1
|
Han N, Wen Y, Liu Z, Zhai J, Li S, Yin J. Advances in the roles and mechanisms of lignans against Alzheimer’s disease. Front Pharmacol 2022; 13:960112. [PMID: 36313287 PMCID: PMC9596774 DOI: 10.3389/fphar.2022.960112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is a serious neurodegenerative disease associated with the memory and cognitive impairment. The occurrence of AD is due to the accumulation of amyloid β-protein (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain tissue as well as the hyperphosphorylation of Tau protein in neurons, doing harm to the human health and even leading people to death. The development of neuroprotective drugs with small side effects and good efficacy is focused by scientists all over the world. Natural drugs extracted from herbs or plants have become the preferred resources for new candidate drugs. Lignans were reported to effectively protect nerve cells and alleviate memory impairment, suggesting that they might be a prosperous class of compounds in treating AD. Objective: To explore the roles and mechanisms of lignans in the treatment of neurological diseases, providing proofs for the development of lignans as novel anti-AD drugs. Methods: Relevant literature was extracted and retrieved from the databases including China National Knowledge Infrastructure (CNKI), Elsevier, Science Direct, PubMed, SpringerLink, and Web of Science, taking lignan, anti-inflammatory, antioxidant, apoptosis, nerve regeneration, nerve protection as keywords. The functions and mechanisms of lignans against AD were summerized. Results: Lignans were found to have the effects of regulating vascular disorders, anti-infection, anti-inflammation, anti-oxidation, anti-apoptosis, antagonizing NMDA receptor, suppressing AChE activity, improving gut microbiota, so as to strengthening nerve protection. Among them, dibenzocyclooctene lignans were most widely reported and might be the most prosperous category in the develpment of anti-AD drugs. Conclusion: Lignans displayed versatile roles and mechanisms in preventing the progression of AD in in vitro and in vivo models, supplying potential candidates for the treatment of nerrodegenerative diseases.
Collapse
|
2
|
Milne R. The rare and the common: scale and the genetic imaginary in Alzheimer's disease drug development. NEW GENETICS AND SOCIETY 2019; 39:101-126. [PMID: 32256202 PMCID: PMC7077363 DOI: 10.1080/14636778.2019.1637718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/03/2019] [Indexed: 06/11/2023]
Abstract
In this paper I examine how the promissory value of genetics is constituted through processes of scale and scaling, focussing on the relationship between "rare" and "common" forms of disease. I highlight the bodies and spaces involved in the production of post-genomic knowledge and technologies of Alzheimer's disease and the development of new disease-modifying drugs. I focus on the example of the development of a monoclonal antibody therapy for Alzheimer's disease. I argue that the process of therapeutic innovation, from genetic studies and animal models to phase III clinical trials, reflects the persistent importance of a genetic imaginary and a mutually constitutive relationship between the rare and the common in in shaping visions of Alzheimer's disease medicine. Approaching this relationship as a question of scale, I suggest the importance of attending to how and where genomic knowledge is "scaled" or proves resistant to scaling.
Collapse
Affiliation(s)
- Richard Milne
- Wellcome Genome Campus – Society and Ethics Research Group, Cambridge, UK
- Institute of Public Health, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
|
4
|
Lecanu L, Papadopoulos V. Modeling Alzheimer's disease with non-transgenic rat models. ALZHEIMERS RESEARCH & THERAPY 2013; 5:17. [PMID: 23634826 PMCID: PMC3706888 DOI: 10.1186/alzrt171] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), for which there is no cure, is the most common form of dementia in the elderly. Despite tremendous efforts by the scientific community, the AD drug development pipeline remains extremely limited. Animal models of disease are a cornerstone of any drug development program and should be as relevant as possible to the disease, recapitulating the disease phenotype with high fidelity, to meaningfully contribute to the development of a successful therapeutic agent. Over the past two decades, transgenic models of AD based on the known genetic origins of familial AD have significantly contributed to our understanding of the molecular mechanisms involved in the onset and progression of the disease. These models were extensively used in AD drug development. The numerous reported failures of new treatments for AD in clinical trials indicate that the use of genetic models of AD may not represent the complete picture of AD in humans and that other types of animal models relevant to the sporadic form of the disease, which represents 95% of AD cases, should be developed. In this review, we will discuss the evolution of non-transgenic rat models of AD and how these models may open new avenues for drug development.
Collapse
Affiliation(s)
- Laurent Lecanu
- The Research Institute of the McGill University Health Centre, Royal Victoria Hospital, 687 Pine avenue West, room L2-05, Montreal H3A 1A1, QC, Canada ; Department of Medicine, McGill University, Royal Victoria Hospital, 687 Pine avenue West, room L2-05, Montreal H3A 1A1, QC, Canada
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Royal Victoria Hospital, 687 Pine avenue West, room L2-05, Montreal H3A 1A1, QC, Canada ; Department of Medicine, McGill University, Royal Victoria Hospital, 687 Pine avenue West, room L2-05, Montreal H3A 1A1, QC, Canada ; Departments of Biochemistry and Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Bldg, 3655 Promenade Sir-William-Osler, room 1325, Montreal Quebec, Canada H3G 1Y6
| |
Collapse
|
5
|
Giuffrida ML, Tomasello F, Caraci F, Chiechio S, Nicoletti F, Copani A. Beta-amyloid monomer and insulin/IGF-1 signaling in Alzheimer's disease. Mol Neurobiol 2012; 46:605-13. [PMID: 22886436 DOI: 10.1007/s12035-012-8313-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/13/2012] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease is the most common form of dementia among older people and is still untreatable. While β-amyloid protein is recognized as the disease determinant with a pivotal role in inducing neuronal loss and dementia, an impaired brain insulin signaling seems to account in part for the cognitive deficit associated with the disease. The origin of this defective signaling is uncertain. Accumulating toxic species of β-amyloid, the so-called oligomers, has been proposed to be responsible for downregulation of neuronal insulin receptors. We have found that the nontoxic form of β-amyloid, the monomer, is able to activate insulin/insulin-like growth factor-1 (IGF-1) receptor signaling and thus behaves as a neuroprotectant agent. Our suggestion is that depletion of β-amyloid monomers, occurring in the preclinical phase of Alzheimer's disease, might be the cause of early insulin/IGF-1 signaling disturbances that anticipate cognitive decline.
Collapse
Affiliation(s)
- Maria Laura Giuffrida
- Institute of Biostructure and Bioimaging, National Research Council, Viale Andrea Doria, Catania 95125, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Svedberg MM, Rahman O, Hall H. Preclinical studies of potential amyloid binding PET/SPECT ligands in Alzheimer's disease. Nucl Med Biol 2012; 39:484-501. [PMID: 22226025 DOI: 10.1016/j.nucmedbio.2011.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/23/2011] [Accepted: 10/02/2011] [Indexed: 01/13/2023]
Abstract
Visualizing the neuropathological hallmarks amyloid plaques and neurofibrillary tangles of Alzheimer's disease in vivo using positron emission tomography (PET) or single photon emission computed tomography will be of great value in diagnosing the individual patient and will also help in our understanding of the disease. The successful introduction of [(11)C]PIB as a PET tracer for the amyloid plaques less than 10 years ago started an intensive research, and numerous new compounds for use in molecular imaging of the amyloid plaques have been developed. The candidates are based on dyes like thioflavin T, Congo red and chrysamine G, but also on other types such as benzoxazoles, curcumin and stilbenes. In the present review, we present methods of the radiochemistry and preclinical evaluation as well as the main properties of some of these compounds.
Collapse
Affiliation(s)
- Marie M Svedberg
- Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
7
|
Sarasa L, Gallego C, Monleón I, Olvera A, Canudas J, Montañés M, Pesini P, Sarasa M. Cloning, sequencing and expression in the dog of the main amyloid precursor protein isoforms and some of the enzymes related with their processing. Neuroscience 2010; 171:1091-101. [DOI: 10.1016/j.neuroscience.2010.09.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 02/07/2023]
|
8
|
Abstract
The most common animal models currently used for Alzheimer disease (AD) research are transgenic mice that express a mutant form of human Aβ precursor protein (APP) and/or some of the enzymes implicated in their metabolic processing. However, these transgenic mice carry their own APP and APP-processing enzymes, which may interfere in the production of different amyloid-beta (Aβ) peptides encoded by the human transgenes. Additionally, the genetic backgrounds of the different transgenic mice are a possible confounding factor with regard to crucial aspects of AD that they may (or may not) reproduce. Thus, although the usefulness of transgenic mice is undisputed, we hypothesized that additional relevant information on the physiopathology of AD could be obtained from other natural non-transgenic models. We have analyzed the chick embryo and the dog, which may be better experimental models because their enzymatic machinery for processing APP is almost identical to that of humans. The chick embryo is extremely easy to access and manipulate. It could be an advantageous natural model in which to study the cell biology and developmental function of APP and a potential assay system for drugs that regulate APP processing. The dog suffers from an age-related syndrome of cognitive dysfunction that naturally reproduces key aspects of AD including Aβ cortical pathology, neuronal degeneration and learning and memory disabilities. However, dense core neuritic plaques and neurofibrillary tangles have not been consistently demonstrated in the dog. Thus, these species may be natural models with which to study the biology of AD, and could also serve as assay systems for Aβ-targeted drugs or new therapeutic strategies against this devastating disease.
Collapse
|
9
|
Sarkaki A, Amani R, Badavi M, Moghaddam AZ, Aligholi H, Safahani M, Haghighizadeh MH. Pre-treatment effect of different doses of soy isoflavones on spatial learning and memory in an ovariectomized animal model of Alzheimer's disease. Pak J Biol Sci 2008; 11:1114-9. [PMID: 18819549 DOI: 10.3923/pjbs.2008.1114.1119] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate the effects of different doses of dietary soy meals (with or without isoflavone) on dementia in ovariectomized (OVX) animal model of Alzheimer's disease. Female Wistar's rats with the exception of intact group were ovariectomized at the first line of study. Animals were divided into 2 main groups: control (c) and pre-treatment groups. Animals in pre-treatment groups received one of five types of diet during four weeks prior Nucleus Basalis Magnocellularis (NBM) electrical lesion normal diet (0), 10 g soy with isoflavone (10), 20 g soy with isoflavone (20), 10 g soy without isoflavone (-10) and 20 g soy without isoflavone (-20) in 30 g daily diet. The spatial learning and memory were tested using Morris water maze after electrical lesion. Rats were trained in water maze to find a hidden escape Platform. Rats received 6 blocks that each block consisted of 3 trials. Following acquisition trials, one probe trial was conducted in which the platform was removed. Soy meal diet (with or without isoflavone) in ovariectomized rats with Alzheimer's disease caused improvement of performance across 18 trials of Acquisition. Our results suggest that soy meal is a potential alternative to estrogen in the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Department of Physiology, Medical Faculty, Research Center of Physiology, Ahwaz Jondishapur University of Medical Sciences, Iran
| | | | | | | | | | | | | |
Collapse
|
10
|
Astrocytes and microgliain Alzheimer's disease. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Diez M, Koistinaho J, Kahn K, Games D, Hökfelt T. Neuropeptides in hippocampus and cortex in transgenic mice overexpressing V717F beta-amyloid precursor protein--initial observations. Neuroscience 2001; 100:259-86. [PMID: 11008166 DOI: 10.1016/s0306-4522(00)00261-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Immunohistochemistry was used to analyse 18- and 26-month-old transgenic mice overexpressing the human beta-amyloid precursor protein under the platelet-derived growth factor-beta promoter with regard to presence and distribution of neuropeptides. In addition, antisera/antibodies to tyrosine hydroxylase, acetylcholinesterase, amyloid peptide, glial fibrillary acidic protein and microglial marker OX42 were used. These mice have been reported to exhibit extensive amyloid plaques in the hippocampus and cortex [Masliah et al. (1996) J. Neurosci. 16, 5795-5811]. The most pronounced changes were related to neuropeptides, whereas differences between wild-type and transgenic mice were less prominent with regard to tyrosine hydroxylase and acetylcholinesterase. The main findings were of two types; (i) involvement of peptide-containing neurites in amyloid beta-peptide positive plaques, and (ii) more generalized changes in peptide levels in specific layers, neuron populations and/or subregions in the hippocampal formation and ventral cortices. In contrast, the parietal and auditory cortices were comparatively less affected. The peptide immunoreactivities most strongly involved, both in plaques and in the generalized changes, were galanin, neuropeptide Y, cholecystokinin and enkephalin. This study shows that there is considerable variation both with regard to plaque load and peptide expression even among homozygotes of the same age. The most pronounced changes, predominantly increased peptide levels, were observed in two 26-month-old homozygous mice, for example, galanin-, enkephalin- and cholecystokinin-like immunoreactivities in stratum lacunosum moleculare, and galanin, neuropeptide Y, enkephalin and dynorphin in mossy fibers. Many peptides also showed elevated levels in the ventral cortices. However, decreases were also observed. Thus, galanin-like immunoreactivity could not any longer be detected in the diffusely distributed (presumably noradrenergic) fiber network in all hippocampal and cortical layers, and dynorphin-like immunoreactivity was decreased in stratum moleculare, cholecystokinin-like immunoreactivity in mossy fibers and substance P-like immunoreactivity in fibers around granule cells. The significance of generalized peptide changes is at present unclear. For example, the increase in the mainly inhibitory peptides galanin, neuropeptide Y, enkephalin and dynorphin and the decrease in the mainly excitatory peptide cholecystokinin in mossy fibers (and of substance P fibers around granule cells) indicate a shift in balance towards inhibition of the input to the CA3 pyramidal cell layer. Moreover, it may be speculated that the increase in levels of some of the peptides represents a reaction to nerve injury with the aim to counteract, in different ways, the consequences of injury, for example by exerting trophic actions. Further studies will be needed to establish to what extent these changes are typical for Alzheimer mouse models in general or are associated with the V717F mutation and/or the platelet-derived growth factor-beta promoter.
Collapse
Affiliation(s)
- M Diez
- Department of Neuroscience, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Kampers T, Pangalos M, Geerts H, Wiech H, Mandelkow E. Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer's disease. FEBS Lett 1999; 451:39-44. [PMID: 10356980 DOI: 10.1016/s0014-5793(99)00522-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Alzheimer's disease and related dementias, human tau protein aggregates into paired helical filaments and neurofibrillary tangles. However, such tau aggregates have not yet been demonstrated in transgenic mouse models of the disease. One of the possible explanations would be that mouse tau has different properties which prevents it from aggregating. We have cloned several murine tau isoforms, containing three or four repeats and different combinations of inserts, expressed them in Escherichia coli and show here that they can all be assembled into paired helical filaments similar to those in Alzheimer's disease, using the same protocols as with human tau. Therefore, the absence of pathologically aggregated tau in transgenic mice cannot be explained by intrinsic differences in mouse tau protein and instead must be explained by other as yet unknown factors.
Collapse
Affiliation(s)
- T Kampers
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
13
|
Luo JJ, Wallace W, Riccioni T, Ingram DK, Roth GS, Kusiak JW. Death of PC12 cells and hippocampal neurons induced by adenoviral-mediated FAD human amyloid precursor protein gene expression. J Neurosci Res 1999; 55:629-42. [PMID: 10082085 DOI: 10.1002/(sici)1097-4547(19990301)55:5<629::aid-jnr10>3.0.co;2-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We used adenoviral-mediated gene transfer of human amyloid precursor proteins (h-APPs) to evaluate the role of various h-APPs in causing neuronal cell death. We were able to infect PC12 cells with very high efficiency because approximately 90% of the cells were cytochemically positive for beta-galactosidase activity when an adenoviral vector containing LacZ cDNA was used to infect cells. Cells infected with adenovirus containing h-APP cDNA showed high-level transcription and expression of h-APP as measured by reverse transcriptase-polymerase chain reaction and Western immunoblot analyses, respectively. Intracellular and extracellular levels of h-APP were elevated approximately 17-and 24-fold in cultures infected with recombinant adenovirus containing wild-type mutant and 13- and 17-fold with V642F mutant. No elevation in h-APP was seen in cultures infected with antisense h-APP or null adenovirus. H-APP levels were maximal 3 days after infection. Overexpression of V642F mutant h-APP in PC12 cells and hippocampal neurons resulted in about a twofold increase in death compared with overexpression of wild-type h-APP. These results demonstrate the usefulness of recombinant adenoviral mediated gene transfer in cell culture studies and suggest that overexpression of a familial Alzheimer's disease mutant APP may be toxic to neuronal cells.
Collapse
Affiliation(s)
- J J Luo
- Molecular Neurobiology Unit, Laboratory of Biological Chemistry, National Institute on Aging, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Considering the mechanisms responsible for age- and Alzheimer's disease (AD)-related neuronal degeneration, little attention was paid to the opposing relationships between the energy-rich phosphates, mainly the availability of the adenosine triphosphate (ATP), and the activity of the glutamic acid decarboxylase (GAD), the rate-limiting enzyme synthesizing the gamma-amino butyric acid (GABA). Here, it is postulated that in all neuronal phenotypes the declining ATP-mediated negative control of GABA synthesis gradually declines and results in age- and AD-related increases of GABA synthesis. The Ca2+-independent carrier-mediated GABA release interferes with Ca2+-dependent exocytotic release of all transmitter-modulators, because the interstitial (ambient) GABA acts on axonal preterminal and terminal varicosities endowed with depolarizing GABA(A)-benzodiazepine receptors; this makes GABA the "executor" of virtually all age- and AD-related neurodegenerative processes. Such a role of GABA is diametrically opposite to that in the perinatal phase, when the carrier-mediated GABA release, acting on GABA(A)/chloride ionophore receptors, positively controls chemotactic migration of neuronal precursor cells, has trophic actions and initiates synaptogenesis, thereby enabling retrograde axonal transport of target produced factors that trigger differentiation of neuronal phenotypes. However, with advancing age, and prematurely in AD, the declining mitochondrial ATP synthesis unleashes GABA synthesis, and its carrier-mediated release blocks Ca2+-dependent exocytotic release of all transmitter-modulators, leading to dystrophy of chronically depolarized axon terminals and block of retrograde transport of target-produced trophins, causing "starvation" and death of neuronal somata. The above scenario is consistent with the following observations: 1) a 10-month daily administration to aging rats of the GABA-chloride ionophore antagonist, pentylenetetrazol, or of the BDZ antagonist, flumazenil (FL), each forestalls the age-related decline in cognitive functions and losses of hippocampal neurons; 2) the brains of aging rats, relative to young animals, and the postmortem brains of AD patients, relative to age-matched controls, show up to two-fold increases in GABA synthesis; 3) the aging humans and those showing symptoms of AD, as well as the aging nonhuman primates and rodents--all show in the forebrain dystrophic axonal varicosities, losses of transmitter vesicles, and swollen mitochondria. These markers, currently regarded as the earliest signs of aging and AD, can be reproduced in vitro cell cultures by 1 microM GABA; the development of these markers can be prevented by substituting Cl- with SO4(2-); 4) the extrasynaptic GABA suppresses the membrane Na+, K+-ATPase and ion pumping, while the resulting depolarization of soma-dendrites relieves the "protective" voltage-dependent Mg2+ control of the N-methyl-D-aspartate (NMDA) channels, thereby enabling Ca2+-dependent persistent toxic actions of the excitatory amino acids (EAA); and 5) in whole-cell patch-clamp recording from neurons of aging rats, relative to young rats, the application of 3 microM GABA, causes twofold increases in the whole-cell membrane Cl- conductances and a loss of the physiologically important neuronal ability to desensitize to repeated GABA applications. These age-related alterations in neuronal membrane functions are amplified by 150% in the presence of agonists of BDZ recognition sites located on GABA receptor. The GABA deafferentation hypothesis also accounts for the age- and AD-related degeneration in the forebrain ascending cholinergic, glutamatergic, and the ascending mesencephalic monoaminergic system, despite that the latter, to foster the distribution-utilization of locally produced trophins, evolved syncytium-like connectivities among neuronal somata, axon collaterals, and dendrites, to bidirectionally transport trophins. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- T J Marczynski
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago 60612, USA.
| |
Collapse
|
15
|
Allain H, Bentué-Ferrer D, Belliard S, Derouesné C. 1 Pharmacology of Alzheimer's Disease. PROGRESS IN MEDICINAL CHEMISTRY 1997. [DOI: 10.1016/s0079-6468(08)70104-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Rockenstein EM, McConlogue L, Tan H, Power M, Masliah E, Mucke L. Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer's disease. J Biol Chem 1995; 270:28257-67. [PMID: 7499323 DOI: 10.1074/jbc.270.47.28257] [Citation(s) in RCA: 208] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Abnormal expression of human amyloid precursor protein (hAPP) gene products may play a critical role in Alzheimer's disease (AD). Recently, a transgenic model was established in which platelet-derived growth factor (PDGF) promoter-driven neuronal expression of an alternatively spliced hAPP minigene resulted in prominent AD-type neuropathology (Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagopian, S., Johnson-Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., Montoya-Zavala, M., Mucke, L., Paganini, L., and Penniman, E. (1995) Nature 373, 523-527). Here we compared the levels and alternative splicing of APP transcripts in brain tissue of hAPP transgenic and nontransgenic mice and of humans with and without AD. PDGF-hAPP mice showed severalfold higher levels of total APP mRNA than did nontransgenic mice or humans, whereas their endogenous mouse APP mRNA levels were decreased. This resulted in a high ratio of mRNAs encoding mutated hAPP versus wild-type mouse APP. Modifications of hAPP introns 6, 7, and 8 in the PDGF-hAPP construct resulted in a prominent change in alternative splice site selection with transcripts encoding hAPP770 or hAPP751 being expressed at substantially higher levels than hAPP695 mRNA. Frontal cortex of humans with AD showed a subtle increase in the relative abundance of hAPP751 mRNA compared with normal controls. These data identify specific intron sequences that may contribute to the normal neuronspecific alternative splicing of APP pre-mRNA in vivo and support a causal role of hAPP gene products in the development of AD-type brain alterations.
Collapse
Affiliation(s)
- E M Rockenstein
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
17
|
Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS. The toxicity in vitro of beta-amyloid protein. Biochem J 1995; 311 ( Pt 1):1-16. [PMID: 7575439 PMCID: PMC1136112 DOI: 10.1042/bj3110001] [Citation(s) in RCA: 349] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- L L Iversen
- Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, U.K
| | | | | | | |
Collapse
|
18
|
Mucke L, Masliah E, Johnson WB, Ruppe MD, Alford M, Rockenstein EM, Forss-Petter S, Pietropaolo M, Mallory M, Abraham CR. Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice. Brain Res 1994; 666:151-67. [PMID: 7882025 DOI: 10.1016/0006-8993(94)90767-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The amyloid precursor protein (APP) is involved in Alzheimer's disease (AD) because its degradation products accumulate abnormally in AD brains and APP mutations are associated with early onset AD. However, its role in health and disease appears to be complex, with different APP derivatives showing either neurotoxic or neurotrophic effects in vitro. To elucidate the effects APP has on the brain in vivo, cDNAs encoding different forms of human APP (hAPP) were placed downstream of the neuron-specific enolase (NSE) promoter. In multiple lines of NSE-hAPP transgenic mice neuronal overexpression of hAPP was accompanied by an increase in the number of synaptophysin immunoreactive (SYN-IR) presynaptic terminals and in the expression of the growth-associated marker GAP-43. In lines expressing moderate levels of hAPP751 or hAPP695, this effect was more prominent in homozygous than in heterozygous transgenic mice. In contrast, a line with several-fold higher levels of hAPP695 expression showed less increase in SYN-IR presynaptic terminals per amount of hAPP expressed than the lower expressor lines and a decrease in synaptotrophic effects in homozygous compared with heterozygous offspring. Transgenic mice (2-24 months of age) showed no evidence for amyloid deposits or neurodegeneration. These findings suggest that APP may be important for the formation/maintenance of synapses in vivo and that its synaptotrophic effects may be critically dependent on the expression levels of different APP isoforms. Alterations in APP expression, processing or function could contribute to the synaptic pathology seen in AD.
Collapse
Affiliation(s)
- L Mucke
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037
| | | | | | | | | | | | | | | | | | | |
Collapse
|