1
|
Vincenzi B, Armento G, Spalato Ceruso M, Catania G, Leakos M, Santini D, Minotti G, Tonini G. Drug-induced hepatotoxicity in cancer patients - implication for treatment. Expert Opin Drug Saf 2016; 15:1219-38. [PMID: 27232067 DOI: 10.1080/14740338.2016.1194824] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION All anticancer drugs can cause idiosyncratic liver injury. Therefore, hepatoprotective agents assume particular importance to preserve liver function. Hepatic injury represents 10% of cases of acute hepatitis in adults; drug-related damage is still misjudged because of relative clinical underestimation and difficult differential diagnosis. Chemotherapeutic agents can produce liver toxicity through different pathways, resulting in different categories of liver injuries, but these drugs are not homogeneously hepatotoxic. Frequently, anticancer-induced hepatotoxicity is idiosyncratic and influenced by multiple factors. AREAS COVERED The aim of this paper is to perform a review of the literature regarding anticancer-induced liver toxicity. We described hepatotoxicity mechanisms of principal anticancer agents and respective dose reductions. Furthermore, we reviewed studies on hepatoprotectors and their optimal use. Tiopronin, magnesium isoglycyrrhizinate and S-Adenosylmethionine (AdoMet) demonstrated, in some small studies, a potential hepatoprotective activity. EXPERT OPINION Actually, in the literature only small experiences are reported. Even though hepatoprotective agents seem to be useful in the oncologic setting, the lack of well-designed prospective Phase III randomized controlled trials is a major limit in the introduction of hepatoprotectors in cancer patients and these kind of studies are warranted to support their use and to give further recommendations for the clinical practice.
Collapse
Affiliation(s)
- Bruno Vincenzi
- a Medical Oncology Department, Campus Bio-Medico , University of Rome , Rome , Italy
| | - Grazia Armento
- a Medical Oncology Department, Campus Bio-Medico , University of Rome , Rome , Italy
| | | | - Giovanna Catania
- a Medical Oncology Department, Campus Bio-Medico , University of Rome , Rome , Italy.,b Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences , University of Palermo , Palermo , Italy
| | - Mark Leakos
- a Medical Oncology Department, Campus Bio-Medico , University of Rome , Rome , Italy
| | - Daniele Santini
- a Medical Oncology Department, Campus Bio-Medico , University of Rome , Rome , Italy
| | - Giorgio Minotti
- c Clinical Pharmacology Department , Campus Bio-Medico, University of Rome , Rome , Italy
| | - Giuseppe Tonini
- a Medical Oncology Department, Campus Bio-Medico , University of Rome , Rome , Italy
| |
Collapse
|
2
|
Schumacher JD, Guo GL. Mechanistic review of drug-induced steatohepatitis. Toxicol Appl Pharmacol 2015; 289:40-7. [PMID: 26344000 DOI: 10.1016/j.taap.2015.08.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 12/16/2022]
Abstract
Drug-induced steatohepatitis is a rare form of liver injury known to be caused by only a handful of compounds. These compounds stimulate the development of steatohepatitis through their toxicity to hepatocyte mitochondria; inhibition of beta-oxidation, mitochondrial respiration, and/or oxidative phosphorylation. Other mechanisms discussed include the disruption of phospholipid metabolism in lysosomes, prevention of lipid egress from hepatocytes, targeting mitochondrial DNA and topoisomerase, decreasing intestinal barrier function, activation of the adenosine pathway, increasing fatty acid synthesis, and sequestration of coenzyme A. It has been found that the majority of compounds that induce steatohepatitis have cationic amphiphilic structures; a lipophilic ring structure with a side chain containing a cationic secondary or tertiary amine. Within the last decade, the ability of many chemotherapeutics to cause steatohepatitis has become more evident coining the term chemotherapy-associated steatohepatitis (CASH). The mechanisms behind drug-induced steatohepatitis are discussed with a focus on cationic amphiphilic drugs and chemotherapeutic agents.
Collapse
Affiliation(s)
- Justin D Schumacher
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Grace L Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
3
|
McWhirter D, Kitteringham N, Jones RP, Malik H, Park K, Palmer D. Chemotherapy induced hepatotoxicity in metastatic colorectal cancer: a review of mechanisms and outcomes. Crit Rev Oncol Hematol 2013; 88:404-15. [PMID: 23786843 DOI: 10.1016/j.critrevonc.2013.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 01/22/2023] Open
Abstract
Colorectal cancer remains one of the most common cancers worldwide. The treatment of metastatic disease has advanced considerably in the past 10 years both in terms of surgical technique and development of novel chemotherapeutic agents. The widespread use of multiple chemotherapeutic agents has lead to recognition of distinct patterns of hepatotoxicity associated with specific drugs. These side-effects have potential implications for both the patient and medical professional, but the underlying mechanisms involved in these conditions remains poorly understood. This review explores the mechanisms of action of the commonly used chemotherapeutic agents and the potential mechanisms for their hepatotoxicity. It is important that all medical professionals involved in the management of metastatic colorectal cancer understand the problems of hepatotoxicity and the impact they have on the patient.
Collapse
Affiliation(s)
- Derek McWhirter
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE, United Kingdom; North Western Hepatobiliary Unit, University Hospital Aintree, Longmoor Lane, Liverpool L9 7AL, United Kingdom.
| | | | | | | | | | | |
Collapse
|
4
|
Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 2012; 69:328-38. [PMID: 23142697 DOI: 10.1016/j.ympev.2012.10.020] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Abstract
Many years of extensive studies of metazoan mitochondrial genomes have established differences in gene arrangements and genetic codes as valuable phylogenetic markers. Understanding the underlying mechanisms of replication, transcription and the role of the control regions which cause e.g. different gene orders is important to assess the phylogenetic signal of such events. This review summarises and discusses, for the Metazoa, the general aspects of mitochondrial transcription and replication with respect to control regions as well as several proposed models of gene rearrangements. As whole genome sequencing projects accumulate, more and more observations about mitochondrial gene transfer to the nucleus are reported. Thus occurrence and phylogenetic aspects concerning nuclear mitochondrial-like sequences (NUMTS) is another aspect of this review.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.
| | | | | | | |
Collapse
|
5
|
Zhang H, Meng LH, Pommier Y. Mitochondrial topoisomerases and alternative splicing of the human TOP1mt gene. Biochimie 2007; 89:474-81. [PMID: 17161897 DOI: 10.1016/j.biochi.2006.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 11/07/2006] [Indexed: 11/20/2022]
Abstract
Mitochondria are the only organelles containing metabolically active DNA besides nuclei. By analogy with the nuclear topoisomerases, mitochondrial topoisomerase activities are probably critical for maintaining the topology of mitochondrial DNA during replication, transcription, and repair. Mitochondrial diseases include a wide range of defects including neurodegeneracies, myopathies, metabolic abnormalities and premature aging. Vertebrates only have one known specific mitochondrial topoisomerase gene (TOP1mt), coding for a type IB topoisomerase. Like the mitochondrial DNA and RNA polymerase, the TOP1mt gene is encoded in the nuclear genome. The TOP1mt gene possesses the 13 exon Top1B signature motif and codes for a mitochondrial targeting signals at the N-terminus of the Top1mt polypeptide. This review summarizes our current knowledge of mitochondrial topoisomerases (type IA, IB and type II) in eukaryotes including budding and fission yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and protozoan parasites (kinetoplastidiae and plasmodium). It also includes new data showing alternative splice variants of human TOP1mt.
Collapse
Affiliation(s)
- Hongliang Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 37, Room 5068, Bethesda, MD 20892-4255, USA
| | | | | |
Collapse
|
6
|
Jacobs LJAM, de Wert G, Geraedts JPM, de Coo IFM, Smeets HJM. The transmission of OXPHOS disease and methods to prevent this. Hum Reprod Update 2005; 12:119-36. [PMID: 16199488 DOI: 10.1093/humupd/dmi042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Diseases owing to defects of oxidative phosphorylation (OXPHOS) affect approximately 1 in 8,000 individuals. Clinical manifestations can be extremely variable and range from single-affected tissues to multisystemic syndromes. In general, tissues with a high energy demand, like brain, heart and muscle, are affected. The OXPHOS system is under dual genetic control, and mutations in both nuclear and mitochondrial genes can cause OXPHOS diseases. The expression and segregation of mitochondrial DNA (mtDNA) mutations is different from nuclear gene defects. The mtDNA mutations can be either homoplasmic or heteroplasmic and in the latter case disease becomes manifest when the mutation exceeds a tissue-specific threshold. This mutation load can vary between tissues and often an exact correlation between mutation load and phenotypic expression is lacking. The transmission of mtDNA mutations is exclusively maternal, but the mutation load between embryos can vary tremendously because of a segregational bottleneck. Diseases by nuclear gene mutations show a normal Mendelian inheritance pattern and often have a more constant clinical manifestation. Given the prevalence and severity of OXPHOS disorders and the lack of adequate therapy, existing and new methods for the prevention of transmission of OXPHOS disorders, like prenatal diagnosis (PND), preimplantation genetic diagnosis (PGD), cytoplasmic transfer (CT) and nuclear transfer (NT), are technically and ethically evaluated.
Collapse
Affiliation(s)
- L J A M Jacobs
- Department of Genetics and Cell Biology, University of Maastricht, 6200 MD Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Taanman JW, Llewelyn Williams S. The Human Mitochondrial Genome. OXIDATIVE STRESS AND DISEASE 2005. [DOI: 10.1201/9781420028843.ch3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Zhang H, Barceló JM, Lee B, Kohlhagen G, Zimonjic DB, Popescu NC, Pommier Y. Human mitochondrial topoisomerase I. Proc Natl Acad Sci U S A 2001; 98:10608-13. [PMID: 11526219 PMCID: PMC58513 DOI: 10.1073/pnas.191321998] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2001] [Accepted: 07/16/2001] [Indexed: 11/18/2022] Open
Abstract
Tension generated in the circular mitochondrial genome during replication and transcription points to the need for mtDNA topoisomerase activity. Here we report a 601-aa polypeptide highly homologous to nuclear topoisomerase I. The N-terminal domain of this novel topoisomerase contains a mitochondrial localization sequence and lacks a nuclear localization signal. Therefore, we refer to this polypeptide as top1mt. The pattern of top1mt expression matches the requirement for high mitochondrial activity in specific tissues. top1mt is a type IB topoisomerase that requires divalent metal (Ca(2+) or Mg(2+)) and alkaline pH for optimum activity. The TOP1mt gene is highly homologous to the nuclear TOP1 gene and consists of 14 exons. It is localized on human chromosome 8q24.3.
Collapse
Affiliation(s)
- H Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:103-23. [PMID: 10076021 DOI: 10.1016/s0005-2728(98)00161-3] [Citation(s) in RCA: 1058] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria play a central role in cellular energy provision. The organelles contain their own genome with a modified genetic code. The mammalian mitochondrial genome is transmitted exclusively through the female germ line. The human mitochondrial DNA (mtDNA) is a double-stranded, circular molecule of 16569 bp and contains 37 genes coding for two rRNAs, 22 tRNAs and 13 polypeptides. The mtDNA-encoded polypeptides are all subunits of enzyme complexes of the oxidative phosphorylation system. Mitochondria are not self-supporting entities but rely heavily for their functions on imported nuclear gene products. The basic mechanisms of mitochondrial gene expression have been solved. Cis-acting mtDNA sequences have been characterised by sequence comparisons, mapping studies and mutation analysis both in vitro and in patients harbouring mtDNA mutations. Characterisation of trans-acting factors has proven more difficult but several key enzymes involved in mtDNA replication, transcription and protein synthesis have now been biochemically identified and some have been cloned. These studies revealed that, although some factors may have an additional function elsewhere in the cell, most are unique to mitochondria. It is expected that cell cultures of patients with mitochondrial diseases will increasingly be used to address fundamental questions about mtDNA expression.
Collapse
Affiliation(s)
- J W Taanman
- Department of Clinical Neurosciences, Royal Free Hospital School of Medicine, University of London, Rowland Hill Street, London NW3 2PF,
| |
Collapse
|
10
|
Tengan CH, Moraes CT. Duplication and triplication with staggered breakpoints in human mitochondrial DNA. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1406:73-80. [PMID: 9545538 DOI: 10.1016/s0925-4439(97)00087-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We identified a tandem duplication and triplication of a mitochondrial DNA (mtDNA) segment in the muscle of a 57-year-old man with no evidence of a neuromuscular disorder. A large triplication of a mtDNA coding region has not been previously reported in humans. Furthermore, the rearrangements (comprising 10-12% of the muscle mtDNA pool in the propositus) were unique because the breakpoints were staggered at both ends (between mtDNA positions 3263-3272 and 16,065-16,076) and contained no identifiable direct repeats. Both sides of the breakpoint were located approximately 35 bp downstream of regions that undergo frequent strand displacement by either transcription (positions 3263-3272) or replication (positions 16,065-16,076), suggesting that topological changes generated by the movement of RNA/DNA polymerases may be associated with the genesis of a subclass of mtDNA rearrangements. The presence of low levels of these rearrangements in other normal adults also suggest that these mutations are not rare. The characterization of these rearrangements shed light on potential alternative mechanisms for the genesis of mtDNA rearrangements.
Collapse
Affiliation(s)
- C H Tengan
- Department of Neurology, University of Miami School of Medicine, FL 33136, USA
| | | |
Collapse
|
11
|
Abstract
A mitochondrial DNA topoisomerase (type I, ATP-independent) can be biochemically distinguished from the nuclear enzyme DNA topoisomerase I. This conclusion is based on the subcellular localization of the mitochondrial enzyme, its optimal reaction conditions and sensitivity to enzyme inhibitors. Unlike its nuclear counterpart, the mitochondrial DNA topoisomerase exhibits an absolute requirement for a divalent cation (Mg2+ and Ca2+ work equally well in vitro). In addition, it is slightly more sensitive to monovalent salts, with optimal activity obtained in 50-100 mM KCl. The mitochondrial enzyme is equally active at pH 7.5 or pH 9.5, but unlike its nuclear equivalent, is inactivated at higher pH values. The mitochondrial DNA topoisomerase is sensitive to coumermycin, berenil, camptothecin and 2,2,5,5-tetramethyl-4-imidazolidinone, a chemical that has no inhibitory effect on DNA topoisomerase I. Immunoblotting studies show that mitochondrial DNA topoisomerase activity is associated with a polypeptide (M(r) approximately 79,000) that cross-reacts with the antiserum against DNA topoisomerase I. Thus, the mitochondrial DNA topoisomerase may be derived by the differential expression of the DNA topoisomerase I gene or from the expression of a gene that is homologous to the DNA topoisomerase I gene.
Collapse
Affiliation(s)
- A Tua
- Department of Chemistry, Auburn University, AL 36849-5312, USA
| | | | | | | |
Collapse
|
12
|
Komori K, Maruo F, Morio T, Urushihara H, Tanaka Y. Localization of a DNA topoisomerase II to mitochondria inDictyostelium discoideum: Deletion mutant analysis and mitochondrial targeting signal presequence. JOURNAL OF PLANT RESEARCH 1997; 110:65-75. [PMID: 27520045 DOI: 10.1007/bf02506844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/1996] [Accepted: 01/13/1997] [Indexed: 06/06/2023]
Abstract
DNA topoisomerase II ofDictyostelium discoideum (TopA), the gene (topA) encoding which we cloned, was shown to have an additional N-terminal region which contains a putative mitochondrial targeting signal presequence. We constructed overexpression mutants which expressed the wild-type or the N-terminally deleted enzyme, and examined its localization by immunofluorescence microscopy and proteinase K digestion experiment. These experiments revealed that the enzyme is located in the mitochondria by virtue of the additional N-terminal region. Furthermore, in the cell extract depleted the enzyme by immunoprecipitation, nuclear DNA topoisomerase II activity was not decreased. These results confirmed that TopA is located in the mitochondria, even through its amino acid sequence is highly similar to those of nuclear type topoisomerase II of other organisms. Thus, this report is the first to establish the location of the mitochondrial targeting signal presequence in DNA topoisomerase II and in proteins ofD. discoideum directly by analyzing deletion mutants.
Collapse
Affiliation(s)
- K Komori
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, 305, Ibaraki, Japan
| | - F Maruo
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, 305, Ibaraki, Japan
| | - T Morio
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, 305, Ibaraki, Japan
| | - H Urushihara
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, 305, Ibaraki, Japan
| | - Y Tanaka
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, 305, Ibaraki, Japan
- Center for TARA, University of Tsukuba, Tsukuba, 305, Ibaraki, Japan
| |
Collapse
|
13
|
Yaffee M, Walter P, Richter C, Müller M. Direct observation of iron-induced conformational changes of mitochondrial DNA by high-resolution field-emission in-lens scanning electron microscopy. Proc Natl Acad Sci U S A 1996; 93:5341-6. [PMID: 8643576 PMCID: PMC39247 DOI: 10.1073/pnas.93.11.5341] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands.
Collapse
Affiliation(s)
- M Yaffee
- Laboratory for Electron Microscopy I, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | | | | | | |
Collapse
|