaired compared to nonimpaired marmosets. Differences in amyloid beta deposition were not related to cognitive trajectory. However, we found age-related changes in density and morphology of dendritic spines in pyramidal neurons of layer 3 in the dorsolateral prefrontal cortex and the CA1 field of the hippocampus between cohorts. Overall, our data suggest that an accelerated aging process, accompanied by neurodegeneration, that takes place in cognitively impaired aged marmosets and affects the plasticity of dendritic spines in cortical areas involved in cognition and points to mechanisms of neuronal vulnerability to aging.
Collapse
Affiliation(s)
- Carmen Freire-Cobo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Emily S Rothwell
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mélise Edwards
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - William G M Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Lin X, Bo H, Gu J, Yi X, Zhang P, Liu R, Li H, Sun G, Lin CH. Astaxanthin, a carotenoid antioxidant, pretreatment alleviates cognitive deficits in aircraft noised mice by attenuating inflammatory and oxidative damage to the gut, heart and hippocampus. Biomed Pharmacother 2022; 148:112777. [PMID: 35255410 DOI: 10.1016/j.biopha.2022.112777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND We first explore whether aircraft noise (AN) induces cognitive deficit via inducing oxidative damage in multiple vital organs including intestines, hearts and hippocampus tissues. Second, we explore whether the AN-induced cognitive deficits and inflammatory and oxidative damage to multiple organs can be alleviated by Astaxanthin (AX) pretreatment. METHODS Cognitive deficits were induced by subjecting the mice to AN 2 h daily for 7 consecutive days. An intragastrical dose of AX emulsifier (at the dose of daily feed intake [6 g] of a mouse three times weekly) was given to mice for consecutive 8 weeks prior to the start of AN. Cognitive functions were evaluated by using passive avoidance apparatus, Y-maze, Morris water maze and novel recognition test. Intestinal permeability was determined by measuring the intestinal clearance of fluorescein-isothiocyante. Evans Blue extravasation assay was used to measure the permeability of blood-brain-barrier. Inflammatory and oxidative damage to multiple organs were determined by measuring several pro-inflammatory cytokines and oxidative stress indicators in intestines; hearts and hippocampus. RESULTS Mice treated with AN displayed exacerbated stress reactions, cognitive deficits, gut barrier hyperpermeability, increased upload of lipopolysaccharide translocation, systemic pro-inflammatory cytokines overproduction, blood-brain-barrier hyperpermeability, hippocampal neuroinflammation and increased levels of oxidative stress indicators in intestine, heart and hippocampus. All of the above-mentioned disorders caused by AN were significantly (P < 0.05) reversed by AX. CONCLUSIONS Our data indicate that AX pretreatment alleviates cognitive deficits in aircraft noised mice by attenuating inflammatory and oxidative damage to intestines, hearts and hippocampal tissues.
Collapse
Affiliation(s)
- Xiaojing Lin
- Department of Orthopedics, Trauma and Orthopedics Institute of Chinese PLA, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province 250013, PR China; Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, PR China
| | - Hongjian Bo
- Shenzhen Academy of Aerospace Technology, No. 6 South 10 The Science and Technology Road, Nanshan District, Shenzhen, Guangdong, PR China
| | - Jia Gu
- Department of Pathology, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province 250013, PR China
| | - Xueqing Yi
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, PR China
| | - Peng Zhang
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, PR China
| | - Ruoxu Liu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, PR China
| | - Haifeng Li
- Shenzhen Academy of Aerospace Technology, No. 6 South 10 The Science and Technology Road, Nanshan District, Shenzhen, Guangdong, PR China
| | - Gang Sun
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, PR China.
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
7
|
Hernandez CM, Hernandez AR, Hoffman JM, King PH, McMahon LL, Buford TW, Carter C, Bizon JL, Burke SN. A Neuroscience Primer for Integrating Geroscience With the Neurobiology of Aging. J Gerontol A Biol Sci Med Sci 2022; 77:e19-e33. [PMID: 34623396 PMCID: PMC8751809 DOI: 10.1093/gerona/glab301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroscience has a rich history of studies focusing on neurobiology of aging. However, much of the aging studies in neuroscience occur outside of the gerosciences. The goal of this primer is 2-fold: first, to briefly highlight some of the history of aging neurobiology and second, to introduce to geroscientists the broad spectrum of methodological approaches neuroscientists use to study the neurobiology of aging. This primer is accompanied by a corresponding geroscience primer, as well as a perspective on the current challenges and triumphs of the current divide across these 2 fields. This series of manuscripts is intended to foster enhanced collaborations between neuroscientists and geroscientists with the intent of strengthening the field of cognitive aging through inclusion of parameters from both areas of expertise.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abigail R Hernandez
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica M Hoffman
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Lori L McMahon
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas W Buford
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Christy Carter
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Bizon
- Department of Neuroscience, Center for Cognitive Aging and Memory, and the McKnight Brain Institute, The University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Sara N Burke
- Department of Neuroscience, Center for Cognitive Aging and Memory, and the McKnight Brain Institute, The University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
8
|
MacNicol E, Wright P, Kim E, Brusini I, Esteban O, Simmons C, Turkheimer FE, Cash D. Age-Specific Adult Rat Brain MRI Templates and Tissue Probability Maps. Front Neuroinform 2022; 15:669049. [PMID: 35069163 PMCID: PMC8777032 DOI: 10.3389/fninf.2021.669049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Age-specific resources in human MRI mitigate processing biases that arise from structural changes across the lifespan. There are fewer age-specific resources for preclinical imaging, and they only represent developmental periods rather than adulthood. Since rats recapitulate many facets of human aging, it was hypothesized that brain volume and each tissue's relative contribution to total brain volume would change with age in the adult rat. Data from a longitudinal study of rats at 3, 5, 11, and 17 months old were used to test this hypothesis. Tissue volume was estimated from high resolution structural images using a priori information from tissue probability maps. However, existing tissue probability maps generated inaccurate gray matter probabilities in subcortical structures, particularly the thalamus. To address this issue, gray matter, white matter, and CSF tissue probability maps were generated by combining anatomical and signal intensity information. The effects of age on volumetric estimations were then assessed with mixed-effects models. Results showed that herein estimation of gray matter volumes better matched histological evidence, as compared to existing resources. All tissue volumes increased with age, and the tissue proportions relative to total brain volume varied across adulthood. Consequently, a set of rat brain templates and tissue probability maps from across the adult lifespan is released to expand the preclinical MRI community's fundamental resources.
Collapse
Affiliation(s)
- Eilidh MacNicol
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Paul Wright
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Irene Brusini
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Oscar Esteban
- Department of Psychology, Stanford University, Stanford, CA, United States
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Zhou Y, Chawla MK, Rios-Monterrosa JL, Wang L, Zempare MA, Hruby VJ, Barnes CA, Cai M. Aged Brains Express Less Melanocortin Receptors, Which Correlates with Age-Related Decline of Cognitive Functions. Molecules 2021; 26:6266. [PMID: 34684847 PMCID: PMC8541441 DOI: 10.3390/molecules26206266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Brain G-protein coupled receptors have been hypothesized to be potential targets for maintaining or restoring cognitive function in normal aged individuals or in patients with neurodegenerative disease. A number of recent reports suggest that activation of melanocortin receptors (MCRs) in the brain can significantly improve cognitive functions of normal rodents and of different rodent models of the Alzheimer's disease. However, the potential impact of normative aging on the expression of MCRs and their potential roles for modulating cognitive function remains to be elucidated. In the present study, we first investigated the expression of these receptors in six different brain regions of young (6 months) and aged (23 months) rats following assessment of their cognitive status. Correlation analysis was further performed to reveal potential contributions of MCR subtypes to spatial learning and memory. Our results revealed statistically significant correlations between the expression of several MCR subtypes in the frontal cortex/hypothalamus and the hippocampus regions and the rats' performance in spatial learning and memory only in the aged rats. These findings support the hypothesis that aging has a direct impact on the expression and function of MCRs, establishing MCRs as potential drug targets to alleviate aging-induced decline of cognitive function.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (Y.Z.); (J.L.R.-M.); (L.W.); (V.J.H.)
| | - Monica K. Chawla
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ 85721, USA; (M.K.C.); (M.A.Z.); (C.A.B.)
- Division of Neural Systems, Memory & Aging, The University of Arizona, Tucson, AZ 85721, USA
| | - Jose L. Rios-Monterrosa
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (Y.Z.); (J.L.R.-M.); (L.W.); (V.J.H.)
| | - Lingzhi Wang
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (Y.Z.); (J.L.R.-M.); (L.W.); (V.J.H.)
| | - Marc A. Zempare
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ 85721, USA; (M.K.C.); (M.A.Z.); (C.A.B.)
- Division of Neural Systems, Memory & Aging, The University of Arizona, Tucson, AZ 85721, USA
| | - Victor J. Hruby
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (Y.Z.); (J.L.R.-M.); (L.W.); (V.J.H.)
| | - Carol A. Barnes
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ 85721, USA; (M.K.C.); (M.A.Z.); (C.A.B.)
- Division of Neural Systems, Memory & Aging, The University of Arizona, Tucson, AZ 85721, USA
- Department of Psychology, Neurology and Neuroscience, The University of Arizona, Tucson, AZ 85721, USA
| | - Minying Cai
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (Y.Z.); (J.L.R.-M.); (L.W.); (V.J.H.)
| |
Collapse
|
10
|
Lyons CE, Zhou X, Razzoli M, Chen M, Xia W, Ashe K, Zhang B, Bartolomucci A. Lifelong chronic psychosocial stress induces a proteomic signature of Alzheimer's disease in wildtype mice. Eur J Neurosci 2021; 55:2971-2985. [PMID: 34048087 DOI: 10.1111/ejn.15329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/26/2021] [Accepted: 05/23/2021] [Indexed: 12/25/2022]
Abstract
Late onset, sporadic Alzheimer's disease (AD) accounts for the vast majority of cases. Unlike familial AD, the factors that drive the onset of sporadic AD are poorly understood, although aging and stress play a role. The early onset/severity of neuropathology observed in most genetic mouse models of AD hampers the study of the role of aging and environmental factors; thus alternate strategies are necessary to understand the contributions of these factors to sporadic AD. We demonstrate that mice acquiring a low social status (subordinate) in a lifelong chronic psychosocial stress (CPS) model, accrue widespread proteomic changes in the frontal/temporal cortex during aging. To better understand the significance of these stress-induced changes, we compared the differentially expressed proteins (DEPs) of subordinate mice to those of patients at varying stages of dementia. Sixteen and fifteen DEPs upregulated in subordinate mice were also upregulated in patients with mild cognitive impairment (MCI) and AD, respectively. Six of those upregulated proteins (CPE, ERC2, GRIN2B, SLC6A1, SYN1, WFS1) were shared by subordinate mice and patients with MCI or AD. Finally, comparison with a spatially detailed transcriptomic database revealed that the superior frontal gyrus and hippocampus had the greatest overlap between mice subjected to lifelong CPS and AD patients. Overall, most of the overlapping proteins were functionally associated with enhanced NMDA receptor mediated glutamatergic signaling, an excitotoxicity mechanism known to affect neurodegeneration. These findings support the association between stress and AD progression and provide valuable insight into potential early biomarkers and protein mediators of this relationship.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Physiology and Biology, University of Minnesota, Minneapolis, MN, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Razzoli
- Department of Integrative Physiology and Biology, University of Minnesota, Minneapolis, MN, USA
| | - Mei Chen
- Geriatric Research Education Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
| | - Weiming Xia
- Geriatric Research Education Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Karen Ashe
- Department of Neurology and N. Bud Grossman Center for Memory Research and Care, University of Minnesota, and Minneapolis VA Medical Center, Minneapolis, MN, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Bartolomucci
- Department of Integrative Physiology and Biology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Bernaud VE, Hiroi R, Poisson ML, Castaneda AJ, Kirshner ZZ, Gibbs RB, Bimonte-Nelson HA. Age Impacts the Burden That Reference Memory Imparts on an Increasing Working Memory Load and Modifies Relationships With Cholinergic Activity. Front Behav Neurosci 2021; 15:610078. [PMID: 33643006 PMCID: PMC7902531 DOI: 10.3389/fnbeh.2021.610078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
Rodent aging research often utilizes spatial mazes, such as the water radial-arm-maze (WRAM), to evaluate cognition. The WRAM can simultaneously measure spatial working and reference memory, wherein these two memory types are often represented as orthogonal. There is evidence, however, that these two memory forms yield interference at a high working memory load. The current study systematically evaluated whether the presence of a reference memory component impacts handling of an increasing working memory load. Young and aged female rats were tested to assess whether aging impacts this relationship. Cholinergic projections from the basal forebrain to the hippocampus and cortex can affect cognitive outcomes, and are negatively impacted by aging. To evaluate whether age-related changes in working and reference memory profiles are associated with cholinergic functioning, we assessed choline acetyltransferase activity in these behaviorally-tested rats. Results showed that young rats outperformed aged rats on a task testing solely working memory. The addition of a reference memory component deteriorated the ability to handle an increasing working memory load, such that young rats performed similar to their aged counterparts. Aged rats also had challenges when reference memory was present, but in a different context. Specifically, aged rats had difficulty remembering which reference memory arms they had entered within a session, compared to young rats. Further, aged rats that excelled in reference memory also excelled in working memory when working memory demand was high, a relationship not seen in young rats. Relationships between cholinergic activity and maze performance differed by age in direction and brain region, reflecting the complex role that the cholinergic system plays in memory and attentional processes across the female lifespan. Overall, the addition of a reference memory requirement detrimentally impacted the ability to handle working memory information across young and aged timepoints, especially when the working memory challenge was high; these age-related deficits manifested differently with the addition of a reference memory component. This interplay between working and reference memory provides insight into the multiple domains necessary to solve complex cognitive tasks, potentially improving the understanding of complexities of age- and disease- related memory failures and optimizing their respective treatments.
Collapse
Affiliation(s)
- Victoria E Bernaud
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Ryoko Hiroi
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Mallori L Poisson
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Arthur J Castaneda
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Ziv Z Kirshner
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| |
Collapse
|
12
|
Babić Leko M, Hof PR, Šimić G. Alterations and interactions of subcortical modulatory systems in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2021; 261:379-421. [PMID: 33785136 DOI: 10.1016/bs.pbr.2020.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is not fully understood. Here we summarize current knowledge on the involvement of the serotonergic, noradrenergic, dopaminergic, cholinergic, and opioid systems in AD, emphasizing the importance of interactions between the serotonergic and the other subcortical modulatory systems during the progression of AD. In physiological conditions, all neurotransmitter systems function in concert and are interdependent at both the neuroanatomical and molecular levels. Through their early involvement in AD, cognitive and behavioral abilities that rely on their interactions also become disrupted. Considering that serotonin (5HT) regulates the release of noradrenaline (NA), dopamine (DA) and acetylcholine (ACh), any alteration in 5HT levels leads to disturbance of NA, DA, and ACh homeostasis in the brain. One of the earliest pathological changes during the prodromal phase of AD is a decrease of serotonergic transmission throughout the brain, with serotonergic receptors being also affected. Additionally, serotonergic and noradrenergic as well as serotonergic and dopaminergic nuclei are reciprocally interconnected. As the serotonergic dorsal raphe nucleus (DRN) is affected by pathological changes early in AD, and the noradrenergic locus coeruleus (LC) and dopaminergic ventral tegmental area (VTA) exhibit AD-related pathological changes, their connectivity also becomes altered in AD. Such disrupted interactions among neurotransmitter systems in AD can be used in the development of multi-target drugs. Some of the potential AD therapeutics (such as ASS234, RS67333, tropisetron) target multiple neurotransmitter systems to achieve the best possible improvement of cognitive and behavioral deficits observed in AD. Here, we review how serotonergic system interacts with other subcortical modulatory systems (noradrenergic, dopaminergic, cholinergic, and opioid systems) during AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia.
| |
Collapse
|
13
|
Severin D, Gallagher M, Kirkwood A. Afterhyperpolarization amplitude in CA1 pyramidal cells of aged Long-Evans rats characterized for individual differences. Neurobiol Aging 2020; 96:43-48. [PMID: 32932137 DOI: 10.1016/j.neurobiolaging.2020.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/25/2020] [Indexed: 11/18/2022]
Abstract
Altered neural excitability is considered a prominent contributing factor to cognitive decline during aging. A clear example is the excess neural activity observed in several temporal lobe structures of cognitively impaired older individuals in rodents and humans. At a cellular level, aging-related changes in mechanisms regulating intrinsic excitability have been well examined in pyramidal cells of the CA1 hippocampal subfield. Studies in the inbred Fisher 344 rat strain document an age-related increase in the slow afterhyperpolarization (AHP) that normally occurs after a burst of action potentials, and serves to reduce subsequent firing. We evaluated the status of the AHP in the outbred Long-Evans rat, a well-established model for studying individual differences in neurocognitive aging. In contrast to the findings reported in the Fisher 344 rats, in the Long-Evan rats we detected a selective reduction in AHP in cognitively impaired aged individuals. We discuss plausible scenarios to account for these differences and also discuss possible implications of these differences.
Collapse
Affiliation(s)
- Daniel Severin
- Department of Neurosciences, Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Alfredo Kirkwood
- Department of Neurosciences, Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
14
|
Lyons CE, Bartolomucci A. Stress and Alzheimer's disease: A senescence link? Neurosci Biobehav Rev 2020; 115:285-298. [PMID: 32461080 PMCID: PMC7483955 DOI: 10.1016/j.neubiorev.2020.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Chronic stress has been shown to promote numerous aging-related diseases, and to accelerate the aging process itself. Of particular interest is the impact of stress on Alzheimer's disease (AD), the most prevalent form of dementia. The vast majority of AD cases have no known genetic cause, making it vital to identify the environmental factors involved in the onset and progression of the disease. Age is the greatest risk factor for AD, and measures of biological aging such as shorter telomere length, significantly increase likelihood for developing AD. Stress is also considered a crucial contributor to AD, as indicated by a formidable body of research, although the mechanisms underlying this association remain unclear. Here we review human and animal literature on the impact of stress on AD and discuss the mechanisms implicated in the interaction. In particular we will focus on the burgeoning body of research demonstrating that senescent cells, which accumulate with age and actively drive a number of aging-related diseases, may be a key mechanism through which stress drives AD.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, United States; Graduate Program in Neuroscience, University of Minnesota, United States.
| | | |
Collapse
|
15
|
Trask S, Dulka BN, Helmstetter FJ. Age-Related Memory Impairment Is Associated with Increased zif268 Protein Accumulation and Decreased Rpt6 Phosphorylation. Int J Mol Sci 2020; 21:E5352. [PMID: 32731408 PMCID: PMC7432048 DOI: 10.3390/ijms21155352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/26/2023] Open
Abstract
Aging is associated with cognitive decline, including impairments in the ability to accurately form and recall memories. Some behavioral and brain changes associated with aging are evident as early as middle age, making the understanding of associated neurobiological mechanisms essential to aid in efforts aimed at slowing cognitive decline throughout the lifespan. Here, we found that both 15-month-old and 22-month-old rats showed impaired memory recall following trace fear conditioning. This behavioral deficit was accompanied by increased zif268 protein accumulation relative to 3-month-old animals in the medial prefrontal cortex, the dorsal and ventral hippocampi, the anterior and posterior retrosplenial cortices, the lateral amygdala, and the ventrolateral periaqueductal gray. Elevated zif268 protein levels corresponded with decreases in phosphorylation of the Rpt6 proteasome regulatory subunit, which is indicative of decreased engagement of activity-driven protein degradation. Together, these results identify several brain regions differentially impacted by aging and suggest that the accumulation of proteins associated with memory retrieval, through reduced proteolytic activity, is associated with age-related impairments in memory retention.
Collapse
Affiliation(s)
| | | | - Fred J. Helmstetter
- Department of Psychology, The University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA; (S.T.); (B.N.D.)
| |
Collapse
|
16
|
Gardner RS, Newman LA, Mohler EG, Tunur T, Gold PE, Korol DL. Aging is not equal across memory systems. Neurobiol Learn Mem 2020; 172:107232. [PMID: 32315762 DOI: 10.1016/j.nlm.2020.107232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
The present experiments compared the effects of aging on learning several hippocampus- and striatum-sensitive tasks in young (3-4 month) and old (24-28 month) male Fischer-344 rats. Across three sets of tasks, aging was accompanied not only by deficits on hippocampal tasks but also by maintained or even enhanced abilities on striatal tasks. On two novel object recognition tasks, rats showed impaired performance on a hippocampal object location task but enhanced performance on a striatal object replacement task. On a dual solution task, young rats predominately used hippocampal solutions and old rats used striatal solutions. In addition, on two maze tasks optimally solved using either hippocampus-sensitive place or striatum-sensitive response strategies, relative to young rats, old rats had impaired learning on the place version but equivalent learning on the response version. Because glucose treatments can reverse deficits in learning and memory across many tasks and contexts, levels of available glucose in the brain may have particular importance in cognitive aging observed across tasks and memory systems. During place learning, training-related rises in extracellular glucose levels were attenuated in the hippocampus of old rats compared to young rats. In contrast, glucose levels in the striatum increased comparably in young and old rats trained on either the place or response task. These extracellular brain glucose responses to training paralleled the impairment in hippocampus-sensitive learning and the sparing of striatum-sensitive learning seen as rats age, suggesting a link between age-related changes in learning and metabolic substrate availability in these brain regions.
Collapse
Affiliation(s)
- R S Gardner
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| | - L A Newman
- Department of Psychological Science, Vassar College, Poughkeepsie, NY 12604, United States
| | - E G Mohler
- Research and Development, AbbVie, North Chicago, IL 60064, United States
| | - T Tunur
- Department of Kinesiology, California State University San Marcos, San Marcos, CA 92096, United States
| | - P E Gold
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States
| | - D L Korol
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
17
|
Monroy E, Diaz A, Tendilla-Beltrán H, de la Cruz F, Flores G. Bexarotene treatment increases dendritic length in the nucleus accumbens without change in the locomotor activity and memory behaviors, in old mice. J Chem Neuroanat 2019; 104:101734. [PMID: 31887346 DOI: 10.1016/j.jchemneu.2019.101734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/28/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
The aged brain has biochemical and morphological alterations in the dendrites of the pyramidal neurons of the limbic system, which consequently trigger motor and cognitive deficits. Bexarotene 4-[1-(3,5,5,8,8-pentamethyl-6,7-dihydronaphthalen-2-yl)ethenyl]benzoic acid is a selective agonist of X-retinoid receptors which acts by binding to the intracellular retinoic acid receptors (RAR). It decreases oxidative and inflammatory activity, in addition to the transport of lipids, mechanisms that together could have a neuroprotective effect. Our objective was to evaluate the effect of bexarotene on the motor and cognitive processes, as well as its influence on the dendritic morphology of neurons in the limbic system of elderly mice. Dendritic morphology was evaluated with the Golgi-Cox staining procedure followed by the Sholl analysis. Bexarotene was administered at different doses: 0.0; 0.5; 2.5 and 5.0 mg/kg for 60 days in 18-month-old mice. After the treatment, locomotor activity in a novel environment and spatial memory in the water labyrinth were evaluated. Mice treated with bexarotene did not show significant changes in their behavior. Moreover, bexarotene-treated mice only showed a significant increase in the density of the dendritic spines and the dendritic length in the nucleus accumbens (NAcc) neurons. In conclusion, the administration of bexarotene improves the plasticity of the NAcc of aged mice, and therefore could be a pharmacological alternative to prevent or delay neuroplasticity disruptions in brain aging.
Collapse
Affiliation(s)
- Elibeth Monroy
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN). CDMX, Mexico
| | - Alfonso Diaz
- Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN). CDMX, Mexico
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN). CDMX, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico.
| |
Collapse
|
18
|
Rojic-Becker D, Portero-Tresserra M, Martí-Nicolovius M, Vale-Martínez A, Guillazo-Blanch G. Caloric restriction modulates the monoaminergic and glutamatergic systems in the hippocampus, and attenuates age-dependent spatial memory decline. Neurobiol Learn Mem 2019; 166:107107. [DOI: 10.1016/j.nlm.2019.107107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
|
19
|
Schneider LS, Geffen Y, Rabinowitz J, Thomas RG, Schmidt R, Ropele S, Weinstock M. Low-dose ladostigil for mild cognitive impairment: A phase 2 placebo-controlled clinical trial. Neurology 2019; 93:e1474-e1484. [PMID: 31492718 DOI: 10.1212/wnl.0000000000008239] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/10/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Ladostigil reduces oxidative stress and microglial activation in aging rats. We assessed its safety and potential efficacy in a 3-year, randomized, double-blind, placebo-controlled phase 2 clinical trial in patients with mild cognitive impairment (MCI) and medial temporal lobe atrophy. METHODS Patients 55 to 85 years of age with MCI, Clinical Dementia Rating (CDR) score of 0.5, Mini-Mental State Examination (MMSE) score >24, Wechsler Memory Scale-Revised Verbal Paired Associates I score ≤18, and Medial Temporal Lobe Atrophy Scale score >1 were stratified by APOE ε4 genotype and randomly assigned (1:1) to ladostigil 10 mg/d or placebo. Primary outcomes were safety and onset of Alzheimer disease dementia. Secondary endpoints were Neuropsychological Test Battery (NTB) composite, Disability Assessment in Dementia (DAD), and Geriatric Depression Scale (GDS) scores. Exploratory outcomes were NTB component, CDR, and MMSE scores. Biomarkers included MRI-derived whole-brain, hippocampus, and entorhinal cortex volumes. RESULTS Two hundred ten patients from 15 sites in Austria, Germany, and Israel were randomly allocated to placebo (107 patients) or ladostigil (103 patients). After 36 months, 21 of 103 patients on placebo and 14 of 99 patients receiving ladostigil progressed to Alzheimer disease (log-rank test p = 0.162). There were no significant effects on the NTB composite, DAD, or GDS score. Whole-brain and hippocampus volumes decreased more in the placebo than in the ladostigil group (whole brain, p = 0.025, Cohen d = 0.43; hippocampus, p = 0.043, d = 0.43). Serious adverse events were reported by 28 of 107 patients treated with placebo and 26 of 103 with ladostigil. CONCLUSION Ladostigil was safe and well tolerated but did not delay progression to dementia. Its association with reduced brain and hippocampus volume loss suggests a potential effect on atrophy. CLINICALTRIALSGOV IDENTIFIER NCT01429623. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that for patients with MCI and medial temporal lobe atrophy, ladostigil did not significantly decrease the risk of the development of Alzheimer disease.
Collapse
Affiliation(s)
- Lon S Schneider
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel.
| | - Yona Geffen
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel
| | - Jonathan Rabinowitz
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel
| | - Ronald G Thomas
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel
| | - Reinhold Schmidt
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel
| | - Stefan Ropele
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel
| | - Marta Weinstock
- From the Keck School of Medicine of the University of Southern California (L.S.S.), Los Angeles; Avraham Pharmaceuticals, Ltd (Y.G.), Yavne; Bar Ilan University (J.R.), Ramat Gan, Israel; University of California (R.G.T.), San Diego; Department of Neurology (R.S., S.R.), Medical University, Graz, Austria; and Hebrew University (M.W.), Jerusalem, Israel
| | | |
Collapse
|
20
|
Toledo C, Lucero C, Andrade DC, Díaz HS, Schwarz KG, Pereyra KV, Arce-Álvarez A, López NA, Martinez M, Inestrosa NC, Del Rio R. Cognitive impairment in heart failure is associated with altered Wnt signaling in the hippocampus. Aging (Albany NY) 2019; 11:5924-5942. [PMID: 31447429 PMCID: PMC6738419 DOI: 10.18632/aging.102150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Age represents the highest risk factor for death due to cardiovascular disease. Heart failure (HF) is the most common cardiovascular disease in elder population and it is associated with cognitive impairment (CI), diminishing learning and memory process affecting life quality and mortality in these patients. In HF, CI has been associated with inadequate O2 supply to the brain; however, an important subset of HF patients displays CI with almost no alteration in cerebral blood flow. Importantly, nothing is known about the pathophysiological mechanisms underpinning CI in HF with no change in brain tissue perfusion. Here, we aimed to study memory performance and learning function in a rodent model of HF that shows no change in blood flow going to the brain. We found that HF rats presented learning impairments and memory loss. In addition, HF rats displayed a decreased level of Wnt/β-catenin signaling downstream elements in the hippocampus, one pathway implicated largely in aging diseases. Taken together, our results suggest that in HF rats CI is associated with dysfunction of the Wnt/β-catenin signaling pathway. The mechanisms involved in the alterations of Wnt/β-catenin signaling in HF and its contribution to the development/maintenance of CI deserves future investigations.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Arce-Álvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás A López
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milka Martinez
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
21
|
Iqbal G, Ahmed T. Co-exposure of metals and high fat diet causes aging like neuropathological changes in non-aged mice brain. Brain Res Bull 2019; 147:148-158. [DOI: 10.1016/j.brainresbull.2019.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022]
|
22
|
Age-Induced Spatial Memory Deficits in Rats Are Correlated with Specific Brain Region Alterations in Microglial Morphology and Gene Expression. J Neuroimmune Pharmacol 2018; 14:251-262. [DOI: 10.1007/s11481-018-9817-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
|
23
|
Edible Bird's Nest Prevents Menopause-Related Memory and Cognitive Decline in Rats via Increased Hippocampal Sirtuin-1 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7205082. [PMID: 29104731 PMCID: PMC5632468 DOI: 10.1155/2017/7205082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
Menopause causes cognitive and memory dysfunction due to impaired neuronal plasticity in the hippocampus. Sirtuin-1 (SIRT1) downregulation in the hippocampus is implicated in the underlying molecular mechanism. Edible bird's nest (EBN) is traditionally used to improve general wellbeing, and in this study, we evaluated its effects on SIRT1 expression in the hippocampus and implications on ovariectomy-induced memory and cognitive decline in rats. Ovariectomized female Sprague-Dawley rats were fed with normal pellet alone or normal pellet + EBN (6, 3, or 1.5%), compared with estrogen therapy (0.2 mg/kg/day). After 12 weeks of intervention, Morris water maze (four-day trial and one probe trial) was conducted, and serum estrogen levels, toxicity markers (alanine transaminase, alkaline phosphatase, urea, and creatinine), and hippocampal SIRT1 immunohistochemistry were estimated after sacrifice. The results indicated that EBN and estrogen enhanced spatial learning and memory and increased serum estrogen and hippocampal SIRT1 expression. In addition, the EBN groups did not show as much toxicity to the liver as the estrogen group. The data suggested that EBN treatment for 12 weeks could improve cognition and memory in ovariectomized female rats and may be an effective alternative to estrogen therapy for menopause-induced aging-related memory loss.
Collapse
|
24
|
Anticholinergic Drug Use and Risk to Cognitive Performance in Older Adults with Questionable Cognitive Impairment: A Cross-Sectional Analysis. Drugs Aging 2017; 33:809-818. [PMID: 27638818 DOI: 10.1007/s40266-016-0400-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Age-associated decline in central cholinergic activity makes older adults susceptible to the harmful effects of anticholinergic (AC) medications; however, there is an inadequate understanding of the association and possible effects of AC drugs on cognition. This cross-sectional study examines the associations of AC medications on cognition among older adults with questionable cognitive impairment (QCI). METHODS For this cross-sectional study, we used a multicenter database of community-dwelling older adults (N = 7351) aged 60+ years with QCI, from September 2005 to March 2014, as the baseline data. The Anticholinergic Drug Scale was used to categorize AC drug load into no, low, or moderate/high groups. Individuals with a Clinical Dementia Rating-Sum of Boxes score between 0.5 and 2.5 were identified as having QCI, while cognitive performance was evaluated using the Neuropsychological Test Battery. The mean z-scores of neuropsychological tests were grouped into a global cognition score. RESULTS Participants who took AC medications were older, largely female, and had a higher prevalence of incontinence than those without AC exposure. Global cognition was significantly greater in the moderate/high-AC group than the no-AC group (-0.23 ± 0.53 vs. -0.32 ± 0.53). Multivariable linear regression showed that the global cognition score among the low- and moderate/high-AC groups, compared with the no-AC group, was 0.064 higher (p = 0.006 and p = 0.12, respectively). CONCLUSIONS This cross-sectional study indicates that older adults with QCI who were exposed to AC medications might have higher global cognitive scores than those without AC exposure. The observed associations indicate that older adults might experience some beneficial cognitive effects from AC drugs, possibly due to the therapeutic effects of these medications in controlling comorbidities, thus outweighing their adverse effects on cognition.
Collapse
|
25
|
Ivlieva AL, Petritskaya EN, Rogatkin DA, Demin VA. Methodological Characteristics of the Use of the Morris Water Maze for Assessment of Cognitive Functions in Animals. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0425-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Yu XW, Curlik DM, Oh MM, Yin JC, Disterhoft JF. CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats. eLife 2017; 6. [PMID: 28051768 PMCID: PMC5214885 DOI: 10.7554/elife.19358] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms underlying age-related cognitive deficits are not yet fully elucidated. In aged animals, a decrease in the intrinsic excitability of CA1 pyramidal neurons is believed to contribute to age-related cognitive impairments. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents facilitates cognition, and increases intrinsic excitability. However, it has yet to be tested if increasing CREB expression also ameliorates age-related behavioral and biophysical deficits. To test this hypothesis, we virally overexpressed CREB in CA1 of dorsal hippocampus. Rats received CREB or control virus, before undergoing water maze training. CREB overexpression in aged animals ameliorated the long-term memory deficits observed in control animals. Concurrently, cells overexpressing CREB in aged animals had reduced post-burst afterhyperpolarizations, indicative of increased intrinsic excitability. These results identify CREB modulation as a potential therapy to treat age-related cognitive decline. DOI:http://dx.doi.org/10.7554/eLife.19358.001
Collapse
Affiliation(s)
- Xiao-Wen Yu
- Department of Physiology, Northwestern University,Feinberg School of Medicine, Chicago, United States
| | - Daniel M Curlik
- Department of Physiology, Northwestern University,Feinberg School of Medicine, Chicago, United States.,Department of Behavioral Sciences, Psychology Program, York College of Pennsylvania, York, United States
| | - M Matthew Oh
- Department of Physiology, Northwestern University,Feinberg School of Medicine, Chicago, United States
| | - Jerry Cp Yin
- Departments of Genetics and Neurology, University of Wisconsin-Madison, Madison, United States
| | - John F Disterhoft
- Department of Physiology, Northwestern University,Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
27
|
Márquez Loza A, Elias V, Wong CP, Ho E, Bermudez M, Magnusson KR. Effects of ibuprofen on cognition and NMDA receptor subunit expression across aging. Neuroscience 2017; 344:276-292. [PMID: 28057539 DOI: 10.1016/j.neuroscience.2016.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 11/28/2022]
Abstract
Age-related declines in long- and short-term memory show relationships to decreases in N-methyl-d-aspartate (NMDA) receptor expression, which may involve inflammation. This study was designed to determine effects of an anti-inflammatory drug, ibuprofen, on cognitive function and NMDA receptor expression across aging. Male C57BL/6 mice (ages 5, 14, 20, and 26months) were fed ibuprofen (375ppm) in NIH31 diet or diet alone for 6weeks prior to testing. Behavioral testing using the Morris water maze showed that older mice performed significantly worse than younger in spatial long-term memory, reversal, and short-term memory tasks. Ibuprofen enhanced overall performance in the short-term memory task, but this appeared to be more related to improved executive function than memory. Ibuprofen induced significant decreases over all ages in the mRNA densities for GluN2B subunit, all GluN1 splice variants, and GluN1-1 splice forms in the frontal cortex and in protein expression of GluN2A, GluN2B and GluN1 C2' cassettes in the hippocampus. GluN1-3 splice form mRNA and C2' cassette protein were significantly increased across ages in frontal lobes of ibuprofen-treated mice. Ibuprofen did not alter expression of pro-inflammatory cytokines IL-1β and TNFα, but did reduce the area of reactive astrocyte immunostaining in frontal cortex of aged mice. Enhancement in executive function showed a relationship to increased GluN1-3 mRNA and decreased gliosis. These findings suggest that inflammation may play a role in executive function declines in aged animals, but other effects of ibuprofen on NMDA receptors appeared to be unrelated to aging or inflammation.
Collapse
Affiliation(s)
- Alejandra Márquez Loza
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Valerie Elias
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Carmen P Wong
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Michelle Bermudez
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Kathy R Magnusson
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
28
|
Villanueva-Castillo C, Tecuatl C, Herrera-López G, Galván EJ. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells. Neurobiol Aging 2016; 49:119-137. [PMID: 27794263 DOI: 10.1016/j.neurobiolaging.2016.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 11/16/2022]
Abstract
The network interaction between the dentate gyrus and area CA3 of the hippocampus is responsible for pattern separation, a process that underlies the formation of new memories, and which is naturally diminished in the aged brain. At the cellular level, aging is accompanied by a progression of biochemical modifications that ultimately affects its ability to generate and consolidate long-term potentiation. Although the synapse between dentate gyrus via the mossy fibers (MFs) onto CA3 neurons has been subject of extensive studies, the question of how aging affects the MF-CA3 synapse is still unsolved. Extracellular and whole-cell recordings from acute hippocampal slices of aged Wistar rats (34 ± 2 months old) show that aging is accompanied by a reduction in the interneuron-mediated inhibitory mechanisms of area CA3. Several MF-mediated forms of short-term plasticity, MF long-term potentiation and at least one of the critical signaling cascades necessary for potentiation are also compromised in the aged brain. An analysis of the spontaneous glutamatergic and gamma-aminobutyric acid-mediated currents on CA3 cells reveal a dramatic alteration in amplitude and frequency of the nonevoked events. CA3 cells also exhibited increased intrinsic excitability. Together, these results demonstrate that aging is accompanied by a decrease in the GABAergic inhibition, reduced expression of short- and long-term forms of synaptic plasticity, and increased intrinsic excitability.
Collapse
Affiliation(s)
| | - Carolina Tecuatl
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, México
| | | | - Emilio J Galván
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, México.
| |
Collapse
|
29
|
Yu XW, Oh MM, Disterhoft JF. CREB, cellular excitability, and cognition: Implications for aging. Behav Brain Res 2016; 322:206-211. [PMID: 27478142 DOI: 10.1016/j.bbr.2016.07.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/11/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Humans and laboratory animals display cognitive deficits as they age. However, there are currently no effective therapies available to treat these deficits, as the underlying mechanisms are poorly understood. Studies using pharmacological compounds have found a link between cognitive performance and the intrinsic cellular excitability of CA1 hippocampal neurons. Therefore, it is of great interest to identify molecular regulators that may be influencing both cognition and neuronal excitability, which could be changed with age. One possible regulator is the transcription factor cAMP response element binding-protein (CREB). In young adult animals, manipulation of CREB activity has resulted in modulation of both cognitive performance on behavioral tasks, and neuronal excitability. While evidence is sparse, studies also point to a dysfunction in CREB signaling with aging. We propose that CREB may be a viable therapeutic target for the treatment of age-related cognitive deficits, along with potential experiments to test this hypothesis.
Collapse
Affiliation(s)
- Xiao-Wen Yu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| | - M Matthew Oh
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| | - John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
30
|
Korthauer LE, Nowak NT, Moffat SD, An Y, Rowland LM, Barker PB, Resnick SM, Driscoll I. Correlates of virtual navigation performance in older adults. Neurobiol Aging 2016; 39:118-27. [PMID: 26923408 PMCID: PMC4773923 DOI: 10.1016/j.neurobiolaging.2015.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 11/08/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
Despite considerable evidence for deleterious effects of aging on place learning and memory, less is known about the trajectory and the putative neural mechanisms of these decrements. The virtual Morris water task (vMWT) is a human analog of a nonhuman spatial navigation task. The present study investigated longitudinal changes in place learning in 51 healthy, nondemented adults (age 30-83 years) who completed the vMWT and a neuropsychological battery at 2 time-points (interval = ∼8 years). We also assessed cross-sectional associations between vMWT and brain structure, biochemical integrity, and standardized neuropsychological measures in a subset of 22 individuals who underwent magnetic resonance imaging at follow-up. Despite no longitudinal decrement in vMWT performance, there were cross-sectional age differences on the vMWT favoring younger adults. Negative associations were observed between vMWT latency and gray matter volumes in the right hippocampus, bilateral thalamus, and right medial orbitofrontal cortex and between vMWT latency and white matter fractional anisotropy in the bilateral uncinate fasciculus. Collectively, these results suggest a pattern of differences in the structural integrity of regions supporting successful navigation even in the absence of longitudinal performance decrements.
Collapse
Affiliation(s)
- Laura E Korthauer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Nicole T Nowak
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Scott D Moffat
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yang An
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland, Baltimore, MD, USA
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins, University School of Medicine, Baltimore, MD, USA
| | - Susan M Resnick
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
31
|
López-Avalos MD, Fernández-Llebrez Zayas R, Cifuentes M, De Andrés MV, Fernández-Llebrez Del Rey P, Grondona JM, Pérez-Martín M, Pedraza C. Mente Activa® Improves Impaired Spatial Memory in Aging Rats. J Nutr Health Aging 2015; 19:819-27. [PMID: 26412286 DOI: 10.1007/s12603-015-0546-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Aging is accompanied by a decline in several aspects of the cognitive function, having negative personal and socioeconomic impacts. Dietary supplements could be beneficial for preventing age-related cognitive decline. In this context, we examined whether the nutritional supplement Mente Activa® has beneficial effects on aging-related cognitive deficits without inducing side effects. METHODS Mente Activa® was administered to old rats (n= 30 treated rats and n= 30 control rats) during 5 months, and the Morris water maze was used to test the learning capacities of the animals. The first assessment was conducted before the nutritional intervention (age of 18-19 months), to determine the baseline of the performance of animals on this test, and the second assessment was performed at the end of the treatment (23-24 moths). In order to examine possible secondary effects of this nutritional supplement, plasma, heart anatomy and liver parameters were evaluated. RESULTS Our data indicate that supplemented rats showed less escape latency, distance swum, higher use of spatial search strategies, and crossed the former platform location with higher frequency than control rats. These effects were specific of the treatment, indicating that this nutritional supplement has a beneficial effect on spatial memory. On the other hand, the regular intake of Mente Activa® did not induce any negative effects in plasma parameters and heart size. CONCLUSIONS Aged rats under a sustained dietary intake of the nutritional supplement Mente Activa® displayed improved learning and memory abilities compared to the non-treated rats. These results suggest the therapeutic potential and safety of use of Mente Activa® for age-related cognitive deficits, particularly, in the onset of the first cognitive dysfunction symptoms.
Collapse
Affiliation(s)
- M D López-Avalos
- C. Pedraza, Dpto. Psicobiología y Metodología de las CC. Facultad de Psicología. Universidad de Málaga, Campus de Teatinos s/n., Málaga, 29071. Spain, Tel: +34 952 132 510; Fax: +34 952 134 142, E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hullinger R, Burger C. Learning impairments identified early in life are predictive of future impairments associated with aging. Behav Brain Res 2015; 294:224-33. [PMID: 26283528 DOI: 10.1016/j.bbr.2015.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/01/2015] [Accepted: 08/07/2015] [Indexed: 11/30/2022]
Abstract
The Morris water maze (MWM) behavioral paradigm is commonly used to measure spatial learning and memory in rodents. It is widely accepted that performance in the MWM declines with age. However, young rats ubiquitously perform very well on established versions of the water maze, suggesting that more challenging tasks may be required to reveal subtle differences in young animals. Therefore, we have used a one-day water maze and novel object recognition to test whether more sensitive paradigms of memory in young animals could identify subtle cognitive impairments early in life that might become accentuated later with senescence. We have found that these two tasks reliably separate young rats into inferior and superior learners, are highly correlated, and that performance on these tasks early in life is predictive of performance at 12 months of age. Furthermore, we have found that repeated training in this task selectively improves the performance of inferior learners, suggesting that behavioral training from an early age may provide a buffer against age-related cognitive decline.
Collapse
Affiliation(s)
- Rikki Hullinger
- Neuroscience Training Program, University of Wisconsin-Madison, USA
| | - Corinna Burger
- Department of Neurology, University of Wisconsin-Madison, Medical Sciences Center, 1300 University Ave, Room 73 Bardeen, Madison, WI 53706, USA.
| |
Collapse
|
33
|
Li F, Yan CQ, Lin LT, Li H, Zeng XH, Liu Y, Du SQ, Zhu W, Liu CZ. Acupuncture attenuates cognitive deficits and increases pyramidal neuron number in hippocampal CA1 area of vascular dementia rats. Altern Ther Health Med 2015; 15:133. [PMID: 25928206 PMCID: PMC4426171 DOI: 10.1186/s12906-015-0656-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 04/20/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Decreased cognition is recognized as one of the most severe and consistent behavioral impairments in dementia. Experimental studies have reported that acupuncture may improve cognitive deficits, relieve vascular dementia (VD) symptoms, and increase cerebral perfusion and electrical activity. METHODS Multi-infarction dementia was modeled in rats with 3% microemboli saline suspension. Two weeks after acupuncture at Zusanli (ST36), all rats were subjected to a hidden platform trial to test their 3-day spatial memory using the Morris water maze test. To estimate the numbers of pyramidal neuron, astrocytes, and synaptic boutons in hippocampal CA1 area, we adopted an unbiased stereology method to accurately sample and measure the size of cells. RESULTS We found that acupuncture at ST36 significantly decreased the escape latency of VD rats. In addition, acupuncture significantly increased the pyramidal neuron number in hippocampal CA1 area (P < 0.05) and tended to decrease the number of astrocytes (P = 0.063). However, there was no significant change in the synaptic bouton number of hippocampal CA1 area in any of the groups (P > 0.05). CONCLUSIONS These findings suggest that acupuncture may improve cognitive deficits and increase pyramidal neuron number of hippocampal CA1 area in VD rats.
Collapse
|
34
|
Wu W, Wang X, Xiang Q, Meng X, Peng Y, Du N, Liu Z, Sun Q, Wang C, Liu X. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct 2014; 5:158-66. [PMID: 24326685 DOI: 10.1039/c3fo60400d] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Astaxanthin (AST) is a carotenoid pigment which possesses potent antioxidative, anti-inflammatory, and neuroprotective properties. The aim of this study was to investigate whether administration of AST had protective effects on D-galactose-induced brain aging in rats, and further examined its protective mechanisms. The results showed that AST treatment significantly restored the activities of glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD), and increased glutathione (GSH) contents and total antioxidant capacity (T-AOC), but decreased malondialdehyde (MDA), protein carbonylation and 8-hydroxy-2- deoxyguanosine (8-OHdG) levels in the brains of aging rats. Furthermore, AST increased the ratio of Bcl-2/Bax, but decreased the expression of Cyclooxygenase-2 (COX-2) in the brains of aging rats. Additionally, AST ameliorated histopathological changes in the hippocampus and restored brain derived neurotrophic factor (BDNF) levels in both the brains and hippocampus of aging rats. These results suggested that AST could alleviate brain aging, which may be due to attenuating oxidative stress, ameliorating hippocampus damage, and upregulating BDNF expression.
Collapse
Affiliation(s)
- Wanqiang Wu
- College of Food Science and Engineering, Northwest A&F University, 28. Xi-nong Road, Yangling 712100, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O. Behavioral assays with mouse models of Alzheimer's disease: practical considerations and guidelines. Biochem Pharmacol 2014; 88:450-67. [PMID: 24462904 PMCID: PMC4014001 DOI: 10.1016/j.bcp.2014.01.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease (AD) basic research and drug discovery, mouse models are essential resources for uncovering biological mechanisms, validating molecular targets and screening potential compounds. Both transgenic and non-genetically modified mouse models enable access to different types of AD-like pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any interventions should be measures of learning and memory. This is particularly important given the lack of knowledge on disease etiology - assessment by cognitive assays offers the advantage of targeting relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral assays are available for assessing cognitive functioning in mouse models, including ones specific for hippocampal-dependent learning and memory. Here we review the basics of available transgenic and non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for testing hippocampal-dependent cognition in mice - contextual fear conditioning, radial arm water maze and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats of these behavioral testing paradigms.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Linda Lee
- Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th Street, New York, NY 10032, USA
| | - Agostino Palmeri
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Giorgio Calabrese
- Department of Pharmacy, Federico II University, Via D. Montesano 49, Naples 80131, Italy
| | - Ottavio Arancio
- Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th Street, New York, NY 10032, USA.
| |
Collapse
|
36
|
Integrity of mGluR-LTD in the associative/commissural inputs to CA3 correlates with successful aging in rats. J Neurosci 2013; 33:12670-8. [PMID: 23904603 DOI: 10.1523/jneurosci.1086-13.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The impact of aging on cognitive capabilities varies among individuals ranging from significant impairment to preservation of function on par with younger adults. Research on the neural basis for age-related memory decline has focused primarily on the CA1 region of the hippocampus. However, recent studies in elderly human and rodents indicate that individual differences in cognitive aging are more strongly tied to functional alterations in CA3 circuits. To examine synaptic plasticity in the CA3 region, we used aged rats behaviorally characterized in a hippocampal-dependent task to evaluate the status of long-term potentiation and long-term depression (LTP and LTD) in the associative/commissural pathway (A/C → CA3), which provides the majority of excitatory input to CA3 pyramidal neurons. We found that, unlike in CA1 synapses, in A/C → CA3 LTP is minimally affected by age. However, two forms of LTD, involving NMDA and metabotropic glutamate receptors (mGluR), are both greatly reduced in age-impaired rats. Age-unimpaired rats, in contrast, had intact mGluR LTD. These findings indicate that the integrity of mGluR-LTD at A/C → CA3 inputs may play a crucial role in maintaining the performance of CA3 circuitry in aging.
Collapse
|
37
|
Knockdown of prodynorphin gene prevents cognitive decline, reduces anxiety, and rescues loss of group 1 metabotropic glutamate receptor function in aging. J Neurosci 2013; 33:12792-804. [PMID: 23904614 DOI: 10.1523/jneurosci.0290-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Expression of dynorphin, an endogenous opioid peptide, increases with age and has been associated with memory impairments in rats. In human, prodynorphin (Pdyn) gene polymorphisms might be linked to cognitive function in the elderly. Moreover, elevated dynorphin levels have been reported in postmortem samples from Alzheimer's disease patients. However, the cellular and molecular processes affected by higher dynorphin levels during aging remain unknown. Using Pdyn(-/-) mice, we observed significant changes in the function and expression of Group 1 metabotropic glutamate receptor (mGluR). Compared with age-matched wild-type (WT) littermates, we found increased expression of mGluR1α and mGluR5 in the hippocampus and cortex of old, but not young, Pdyn(-/-) mice. Increased Group 1 mGluR expression in aged Pdyn(-/-) mice was associated with enhanced mGluR-mediated long-term depression, a form of synaptic plasticity. Notably, whereas aged WT mice developed spatial and recognition memory deficits, aged Pdyn(-/-) mice performed similarly as young mice. Pharmacological treatments with 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide, a positive modulator of mGlu5 receptors, or norbinaltorphimine, an antagonist for dynorphin-targeted κ-opioid receptor, rescued memory in old WT mice. Conversely, mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride impaired spatial memory of old Pdyn(-/-) mice. Intact cognition in aged Pdyn(-/-) mice paralleled with increased expression of Group 1 mGluR-related genes Homer 1a and Arc. Finally, aged Pdyn(-/-) mice displayed less anxiety-related behaviors than age-matched WT mice. Together, our results suggest that elevated Pdyn expression during normal aging reduces mGluR expression and signaling, which in turn impairs cognitive functions and increases anxiety.
Collapse
|
38
|
Ottis P, Topic B, Loos M, Li KW, de Souza A, Schulz D, Smit AB, Huston JP, Korth C. Aging-induced proteostatic changes in the rat hippocampus identify ARP3, NEB2 and BRAG2 as a molecular circuitry for cognitive impairment. PLoS One 2013; 8:e75112. [PMID: 24069387 PMCID: PMC3777897 DOI: 10.1371/journal.pone.0075112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/10/2013] [Indexed: 11/28/2022] Open
Abstract
Disturbed proteostasis as a particular phenotype of the aging organism has been advanced in C. elegans experiments and is also conceived to underlie neurodegenerative diseases in humans. Here, we investigated whether particular changes in non-disease related proteostasis can be identified in the aged mammalian brain, and whether a particular signature of aberrant proteostasis is related to behavioral performance of learning and memory. Young (adult, n = 30) and aged (2 years, n = 50) Wistar rats were tested in the Morris Water Maze (MWM) to distinguish superior and inferior performers. For both young and old rats, the best and worst performers in the MWM were selected and the insoluble proteome, termed aggregome, was purified from the hippocampus as evidence for aberrant proteostasis. Quantitative proteomics (iTRAQ) was performed. The aged inferior performers were considered as a model for spontaneous, age-associated cognitive impairment. Whereas variability of the insoluble proteome increased with age, absolute changes in the levels of insoluble proteins were small compared to the findings in the whole C. elegans insoluble proteome. However, we identified proteins with aberrant proteostasis in aging. For the cognitively impaired rats, we identified a changed molecular circuitry of proteins selectively involved in F-actin remodeling, synapse building and long-term depression: actin related protein 3 (ARP3), neurabin II (NEB2) and IQ motif and SEC7 domain-containing protein 1 (BRAG2). We demonstrate that aberrant proteostasis is a specific phenotype of brain aging in mammals. We identify a distinct molecular circuitry where changes in proteostasis are characteristic for poor learning and memory performance in the wild type, aged rat. Our findings 1. establish the search for aberrant proteostasis as a successful strategy to identify neuronal dysfunction in deficient cognitive behavior, 2. reveal a previously unknown functional network of proteins (ARP3, NEB2, BRAG2) involved in age-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Philipp Ottis
- Department of Neuropathology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Bianca Topic
- Center for Behavioral Neuroscience, Department Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Maarten Loos
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
- Synaptologics B.V., Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Angelica de Souza
- Center for Behavioral Neuroscience, Department Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Daniela Schulz
- Center for Behavioral Neuroscience, Department Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Joseph P. Huston
- Center for Behavioral Neuroscience, Department Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
39
|
Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism. Proc Natl Acad Sci U S A 2013; 110:15097-102. [PMID: 23983264 DOI: 10.1073/pnas.1306884110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Impaired learning and memory performance is often found in aging as an early sign of dementia. It is associated with neuronal loss and reduced functioning of cholinergic networks. Here we present evidence that the neurokinin3 receptors (NK3-R) and their influence on acetylcholine (ACh) release may represent a crucial mechanism that underlies age-related deficits in learning and memory. Repeated pharmacological stimulation of NK3-R in aged rats was found to improve learning in the water maze and in object-place recognition. This treatment also enhanced in vivo acetylcholinergic activity in the frontal cortex, hippocampus, and amygdala but reduced NK3-R mRNA expression in the hippocampus. Furthermore, NK3-R agonism incurred a significantly higher increase in ACh levels in aged animals that showed superior learning than in those that were most deficient in learning. Our findings suggest that the induced activation of ACh, rather than basal ACh activity, is associated with superior learning in the aged. To test whether natural variation in NK3-R function also determines learning and memory performance in aged humans, we investigated 209 elderly patients with cognitive impairments. We found that of the 15 analyzed single single-nucleotide ploymorphism (SNPs) of the NK3-R-coding gene, TACR3, the rs2765 SNP predicted the degree of impairment of learning and memory in these patients. This relationship could be partially explained by a reduced right hippocampus volume in a subsample of 111 tested dementia patients. These data indicate the NK3-R as an important target to predict and improve learning and memory performance in the aged organism.
Collapse
|
40
|
Bañuelos C, LaSarge CL, McQuail JA, Hartman JJ, Gilbert RJ, Ormerod BK, Bizon JL. Age-related changes in rostral basal forebrain cholinergic and GABAergic projection neurons: relationship with spatial impairment. Neurobiol Aging 2013; 34:845-62. [PMID: 22817834 PMCID: PMC3632262 DOI: 10.1016/j.neurobiolaging.2012.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/15/2012] [Accepted: 06/21/2012] [Indexed: 01/31/2023]
Abstract
Both cholinergic and GABAergic projections from the rostral basal forebrain contribute to hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in codistributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase [ChAT] immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 [GAD67] immunopositive) neurons, and total (neuronal nuclei [NeuN] immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline.
Collapse
Affiliation(s)
- Cristina Bañuelos
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610-0244, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Brim BL, Haskell R, Awedikian R, Ellinwood N, Jin L, Kumar A, Foster T, Magnusson K. Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor. Behav Brain Res 2013; 238:211-26. [PMID: 23103326 PMCID: PMC3540206 DOI: 10.1016/j.bbr.2012.10.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/09/2012] [Accepted: 10/13/2012] [Indexed: 11/26/2022]
Abstract
The GluN2B subunit of the N-methyl-d-aspartate (NMDA) receptor shows age-related declines in expression across the frontal cortex and hippocampus. This decline is strongly correlated to age-related memory declines. This study was designed to determine if increasing GluN2B subunit expression in the frontal lobe or hippocampus would improve memory in aged mice. Mice were injected bilaterally with either the GluN2B vector, containing cDNA specific for the GluN2B subunit and enhanced green fluorescent protein (eGFP); a control vector or vehicle. Spatial memory, cognitive flexibility, and associative memory were assessed using the Morris water maze. Aged mice, with increased GluN2B subunit expression, exhibited improved long-term spatial memory, comparable to young mice. However, memory was rescued on different days in the Morris water maze; early for hippocampal GluN2B subunit enrichment and later for the frontal lobe. A higher concentration of the GluN2B antagonist, Ro 25-6981, was required to impair long-term spatial memory in aged mice with enhanced GluN2B expression, as compared to aged controls, suggesting there was an increase in the number of GluN2B-containing NMDA receptors. In addition, hippocampal slices from aged mice with increased GluN2B subunit expression exhibited enhanced NMDA receptor-mediated excitatory post-synaptic potentials (EPSP). Treatment with Ro 25-6981 showed that a greater proportion of the NMDA receptor-mediated EPSP was due to the GluN2B subunit in these animals, as compared to aged controls. These results suggest that increasing the production of the GluN2B subunit in aged animals enhances memory and synaptic transmission. Therapies that enhance GluN2B subunit expression within the aged brain may be useful for ameliorating age-related memory declines.
Collapse
Affiliation(s)
- B. L. Brim
- Molecular and Cellular Biosciences Program, Oregon State University, Corvallis, OR, 97331, U.S.A
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, U.S.A
- Healthy Aging Program, Linus Pauling Institute, Oregon State University, Corvallis, OR; 97331, U.S.A
| | - R. Haskell
- ViraQuest, Inc., North Liberty, IA; 52317, U.S.A
| | - R. Awedikian
- Department of Animal Sciences, Iowa State University, Ames, IA, 50011, U.S.A
| | - N.M. Ellinwood
- Department of Animal Sciences, Iowa State University, Ames, IA, 50011, U.S.A
| | - L. Jin
- Molecular and Cellular Biosciences Program, Oregon State University, Corvallis, OR, 97331, U.S.A
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, U.S.A
| | - A. Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, U.S.A
| | - T.C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, U.S.A
| | - K. Magnusson
- Molecular and Cellular Biosciences Program, Oregon State University, Corvallis, OR, 97331, U.S.A
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, U.S.A
- Healthy Aging Program, Linus Pauling Institute, Oregon State University, Corvallis, OR; 97331, U.S.A
| |
Collapse
|
42
|
Aksenov V, Long J, Liu J, Szechtman H, Khanna P, Matravadia S, Rollo CD. A complex dietary supplement augments spatial learning, brain mass, and mitochondrial electron transport chain activity in aging mice. AGE (DORDRECHT, NETHERLANDS) 2013; 35:23-33. [PMID: 22120182 PMCID: PMC3543739 DOI: 10.1007/s11357-011-9325-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 10/15/2011] [Indexed: 05/31/2023]
Abstract
We developed a complex dietary supplement designed to offset five key mechanisms of aging and tested its effectiveness in ameliorating age-related cognitive decline using a visually cued Morris water maze test. All younger mice (<1 year old) learned the task well. However, older untreated mice (>1 year) were unable to learn the maze even after 5 days, indicative of strong cognitive decline at older ages. In contrast, no cognitive decline was evident in older supplemented mice, even when ∼2 years old. Supplemented older mice were nearly 50% better at locating the platform than age-matched controls. Brain weights of supplemented mice were significantly greater than controls, even at younger ages. Reversal of cognitive decline in activity of complexes III and IV by supplementation was significantly associated with cognitive improvement, implicating energy supply as one possible mechanism. These results represent proof of principle that complex dietary supplements can provide powerful benefits for cognitive function and brain aging.
Collapse
Affiliation(s)
- Vadim Aksenov
- />Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON Canada L8S 4K1
| | - Jiangang Long
- />Department of Biology and Engineering, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Jiankang Liu
- />Department of Biology and Engineering, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Henry Szechtman
- />Department of Psychiatry & Behavioural Neurosciences, McMaster University, 1200 Main St. W., Hamilton, ON Canada L8N 3Z5
| | - Parul Khanna
- />Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON Canada L8S 4K1
| | - Sarthak Matravadia
- />Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON Canada L8S 4K1
| | - C. David Rollo
- />Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON Canada L8S 4K1
| |
Collapse
|
43
|
Zhang L, Jin C, Liu Q, Lu X, Wu S, Yang J, Du Y, Zheng L, Cai Y. Effects of subchronic aluminum exposure on spatial memory, ultrastructure and L-LTP of hippocampus in rats. J Toxicol Sci 2013; 38:255-68. [DOI: 10.2131/jts.38.255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Lifeng Zhang
- Heping District Center for Disease Control and Prevention,China
- Department of Toxicology, School of Public Health, China Medical University, China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, China
| | - Qiufang Liu
- Department of Toxicology, School of Public Health, China Medical University, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, China
| | - Yanqiu Du
- 9th People’s Hospital of Shenyang, China
| | - Linlin Zheng
- Medical college, Eastern Liaoning University, China
| | - Yuan Cai
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
- Department of Toxicology, School of Public Health, China Medical University, China
| |
Collapse
|
44
|
Sharma S, Darland D, Lei S, Rakoczy S, Brown-Borg HM. NMDA and kainate receptor expression, long-term potentiation, and neurogenesis in the hippocampus of long-lived Ames dwarf mice. AGE (DORDRECHT, NETHERLANDS) 2012; 34:609-20. [PMID: 21544578 PMCID: PMC3337943 DOI: 10.1007/s11357-011-9253-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 04/15/2011] [Indexed: 05/08/2023]
Abstract
In the current study, we investigated changes in N-methyl D-aspartate (NMDA) and kainate receptor expression, long-term potentiation (LTP), and neurogenesis in response to neurotoxic stress in long-living Ames dwarf mice. We hypothesized that Ames dwarf mice have enhanced neurogenesis that enables retention of spatial learning and memory with age and promotes neurogenesis in response to injury. Levels of the NMDA receptors (NR)1, NR2A, NR2B, and the kainate receptor (KAR)2 were increased in Ames dwarf mice, relative to wild-type littermates. Quantitative assessment of the excitatory postsynaptic potential in Schaffer collaterals in hippocampal slices from Ames dwarf mice showed an increased response in high-frequency induced LTP over time compared with wild type. Kainic acid (KA) injection was used to promote neurotoxic stress-induced neurogenesis. KA mildly increased the number of doublecortin-positive neurons in wild-type mice, but the response was significantly enhanced in the Ames dwarf mice. Collectively, these data support our hypothesis that the enhanced learning and memory associated with the Ames dwarf mouse may be due to elevated levels of NMDA and KA receptors in hippocampus and their ability to continue producing new neurons in response to neuronal damage.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| | - Diane Darland
- Department of Biology, University of North Dakota, Grand Forks, ND 58202 USA
| | - Saobo Lei
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| | - Sharlene Rakoczy
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| | - Holly M. Brown-Borg
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| |
Collapse
|
45
|
Stanley EM, Fadel J. Aging-related deficits in orexin/hypocretin modulation of the septohippocampal cholinergic system. Synapse 2012; 66:445-52. [PMID: 22213437 PMCID: PMC3292656 DOI: 10.1002/syn.21533] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/22/2011] [Accepted: 12/17/2011] [Indexed: 12/20/2022]
Abstract
The medial septum (MS) of the basal forebrain contains cholinergic neurons that project to the hippocampus, support cognitive function, and are implicated in age-related cognitive decline. Hypothalamic orexin/hypocretin neurons innervate and modulate basal forebrain cholinergic neurons and provide direct inputs to the hippocampus. However, the precise role of orexin in modulating hippocampal cholinergic transmission--and how these interactions are altered in aging--is unknown. Here, orexin A was administered to CA1 and the MS of young (3-4 months) and aged (27-29 months) Fisher 344/Brown Norway rats, and hippocampal acetylcholine efflux was analyzed by in vivo microdialysis. At both infusion sites, orexin A dose-dependently increased hippocampal acetylcholine in young, but not aged rats. Moreover, immunohistochemical characterization of the MS revealed no change in cholinergic cell bodies in aged animals, but a significant decrease in orexin fiber innervation to cholinergic cells. These findings indicate that: (1) Orexin A modulates hippocampal cholinergic neurotransmission directly and transsynaptically in young animals, (2) Aged animals are unresponsive to orexin A, and (3) Aged animals undergo an intrinsic reduction in orexin innervation to cholinergic cells within the MS. Alterations in orexin regulation of septohippocampal cholinergic activity may contribute to age-related dysfunctions in arousal, learning, and memory.
Collapse
Affiliation(s)
- Emily M Stanley
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | | |
Collapse
|
46
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
47
|
The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 2012; 13:240-50. [PMID: 22395804 DOI: 10.1038/nrn3200] [Citation(s) in RCA: 669] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Normal ageing is associated with impairments in cognitive function, including memory. These impairments are linked, not to a loss of neurons in the forebrain, but to specific and relatively subtle synaptic alterations in the hippocampus and prefrontal cortex. Here, we review studies that have shed light on the cellular and synaptic changes observed in these brain structures during ageing that can be directly related to cognitive decline in young and aged animals. We also discuss the influence of the hormonal status on these age-related alterations and recent progress in the development of therapeutic strategies to limit the impact of ageing on memory and cognition in humans.
Collapse
|
48
|
Klencklen G, Després O, Dufour A. What do we know about aging and spatial cognition? Reviews and perspectives. Ageing Res Rev 2012; 11:123-35. [PMID: 22085884 DOI: 10.1016/j.arr.2011.10.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 10/14/2011] [Accepted: 10/25/2011] [Indexed: 11/30/2022]
Abstract
In order to cope with normal cognitive aging we must understand the patterns and neurofunctional underpinnings of cognitive and behavioral changes throughout adulthood. In this review, we summarize recent advances in our understanding of age-related behavioral differences and changes in brain structure throughout the spatial domain. Although spatial cognition is critically important to everyday life, few studies have examined the relationship between this cognitive function and neural changes in the aged brain. Thus, spatial cognition is considered a key area in which the cognitive neuroscience of aging may expand in the near future. The first section of this review examines the methodologies and studies used to assess differences in spatial cognition during normal cognitive aging in animals and humans. We then relate how each domain of spatial cognition (e.g., visuospatial perception, mental imagery, memory and navigation) is affected by the aging process, and discuss possible links with changes in neural mechanisms. Lastly, we address putative links among the age-related deterioration patterns of the various spatial domains and make suggestions for future research.
Collapse
Affiliation(s)
- Giuliana Klencklen
- Laboratoire d'Imagerie & Neurosciences Cognitives, UMR 7237 CNRS - Université de Strasbourg, France.
| | | | | |
Collapse
|
49
|
Bilkei-Gorzo A, Drews E, Albayram Ö, Piyanova A, Gaffal E, Tueting T, Michel K, Mauer D, Maier W, Zimmer A. Early onset of aging-like changes is restricted to cognitive abilities and skin structure in Cnr1−/− mice. Neurobiol Aging 2012; 33:200.e11-22. [DOI: 10.1016/j.neurobiolaging.2010.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 07/02/2010] [Accepted: 07/09/2010] [Indexed: 12/19/2022]
|
50
|
Shineman DW, Basi GS, Bizon JL, Colton CA, Greenberg BD, Hollister BA, Lincecum J, Leblanc GG, Lee L(BH, Luo F, Morgan D, Morse I, Refolo LM, Riddell DR, Scearce-Levie K, Sweeney P, Yrjänheikki J, Fillit HM. Accelerating drug discovery for Alzheimer's disease: best practices for preclinical animal studies. Alzheimers Res Ther 2011; 3:28. [PMID: 21943025 PMCID: PMC3218805 DOI: 10.1186/alzrt90] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal models have contributed significantly to our understanding of the underlying biological mechanisms of Alzheimer's disease (AD). As a result, over 300 interventions have been investigated and reported to mitigate pathological phenotypes or improve behavior in AD animal models or both. To date, however, very few of these findings have resulted in target validation in humans or successful translation to disease-modifying therapies. Challenges in translating preclinical studies to clinical trials include the inability of animal models to recapitulate the human disease, variations in breeding and colony maintenance, lack of standards in design, conduct and analysis of animal trials, and publication bias due to under-reporting of negative results in the scientific literature. The quality of animal model research on novel therapeutics can be improved by bringing the rigor of human clinical trials to animal studies. Research communities in several disease areas have developed recommendations for the conduct and reporting of preclinical studies in order to increase their validity, reproducibility, and predictive value. To address these issues in the AD community, the Alzheimer's Drug Discovery Foundation partnered with Charles River Discovery Services (Morrisville, NC, USA) and Cerebricon Ltd. (Kuopio, Finland) to convene an expert advisory panel of academic, industry, and government scientists to make recommendations on best practices for animal studies testing investigational AD therapies. The panel produced recommendations regarding the measurement, analysis, and reporting of relevant AD targets, th choice of animal model, quality control measures for breeding and colony maintenance, and preclinical animal study design. Major considerations to incorporate into preclinical study design include a priori hypotheses, pharmacokinetics-pharmacodynamics studies prior to proof-of-concept testing, biomarker measurements, sample size determination, and power analysis. The panel also recommended distinguishing between pilot 'exploratory' animal studies and more extensive 'therapeutic' studies to guide interpretation. Finally, the panel proposed infrastructure and resource development, such as the establishment of a public data repository in which both positive animal studies and negative ones could be reported. By promoting best practices, these recommendations can improve the methodological quality and predictive value of AD animal studies and make the translation to human clinical trials more efficient and reliable.
Collapse
Affiliation(s)
- Diana W Shineman
- Alzheimer's Drug Discovery Foundation, 57 West 57 Street, Suite 904, New York, NY 10019, USA
| | - Guriqbal S Basi
- Elan Pharmaceuticals, 1000 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Jennifer L Bizon
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, 100 S. Newell Drive, Gainesville, FL 32610-0244, USA
| | - Carol A Colton
- Duke University Medical Center, 201H Bryan Research Building, Research Drive, Durham, NC 27710, USA
| | - Barry D Greenberg
- University Health Network, Toronto Western Research Institute, 399 Bathurst Street, MP 14-328, Toronto, ON, M5T 2S8, Canada
| | - Beth A Hollister
- Charles River Discovery Services, 3300 Gateway Centre Boulevard, Morrisville, NC 27560, USA
| | - John Lincecum
- ALS Therapy Development Institute, 215 First Street, Cambridge, MA 02142, USA
| | | | - Linda (Bobbi) H Lee
- Alzheimer's Drug Discovery Foundation, 57 West 57 Street, Suite 904, New York, NY 10019, USA
- Columbia University, 630 West 168th Street, Building PS 12-510, New York, NY 10032, USA
| | - Feng Luo
- Abbott Neuroscience, AP4-2, 100 Abbott Park Road, Abbott Park, IL 60064-6076, USA
| | - Dave Morgan
- USF Health Byrd Alzheimer Institute, University of South Florida, 4001 E. Fletcher Avenue, MDC Box 36, Tampa FL 33613, USA
| | - Iva Morse
- Genetically Engineered Models and Services/Charles River Laboratories, Inc., 251 Ballardvale Street, Wilmington, MA 01887, USA
| | - Lorenzo M Refolo
- National Institute on Aging, 7201 Wisconsin Avenue, Gateway Building, Suite 350, Bethesda, MD 20892, USA
| | - David R Riddell
- Pfizer Neuroscience Research Unit, MS 8220-3414, Eastern Point Road, Groton, CT 06340, USA
| | | | - Patrick Sweeney
- Cerebricon Ltd./Charles River Discovery Services, Microkatu 1, Kuopio, Finland 70210
| | - Juha Yrjänheikki
- Cerebricon Ltd./Charles River Discovery Services, Microkatu 1, Kuopio, Finland 70210
| | - Howard M Fillit
- Alzheimer's Drug Discovery Foundation, 57 West 57 Street, Suite 904, New York, NY 10019, USA
| |
Collapse
|