1
|
Bhinderwala F, Evans P, Jones K, Laws BR, Smith T, Morton M, Powers R. Phosphorus NMR and Its Application to Metabolomics. Anal Chem 2020; 92:9536-9545. [PMID: 32530272 PMCID: PMC8327684 DOI: 10.1021/acs.analchem.0c00591] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stable isotopes are routinely employed by NMR metabolomics to highlight specific metabolic processes and to monitor pathway flux. 13C-carbon and 15N-nitrogen labeled nutrients are convenient sources of isotope tracers and are commonly added as supplements to a variety of biological systems ranging from cell cultures to animal models. Unlike 13C and 15N, 31P-phosphorus is a naturally abundant and NMR active isotope that does not require an external supplemental source. To date, 31P NMR has seen limited usage in metabolomics because of a lack of reference spectra, difficulties in sample preparation, and an absence of two-dimensional (2D) NMR experiments, but 31P NMR has the potential of expanding the coverage of the metabolome by detecting phosphorus-containing metabolites. Phosphorylated metabolites regulate key cellular processes, serve as a surrogate for intracellular pH conditions, and provide a measure of a cell's metabolic energy and redox state, among other processes. Thus, incorporating 31P NMR into a metabolomics investigation will enable the detection of these key cellular processes. To facilitate the application of 31P NMR in metabolomics, we present a unified protocol that allows for the simultaneous and efficient detection of 1H-, 13C-, 15N-, and 31P-labeled metabolites. The protocol includes the application of a 2D 1H-31P HSQC-TOCSY experiment to detect 31P-labeled metabolites from heterogeneous biological mixtures, methods for sample preparation to detect 1H-, 13C-, 15N-, and 31P-labeled metabolites from a single NMR sample, and a data set of one-dimensional (1D) 31P NMR and 2D 1H-31P HSQC-TOCSY spectra of 38 common phosphorus-containing metabolites to assist in metabolite assignments.
Collapse
Affiliation(s)
- Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Paula Evans
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Kaleb Jones
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Benjamin R. Laws
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Thomas Smith
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Martha Morton
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| |
Collapse
|
2
|
Martins LO, Huber R, Huber H, Stetter KO, Da Costa MS, Santos H. Organic solutes in hyperthermophilic archaea. Appl Environ Microbiol 2010; 63:896-902. [PMID: 16535556 PMCID: PMC1389121 DOI: 10.1128/aem.63.3.896-902.1997] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the accumulation of organic solutes under optimum growth conditions in 12 species of thermophilic and hyperthermophilic Archaea belonging to the Crenarchaeota and Euryarchaeota. Pyrobaculum aerophilum, Thermoproteus tenax, Thermoplasma acidophilum, and members of the order Sulfolobales accumulated trehalose. Pyrococcus furiosus accumulated di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate and (beta)-mannosylglycerate, Methanothermus fervidus accumulated cyclic-2,3-bisphosphoglycerate and (beta)-mannosylglycerate, while the only solute detected in Pyrodictium occultum was di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate. Methanopyrus kandleri accumulated large concentrations of cyclic-2,3-bisphosphoglycerate. On the other hand, Archaeoglobus fulgidus accumulated three phosphorylated solutes; prominent among them was a compound identified as di-glycerol-phosphate. This solute increased in concentration as the salinity of the medium and the growth temperature were raised, suggesting that this compound serves as a general stress solute. Di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate accumulated at supraoptimal temperature only. The relationship between the accumulation of unusual solutes and high temperatures is also discussed.
Collapse
|
3
|
Roberts MF. Organic compatible solutes of halotolerant and halophilic microorganisms. SALINE SYSTEMS 2005; 1:5. [PMID: 16176595 PMCID: PMC1224877 DOI: 10.1186/1746-1448-1-5] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/04/2005] [Indexed: 11/10/2022]
Abstract
Microorganisms that adapt to moderate and high salt environments use a variety of solutes, organic and inorganic, to counter external osmotic pressure. The organic solutes can be zwitterionic, noncharged, or anionic (along with an inorganic cation such as K(+)). The range of solutes, their diverse biosynthetic pathways, and physical properties of the solutes that effect molecular stability are reviewed.
Collapse
Affiliation(s)
- Mary F Roberts
- Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02465, USA.
| |
Collapse
|
4
|
Mamat B, Roth A, Grimm C, Ermler U, Tziatzios C, Schubert D, Thauer RK, Shima S. Crystal structures and enzymatic properties of three formyltransferases from archaea: environmental adaptation and evolutionary relationship. Protein Sci 2002; 11:2168-78. [PMID: 12192072 PMCID: PMC2373594 DOI: 10.1110/ps.0211002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Formyltransferase catalyzes the reversible formation of formylmethanofuran from N(5)-formyltetrahydromethanopterin and methanofuran, a reaction involved in the C1 metabolism of methanogenic and sulfate-reducing archaea. The crystal structure of the homotetrameric enzyme from Methanopyrus kandleri (growth temperature optimum 98 degrees C) has recently been solved at 1.65 A resolution. We report here the crystal structures of the formyltransferase from Methanosarcina barkeri (growth temperature optimum 37 degrees C) and from Archaeoglobus fulgidus (growth temperature optimum 83 degrees C) at 1.9 A and 2.0 A resolution, respectively. Comparison of the structures of the three enzymes revealed very similar folds. The most striking difference found was the negative surface charge, which was -32 for the M. kandleri enzyme, only -8 for the M. barkeri enzyme, and -11 for the A. fulgidus enzyme. The hydrophobic surface fraction was 50% for the M. kandleri enzyme, 56% for the M. barkeri enzyme, and 57% for the A. fulgidus enzyme. These differences most likely reflect the adaptation of the enzyme to different cytoplasmic concentrations of potassium cyclic 2,3-diphosphoglycerate, which are very high in M. kandleri (>1 M) and relatively low in M. barkeri and A. fulgidus. Formyltransferase is in a monomer/dimer/tetramer equilibrium that is dependent on the salt concentration. Only the dimers and tetramers are active, and only the tetramers are thermostable. The enzyme from M. kandleri is a tetramer, which is active and thermostable only at high concentrations of potassium phosphate (>1 M) or potassium cyclic 2,3-diphosphoglycerate. Conversely, the enzyme from M. barkeri and A. fulgidus already showed these properties, activity and stability, at much lower concentrations of these strong salting-out salts.
Collapse
Affiliation(s)
- Björn Mamat
- Max-Planck-Institut für Biophysik, D-60528 Frankfurt am Main, Germany Institut für Biophysik der Johann Wolfgang Goethe-Universität, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Martins LO, Empadinhas N, Marugg JD, Miguel C, Ferreira C, da Costa MS, Santos H. Biosynthesis of mannosylglycerate in the thermophilic bacterium Rhodothermus marinus. Biochemical and genetic characterization of a mannosylglycerate synthase. J Biol Chem 1999; 274:35407-14. [PMID: 10585410 DOI: 10.1074/jbc.274.50.35407] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthetic reaction scheme for the compatible solute mannosylglycerate in Rhodothermus marinus is proposed based on measurements of the relevant enzymatic activities in cell-free extracts and in vivo (13)C labeling experiments. The synthesis of mannosylglycerate proceeded via two alternative pathways; in one of them, GDP mannose was condensed with D-glycerate to produce mannosylglycerate in a single reaction catalyzed by mannosylglycerate synthase, in the other pathway, a mannosyl-3-phosphoglycerate synthase catalyzed the conversion of GDP mannose and D-3-phosphoglycerate into a phosphorylated intermediate, which was subsequently converted to mannosylglycerate by the action of a phosphatase. The enzyme activities committed to the synthesis of mannosylglycerate were not influenced by the NaCl concentration in the growth medium. However, the combined mannosyl-3-phosphoglycerate synthase/phosphatase system required the addition of NaCl or KCl to the assay mixture for optimal activity. The mannosylglycerate synthase enzyme was purified and characterized. Based on partial sequence information, the corresponding mgs gene was identified from a genomic library of R. marinus. In addition, the mgs gene was overexpressed in Escherichia coli with a high yield. The enzyme had a molecular mass of 46,125 Da, and was specific for GDP mannose and D-glycerate. This is the first report of the characterization of a mannosylglycerate synthase.
Collapse
Affiliation(s)
- L O Martins
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, Apartado 127, 2780 Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
6
|
Matussek K, Moritz P, Brunner N, Eckerskorn C, Hensel R. Cloning, sequencing, and expression of the gene encoding cyclic 2, 3-diphosphoglycerate synthetase, the key enzyme of cyclic 2, 3-diphosphoglycerate metabolism in Methanothermus fervidus. J Bacteriol 1998; 180:5997-6004. [PMID: 9811660 PMCID: PMC107676 DOI: 10.1128/jb.180.22.5997-6004.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction.
Collapse
Affiliation(s)
- K Matussek
- FB 9 Mikrobiologie, Universität GH Essen, D-45117 Essen, Germany
| | | | | | | | | |
Collapse
|
7
|
da Costa MS, Santos H, Galinski EA. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1998; 61:117-53. [PMID: 9670799 DOI: 10.1007/bfb0102291] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The accumulation of compatible solutes is a prerequisite for the adaptation of microorganisms to osmotic stress imposed by salt or organic solutes. Two types of strategies exist to cope with high external solute concentrations; one strategy is found in the extremely halophilic Archaea of the family Halobacteriaceae and the Bacteria of the order Haloanaerobiales involving the accumulation of inorganic ions. The other strategy of osmoadaptation involves the accumulation of specific organic solutes and is found in the vast majority of microorganisms. The organic osmolytes range from sugars, polyols, amino acids and their respective derivatives, ectoines and betaines. The diversity of these organic solutes has increased in the past few years as more organisms, especially thermophilic and hyperthermophilic Bacteria and Archaea, have been examined. The term compatible solute can also be applied to solutes that protect macromolecules and cells against stresses such as high temperature, desiccation and freezing. The mechanisms by which compatible solutes protect enzymes, cell components and cells are still a long way from being thoroughly elucidated, but there is a growing interest in the utilization of these solutes to protect macromolecules and cells from heating, freezing and desiccation.
Collapse
Affiliation(s)
- M S da Costa
- Departamento de Bioquímica, Universidade de Coimbra, Portugal.
| | | | | |
Collapse
|
8
|
Ramakrishnan V, Teng Q, Adams MW. Characterization of UDP amino sugars as major phosphocompounds in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 1997; 179:1505-12. [PMID: 9045806 PMCID: PMC178859 DOI: 10.1128/jb.179.5.1505-1512.1997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The archaeon Pyrococcus furiosus is a strictly anaerobic heterotroph that grows optimally at 100 degrees C by the fermentation of carbohydrates. It is known to contain high concentrations of novel intracellular solutes such as beta-mannosylglycerate and di-myo-inositol 1,1'-phosphate (DIP) (L. O. Martins and H. Santos, Appl. Environ. Microbiol. 61:3299-3303, 1995). Here, 31P nuclear magnetic resonance (NMR) spectroscopy was used to show that this organism also accumulates another type of phospho compound, as revealed by a major multiplet signal in the pyrophosphate region. The compounds were purified from cell extracts of P. furiosus by anion-exchange and gel filtration chromatographic procedures and were structurally analyzed by 1H, 13C, and 31P NMR spectroscopy. They were identified as two uridylated amino sugars, UDP N-acetylglucosamine and UDP N-acetylgalactosamine. Unambiguous characterizations and complete assignments of 1H and 13C resonances from such sugars have not been previously reported. In vitro 31P NMR spectroscopic analyses showed that, in contrast to DIP, which is maintained at a constant intracellular concentration (approximately 32 mM) throughout the growth phase of P. furiosus, the UDP amino sugars accumulated (to approximately 14 mM) only during the late log phase. The possible biochemical roles of these compounds in P. furiosus are discussed.
Collapse
Affiliation(s)
- V Ramakrishnan
- Department of Microbiology, University of Georgia, Athens 30602-7229, USA
| | | | | |
Collapse
|
9
|
Martins LO, Carreto LS, Da Costa MS, Santos H. New compatible solutes related to Di-myo-inositol-phosphate in members of the order Thermotogales. J Bacteriol 1996; 178:5644-51. [PMID: 8824608 PMCID: PMC178402 DOI: 10.1128/jb.178.19.5644-5651.1996] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The accumulation of intracellular organic solutes was examined in six species of the order Thermotogales by nuclear magnetic resonance spectroscopy. The newly discovered compounds di-2-O-beta-mannosyl-di-myo-inositol-1,1'(3,3')-phosphate and di-myo-inositol-1,3'-phosphate were identified in Thermotoga maritima and Thermotoga neapolitana. In the latter species, at the optimum temperature and salinity the organic solute pool was composed of di-myo-inositol-1,1'(3,3')-phosphate, beta-glutamate, and alpha-glutamate in addition to di-myo-inositol-1,3'-phosphate and di-2-O-beta-mannosyl-di-myo-inositol-1,1'(3,3')-phosphate. The concentrations of the last two solutes increased dramatically at supraoptimal growth temperatures, whereas beta-glutamate increased mainly in response to a salinity stress. Nevertheless, di-myo-inositol-1,1'(3,3')-phosphate was the major compatible solute at salinities above the optimum for growth. The amino acids alpha-glutamate and proline were identified under optimum growth conditions in Thermosipho africanus, and beta-mannosylglycerate, trehalose, and glycine betaine were detected in Petrotoga miotherma. Organic solutes were not detected, under optimum growth conditions, in Thermotoga thermarum and Fervidobacterium islandicum, which have a low salt requirement or none.
Collapse
Affiliation(s)
- L O Martins
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal
| | | | | | | |
Collapse
|
10
|
Scoarughi GL, Cimmino C, Donini P. Lack of production of (p)ppGpp in Halobacterium volcanii under conditions that are effective in the eubacteria. J Bacteriol 1995; 177:82-5. [PMID: 7798153 PMCID: PMC176559 DOI: 10.1128/jb.177.1.82-85.1995] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The stringent halobacterial strain Haloferax volcanii was subjected to a set of physiological conditions different from amino acid starvation that are known to cause production of guanosine polyphosphates [(p)pp Gpp] in eubacteria via the relA-independent (spoT) pathway. The conditions used were temperature upshift, treatment with cyanide, and total starvation. Under none of these conditions were detectable levels of (p)ppGpp observed. This result, in conjunction with our previous finding that (p)ppGpp synthesis does not occur under amino acid starvation, leads to the conclusion that in halobacteria both growth rate control and stringency are probably governed by mechanisms that operate in the absence of ppGpp. During exponential growth, a low level of phosphorylated compounds with electrophoretic mobilities similar, but not identical, to that of (p)ppGpp were observed. The intracellular concentration of these compounds increased considerably during the stationary phase of growth and with all of the treatments used. The compounds were identified as short-chain polyphosphates identical to those found under similar conditions in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- G L Scoarughi
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Rome, Italy
| | | | | |
Collapse
|
11
|
Cyclic 2,3-diphosphoglycerate metabolism in Methanobacterium thermoautotrophicum (strain ΔH): characterization of the synthetase reaction. Arch Microbiol 1994. [DOI: 10.1007/bf00314474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
van Alebeek GJ, Keltjens JT, van der Drift C. Purification and characterization of inorganic pyrophosphatase from Methanobacterium thermoautotrophicum (strain delta H). BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1206:231-9. [PMID: 8003527 DOI: 10.1016/0167-4838(94)90213-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inorganic pyrophosphatase (EC 3.6.1.1.) has been isolated from the archaebacterium Methanobacterium thermoautotrophicum (strain delta H). The enzyme was purified 850-fold in three steps to electrophoretic homogeneity. The soluble pyrophosphatase consists of four identical subunits: the molecular mass of the native enzyme estimated by gel filtration was approx. 100 kDa and denaturing polyacrylamide gel electrophoresis gave a single band of 25 kDa. The enzyme also may occur as an active dimer formed by dissociation of the tetramer. The pyrophosphate showed an optimal activity at 70 degrees C and a pH of 7.7 (at 60 degrees C) and was not influenced by dithiothreitol, sodium dithionite or potassium chloride. The enzyme was very specific for pyrophosphate (PPi) and Mg2+. Magnesium could be partially replaced by Co2+ (15%). The reaction was inhibited for 60% by 1 mM Mn2+ in the presence of 24 mM Mg2+. In addition, the enzyme was inhibited by potassium fluoride (50% at 0.9 mM). Kinetic analysis revealed positive co-operativity for both Mg2+ and PPi with Hill coefficients of 3.3 and 2.0, respectively. Under the experimental conditions at which the enzyme was present as its dimer, the apparent Km of PPi and magnesium were determined and were approx. 0.16 mM and 4.9 mM, respectively; Vmax was estimated at about 570 U/mg.
Collapse
Affiliation(s)
- G J van Alebeek
- Department of Microbiology, Faculty of Science, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
13
|
Ciulla R, Clougherty C, Belay N, Krishnan S, Zhou C, Byrd D, Roberts MF. Halotolerance of Methanobacterium thermoautotrophicum delta H and Marburg. J Bacteriol 1994; 176:3177-87. [PMID: 8195071 PMCID: PMC205486 DOI: 10.1128/jb.176.11.3177-3187.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Methanobacterium thermoautotrophicum delta H and Marburg were adapted to grow in medium containing up to 0.65 M NaCl. From 0.01 to 0.5 M NaCl, there was a lag before cell growth which increased with increasing external NaCl. The effect of NaCl on methane production was not significant once the cells began to grow. Intracellular solutes were monitored by nuclear magnetic resonance (NMR) spectroscopy as a function of osmotic stress. In the delta H strain, the major intracellular small organic solutes, cyclic-2,3-diphosphoglycerate and glutamate, increased at most twofold between 0.01 and 0.4 M NaCl and decreased when the external NaCl was 0.5 M. M. thermoautotrophicum Marburg similarly showed a decrease in solute (cyclic-2,3-diphosphoglycerate, 1,3,4,6-tetracarboxyhexane, and L-alpha-glutamate) concentrations for cells grown in medium containing > 0.5 M NaCl. At 0.65 M NaCl, a new organic solute, which was visible in only trace amounts at the lower NaCl concentrations, became the dominant solute. Intracellular potassium in the delta H strain, detected by atomic absorption and 39K NMR, was roughly constant between 0.01 and 0.4 M and then decreased as the external NaCl increased further. The high intracellular K+ was balanced by the negative charges of the organic osmolytes. At the higher external salt concentrations, it is suggested that Na+ and possibly Cl- ions are internalized to provide osmotic balance. A striking difference of strain Marburg from strain delta H was that yeast extract facilitated growth in high-NaCl-containing medium. The yeast extract supplied only trace NMR-detectable solutes (e.g., betaine) but had a large effect on endogenous glutamate levels, which were significantly decreased. Exogenous choline and glycine, instead of yeast extract, also aided growth in NaCl-containing media. Both solutes were internalized with the choline converted to betaine; the contribution to osmotic balance of these species was 20 to 25% of the total small-molecule pool. These results indicate that M. thermoautotrophicum shows little changes in its internal solutes over a wide range of external NaCl. Furthermore, they illustrate the considerable differences in physiology in the delta H and Marburg strains of this organism.
Collapse
Affiliation(s)
- R Ciulla
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02167-3860
| | | | | | | | | | | | | |
Collapse
|
14
|
Methanobacterium thermoautotrophicum (strain ΔH) contains a membrane-bound cyclic 2,3-diphosphoglycerate hydrolase. Arch Microbiol 1994. [DOI: 10.1007/bf00307773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Alebeek GJW, Keltjens JT, Drift C. Tripolyphosphatase from Methanobacterium thermoautotrophicum (strain ÎH). FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb06777.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Lehmacher A, Hensel R. Cloning, sequencing and expression of the gene encoding 2-phosphoglycerate kinase from Methanothermus fervidus. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:163-8. [PMID: 8159166 DOI: 10.1007/bf00391009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The gene encoding 2-phosphoglycerate kinase (2PGK), which catalyses the first step in the biosynthesis of cyclic 2,3-diphosphoglycerate in methanogens, was cloned and sequenced from the hyperthermophilic Methanothermus fervidus. The 2pgk gene codes for 304 amino acids, corresponding to a relative molecular mass of 35040. The 2pgk mRNA was estimated to be 1600 nucleotides in size. Putative transcription signals and the ribosome-binding site of 2pgk are discussed. Production of 2PGK from M. fervidus in Es-cherichia coli reveals the same apparent molecular weights for the native enzyme and its denatured subunit as those shown by the 2PGK purified from M. fervidus. Also the kinetic parameters of 2PKG produced in E. coli correspond well with those from the enzyme isolated from the natural host M. fervidus.
Collapse
Affiliation(s)
- A Lehmacher
- Max-Planck-Institut für Biochemie, Am Klopferspitz, Martinsried, Germany
| | | |
Collapse
|
17
|
Gorkovenko A, Roberts MF. Cyclic 2,3-diphosphoglycerate as a component of a new branch in gluconeogenesis in Methanobacterium thermoautotrophicum delta H. J Bacteriol 1993; 175:4087-95. [PMID: 8320225 PMCID: PMC204838 DOI: 10.1128/jb.175.13.4087-4095.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A unique compound, cyclic 2,3-diphosphoglycerate (cDPG), is the major soluble carbon and phosphorus solute in Methanobacterium thermoautotrophicum delta H under optimal conditions of cell growth. It is a component of an unusual branch in gluconeogenesis in these bacteria. [U-13C]acetate pulse-[12C]acetate chase methodology was used to observe the relationship between cDPG and other metabolites (2-phosphoglycerate and 2,3-diphosphoglycerate [2-PG and 2,3-DPG, respectively]) of this branch. It was demonstrated that cells could grow exponentially under conditions in which 2-PG and 2,3-DPG, rather than cDPG, were the major solutes. While the total concentration of these three phosphorylated molecules was maintained, rapid interconversion of 13C label among them was observed. Label flow from 2-PG to 2,3-DPG to cDPG to polymer is the usual direction in this pathway in exponentially growing cells, while the reverse reactions sometimes predominate in the stationary phase. Evidence of the presence of a polymeric compound in this pathway was provided by 13C nuclear magnetic resonance (one-dimensional and two-dimensional INADEQUATE) studies of solubilized cell debris.
Collapse
Affiliation(s)
- A Gorkovenko
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02167
| | | |
Collapse
|
18
|
Breitung J, Börner G, Scholz S, Linder D, Stetter KO, Thauer RK. Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran:tetrahydromethanopterin formyltransferase from the extreme thermophile Methanopyrus kandleri. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:971-81. [PMID: 1483480 DOI: 10.1111/j.1432-1033.1992.tb17502.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
N-Formylmethanofuran(CHO-MFR):tetrahydromethanopterin(H4MPT) formyltransferase (formyltransferase) from the extremely thermophilic Methanopyrus kandleri was purified over 100-fold to apparent homogeneity with a 54% yield. The monomeric enzyme had an apparent molecular mass of 35 kDa. The N-terminal amino acid sequence of the polypeptide was determined. The formyltransferase was found to be absolutely dependent on the presence of phosphate or sulfate salts for activity. The ability of salts to activate the enzyme decreased in the order K2HPO4 > (NH4)2SO4 > K2SO4 > Na2SO4 > Na2HPO4. The salts KCl, NaCl and NH4Cl did not activate the enzyme. The dependence of activity on salt concentration showed a sigmoidal curve. For half-maximal activity, 1 M K2HPO4 and 1.2 M (NH4)2SO4 were required. A detailed kinetic analysis revealed that phosphates and sulfates both affected the Vmax rather than the Km for CHO-MFR and H4MPT. At the optimal salt concentration and at 65 degrees C, the Vmax was 2700 U/mg (1 U = 1 mumol/min), the Km for CHO-MFR was 50 microM and the Km for H4MPT was 100 microM. At 90 degrees C, the temperature optimum of the enzyme, the Vmax was about 2.5-fold higher than at 65 degrees C. Thermostability as well as activity of formyltransferase was dramatically increased in the presence of salts, 1.5 M being required for optimal stabilization. The efficiency of salts in protecting formyltransferase from heat inactivation at 90 degrees C decreased in the order K2HPO4 = (NH4)2SO4 >> KCl = NH4Cl = NaCl >> Na2SO4 > Na2HPO4. The catalytic mechanism of formyltransferase was determined to be of the ternary-complex type. The properties of the enzyme from M. kandleri are compared with those of formyltransferase from Methanobacterium thermoautotrophicum, Methanosarcina barkeri and Archaeoglobus fulgidus.
Collapse
Affiliation(s)
- J Breitung
- Laboratorium für Mikrobiologie des Fachbereichs Biologie, Philipps-Universität, Marburg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
19
|
van Alebeek GJW, H. Hermans JM, Keltjens JT, Vogels GD. Quantification of intermediates involved in the cyclic 2,3-diphosphoglycerate metabolism of methanogenic bacteria by ion-exchange chromatography. J Chromatogr A 1992. [DOI: 10.1016/0021-9673(92)85258-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
van Alebeek GJWM, Klaassen C, Keltjens JT, van der Drift C, Vogels GD. ATP synthesis from 2,3-diphosphoglycerate by cell-free extract of Methanobacterium thermoautotrophicum (strain ΔH). Arch Microbiol 1991. [DOI: 10.1007/bf00245397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Santos H, Fareleha P, LeGall J, Xavier AV. In vivo nuclear magnetic resonance studies of the metabolism of methanol and pyruvate byMethanosarcina barkeri. FEMS Microbiol Lett 1990. [DOI: 10.1111/j.1574-6968.1990.tb04937.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Lehmacher A, Vogt AB, Hensel R. Biosynthesis of cyclic 2,3-diphosphoglycerate. Isolation and characterization of 2-phosphoglycerate kinase and cyclic 2,3-diphosphoglycerate synthetase from Methanothermus fervidus. FEBS Lett 1990; 272:94-8. [PMID: 2226838 DOI: 10.1016/0014-5793(90)80456-s] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Starting from 2-phosphoglycerate the biosynthesis of cDPG comprises two steps: (i) the phosphorylation of 2-phosphoglycerate to 2,3-diphosphoglycerate and (ii) the intramolecular cyclization to cyclic 2,3-diphosphoglycerate. The involved enzymes, 2-phosphoglycerate kinase and cyclic 2,3-diphosphoglycerate synthetase, were purified form Methanothermus fervidus. Their molecular and catalytic properties were characterized.
Collapse
Affiliation(s)
- A Lehmacher
- Max-Planck-Institut für Biochemie, Martinsried, FRG
| | | | | |
Collapse
|
23
|
Gorris LG, Korteland J, J.A.M. Derksen R, Van Der Drift C, D. Vogels G. Quantification of cyclic 2,3-diphosphoglycerate from methanogenic bacteria by isotachophoresis. J Chromatogr A 1990. [DOI: 10.1016/s0021-9673(01)89545-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Santos H, Fareleira P, Toci R, LeGall J, Peck HD, Xavier AV. In vivo 31P- and 13C-NMR studies of ATP synthesis and methane formation by Methanosarcina barkeri. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 180:421-7. [PMID: 2924775 DOI: 10.1111/j.1432-1033.1989.tb14663.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbon and phosphorus metabolism of cell suspensions of Methanosarcina barkeri strain MS (DSM 800), grown on methanol, were probed in vivo by NMR. The experimental conditions, which involved thick cell suspensions, did not significantly affect the efficiency of the rate of methanol uptake by cells. Following exposure to methanol an acidification of both the intracellular and the extracellular spaces was observed and a gradient of 0.5 pH units across the cytoplasmic membrane was determined from the 31P-NMR data. High levels of intracellular ATP up to 4 mM were detected. The ADP concentration determined in a suspension of starved cells was only 2 mM, suggesting that a significant amount of ADP may be immobilized and is thus not detectable by NMR. In the presence of the protonophore, 3,3',4',5-tetrachlorosalicylanilide, the proton gradient was dissipated and the synthesis of ATP stopped. The inhibitor of the ATP synthase, N,N'-dicyclohexylcarbodiimide, was rather inefficient in inhibiting ATP synthesis. High concentrations of N,N'-dicyclohexylcarbodiimide (corresponding to 300 nmol/mg protein-1) were required to decrease the ATP content by approximately 60%, and, under these conditions, formation of acetyl phosphate was detected. However, the methanol consumption rate was not affected.
Collapse
Affiliation(s)
- H Santos
- Centro Química Estrutural, Complexo Interdisciplinar, Universidade Nova de Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- K F Jarrell
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
26
|
ROBERTS MARYF, EVANS JEREMYNS, TOLMAN CYNTHIAJ, RALEIGH DANIELP. NMR Studies of Methanogens: What Good Is a Cyclic Pyrophosphate? Ann N Y Acad Sci 1987. [DOI: 10.1111/j.1749-6632.1987.tb32891.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Glycerol 1,2-cyclic phosphate in centric diatoms. Observation by 31P NMR in vivo, isolation, and structural determination. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45216-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Murray PA, Zinder SH. Polysaccharide reserve material in the acetotrophic methanogen, Methanosarcina thermophila strain TM-1: accumulation and mobilization. Arch Microbiol 1987. [DOI: 10.1007/bf00415270] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Evans JN, Raleigh DP, Tolman CJ, Roberts MF. 13C NMR spectroscopy of Methanobacterium thermoautotrophicum. Carbon fluxes and primary metabolic pathways. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66569-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|