1
|
Alveal M, Méndez A, García A, Henríquez M. Purinergic regulation of pulmonary vascular tone. Purinergic Signal 2024; 20:595-606. [PMID: 38713328 PMCID: PMC11554604 DOI: 10.1007/s11302-024-10010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Purinergic signaling is a crucial determinant in the regulation of pulmonary vascular physiology and presents a promising avenue for addressing lung diseases. This intricate signaling system encompasses two primary receptor classes: P1 and P2 receptors. P1 receptors selectively bind adenosine, while P2 receptors exhibit an affinity for ATP, ADP, UTP, and UDP. Functionally, P1 receptors are associated with vasodilation, while P2 receptors mediate vasoconstriction, particularly in basally relaxed vessels, through modulation of intracellular Ca2+ levels. The P2X subtype receptors facilitate extracellular Ca2+ influx, while the P2Y subtype receptors are linked to endoplasmic reticulum Ca2+ release. Notably, the primary receptor responsible for ATP-induced vasoconstriction is P2X1, with α,β-meATP and UDP being identified as potent vasoconstrictor agonists. Interestingly, ATP has been shown to induce endothelium-dependent vasodilation in pre-constricted vessels, associated with nitric oxide (NO) release. In the context of P1 receptors, adenosine stimulation of pulmonary vessels has been unequivocally demonstrated to induce vasodilation, with a clear dependency on the A2B receptor, as evidenced in studies involving guinea pigs and rats. Importantly, evidence strongly suggests that this vasodilation occurs independently of endothelium-mediated mechanisms. Furthermore, studies have revealed variations in the expression of purinergic receptors across different vessel sizes, with reports indicating notably higher expression of P2Y1, P2Y2, and P2Y4 receptors in small pulmonary arteries. While the existing evidence in this area is still emerging, it underscores the urgent need for a comprehensive examination of the specific characteristics of purinergic signaling in the regulation of pulmonary vascular tone, particularly focusing on the disparities observed across different intrapulmonary vessel sizes. Consequently, this review aims to meticulously explore the current evidence regarding the role of purinergic signaling in pulmonary vascular tone regulation, with a specific emphasis on the variations observed in intrapulmonary vessel sizes. This endeavor is critical, as purinergic signaling holds substantial promise in the modulation of vascular tone and in the proactive prevention and treatment of pulmonary vascular diseases.
Collapse
Affiliation(s)
- Marco Alveal
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile
| | - Andrea Méndez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile
- Escuela de Kinesiología, Facultad de Salud y Ciencias Sociales, Campus Providencia, Sede Santiago, Universidad de Las Américas, Santiago, Chile
| | - Aline García
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile
- Escuela de Graduados, Facultad de Ciencias Veterinarias,, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile.
| |
Collapse
|
2
|
Chen X, Obukhov AG, Weisman GA, Seye CI. Basal ATP release signals through the P2Y 2 receptor to maintain the differentiated phenotype of vascular smooth muscle cells. Atherosclerosis 2024; 395:117613. [PMID: 38889566 PMCID: PMC11254552 DOI: 10.1016/j.atherosclerosis.2024.117613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cell (VSMC) dedifferentiation contributes substantively to vascular disease. VSMCs spontaneously release low levels of ATP that modulate vessel contractility, but it is unclear if autocrine ATP signaling in VSMCs is critical to the maintenance of the VSMC contractile phenotype. METHODS We used pharmacological inhibitors to block ATP release in human aortic smooth muscle cells (HASMCs) for studying changes in VSMC differentiation marker gene expression. We employed RNA interference and generated mice with SMC-specific inducible deletion of the P2Y2 receptor (P2Y2R) gene to evaluate resulting phenotypic alterations. RESULTS HASMCs constitutively release low levels of ATP that when blocked results in a significant decrease in VSMC differentiation marker gene expression, including smooth muscle actin (SMA), smooth muscle myosin heavy chain (SMMHC), SM-22α and calponin. Basal release of ATP represses transcriptional activation of the Krüppel-Like Factor 4 (KFL4) thereby preventing platelet-derived growth factor-BB (PDGF-BB) from inhibiting expression of SMC contractile phenotype markers. SMC-restricted conditional deletion of P2Y2R evoked dedifferentiation characterized by decreases in aortic contractility and contractile phenotype markers expression. This loss was accompanied by a transition to the synthetic phenotype with the acquisition of extracellular matrix (ECM) proteins characteristic of dedifferentiation, such as osteopontin and vimentin. CONCLUSIONS Our data establish the first direct evidence that an autocrine ATP release mechanism maintains SMC cytoskeletal protein expression by inhibiting VSMCs from transitioning to a synthetic phenotype, and further demonstrate that activation of the P2Y2R by basally released ATP is required for maintenance of the differentiated VSMC phenotype.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive MS 360A, Indianapolis, IN, 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive MS 360A, Indianapolis, IN, 46202, USA
| | - Gary A Weisman
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Road, Columbia, MO, 65211, USA
| | - Cheikh I Seye
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Road, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Favre J, Roy C, Guihot AL, Drouin A, Laprise M, Gillis MA, Robson SC, Thorin E, Sévigny J, Henrion D, Kauffenstein G. NTPDase1/CD39 Ectonucleotidase Is Necessary for Normal Arterial Diameter Adaptation to Flow. Int J Mol Sci 2023; 24:15038. [PMID: 37894719 PMCID: PMC10606763 DOI: 10.3390/ijms242015038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
NTPDase1/CD39, the major vascular ectonucleotidase, exerts thrombo-immunoregulatory function by controlling endothelial P2 receptor activation. Despite the well-described release of ATP from endothelial cells, few data are available regarding the potential role of CD39 as a regulator of arterial diameter. We thus investigated the contribution of CD39 in short-term diameter adaptation and long-term arterial remodeling in response to flow using Entpd1-/- male mice. Compared to wild-type littermates, endothelial-dependent relaxation was modified in Entpd1-/- mice. Specifically, the vasorelaxation in response to ATP was potentiated in both conductance (aorta) and small resistance (mesenteric and coronary) arteries. By contrast, the relaxing responses to acetylcholine were supra-normalized in thoracic aortas while decreased in resistance arteries from Entpd1-/- mice. Acute flow-mediated dilation, measured via pressure myography, was dramatically diminished and outward remodeling induced by in vivo chronic increased shear stress was altered in the mesenteric resistance arteries isolated from Entpd1-/- mice compared to wild-types. Finally, changes in vascular reactivity in Entpd1-/- mice were also evidenced by a decrease in the coronary output measured in isolated perfused hearts compared to the wild-type mice. Our results highlight a key regulatory role for purinergic signaling and CD39 in endothelium-dependent short- and long-term arterial diameter adaptation to increased flow.
Collapse
Affiliation(s)
- Julie Favre
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University, 49045 Angers, France; (J.F.); (D.H.)
| | - Charlotte Roy
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University, 49045 Angers, France; (J.F.); (D.H.)
| | - Anne-Laure Guihot
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University, 49045 Angers, France; (J.F.); (D.H.)
| | - Annick Drouin
- Montreal Heart Institute, Department of Surgery, Université de Montréal, Montreal, QC H1T 1C8, Canada
| | - Manon Laprise
- Animal Physiology Service, Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada;
| | - Marc-Antoine Gillis
- Montreal Heart Institute, Department of Surgery, Université de Montréal, Montreal, QC H1T 1C8, Canada
| | - Simon C. Robson
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eric Thorin
- Montreal Heart Institute, Department of Surgery, Université de Montréal, Montreal, QC H1T 1C8, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et D’immunologie, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Daniel Henrion
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University, 49045 Angers, France; (J.F.); (D.H.)
| | - Gilles Kauffenstein
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University, 49045 Angers, France; (J.F.); (D.H.)
- INSERM UMR 1260—Regenerative Nanomedicine, CRBS, Strasbourg University, 67000 Strasbourg, France
| |
Collapse
|
4
|
Woods LT, Jasmer KJ, Muñoz Forti K, Shanbhag VC, Camden JM, Erb L, Petris MJ, Weisman GA. P2Y 2 receptors mediate nucleotide-induced EGFR phosphorylation and stimulate proliferation and tumorigenesis of head and neck squamous cell carcinoma cell lines. Oral Oncol 2020; 109:104808. [PMID: 32540611 PMCID: PMC7736485 DOI: 10.1016/j.oraloncology.2020.104808] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/16/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To assess functional expression of the P2Y2 nucleotide receptor (P2Y2R) in head and neck squamous cell carcinoma (HNSCC) cell lines and define its role in nucleotide-induced epidermal growth factor receptor (EGFR) transactivation. The use of anti-EGFR therapeutics to treat HNSCC is hindered by intrinsic and acquired drug resistance. Defining novel pathways that modulate EGFR signaling could identify additional targets to treat HNSCC. MATERIALS AND METHODS In human HNSCC cell lines CAL27 and FaDu and the mouse oral cancer cell line MOC2, P2Y2R contributions to extracellular nucleotide-induced changes in intracellular free Ca2+ concentration and EGFR and extracellular signal-regulated kinase (ERK1/2) phosphorylation were determined using the ratiometric Ca2+ indicator fura-2 and immunoblot analysis, respectively. Genetic knockout of P2Y2Rs using CRISPR technology or pharmacological inhibition with P2Y2R-selective antagonist AR-C118925 defined P2Y2R contributions to in vivo tumor growth. RESULTS P2Y2R agonists UTP and ATP increased intracellular Ca2+ levels and ERK1/2 and EGFR phosphorylation in CAL27 and FaDu cells, responses that were inhibited by AR-C118925 or P2Y2R knockout. P2Y2R-mediated EGFR phosphorylation was also attenuated by inhibition of the adamalysin family of metalloproteases or Src family kinases. P2Y2R knockout reduced UTP-induced CAL27 cell proliferation in vitro and significantly reduced CAL27 and FaDu tumor xenograft volume in vivo. In a syngeneic mouse model of oral cancer, AR-C118925 administration reduced MOC2 tumor volume. CONCLUSION P2Y2Rs mediate HNSCC cell responses to extracellular nucleotides and genetic or pharmacological blockade of P2Y2R signaling attenuates tumor cell proliferation and tumorigenesis, suggesting that the P2Y2R represents a novel therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Lucas T Woods
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Kimberly J Jasmer
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Kevin Muñoz Forti
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Vinit C Shanbhag
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Jean M Camden
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Laurie Erb
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Michael J Petris
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA; Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65211-7310 USA
| | - Gary A Weisman
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA.
| |
Collapse
|
5
|
Muoboghare MO, Drummond RM, Kennedy C. Characterisation of P2Y 2 receptors in human vascular endothelial cells using AR-C118925XX, a competitive and selective P2Y 2 antagonist. Br J Pharmacol 2019; 176:2894-2904. [PMID: 31116875 DOI: 10.1111/bph.14715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE There is a lack of potent, selective antagonists at most subtypes of P2Y receptor. The aims of this study were to characterise the pharmacological properties of the proposed P2Y2 receptor antagonist, AR-C118925XX, and then to use it to determine the role of P2Y2 receptors in the action of the P2Y2 agonist, UTP, in human vascular endothelial cells. EXPERIMENTAL APPROACH Cell lines expressing native or recombinant P2Y receptors were superfused constantly, and agonist-induced changes in intracellular Ca2+ levels monitored using the Ca2+ -sensitive fluorescent indicator, Cal-520. This set-up enabled full agonist concentration-response curves to be constructed on a single population of cells. KEY RESULTS UTP evoked a concentration-dependent rise in intracellular Ca2+ in 1321N1-hP2Y2 cells. AR-C118925XX (10 nM to 1 μM) had no effect per se on intracellular Ca2+ but shifted the UTP concentration-response curve progressively rightwards, with no change in maximum. The inhibition was fully reversible on washout. AR-C118925XX (1 μM) had no effect at native or recombinant hP2Y1 , hP2Y4 , rP2Y6 , or hP2Y11 receptors. Finally, in EAhy926 immortalised human vascular endothelial cells, AR-C118925XX (30 nM) shifted the UTP concentration-response curve rightwards, with no decrease in maximum. CONCLUSIONS AND IMPLICATIONS AR-C118925XX is a potent, selective and reversible, competitive P2Y2 receptor antagonist, which inhibited responses mediated by endogenous P2Y2 receptors in human vascular endothelial cells. As the only P2Y2 -selective antagonist currently available, it will greatly enhance our ability to identify the functions of native P2Y2 receptors and their contribution to disease and dysfunction.
Collapse
Affiliation(s)
- Markie O Muoboghare
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Robert M Drummond
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
6
|
Gilman KE, Camden JM, Klein RR, Zhang Q, Weisman GA, Limesand KH. P2X7 receptor deletion suppresses γ-radiation-induced hyposalivation. Am J Physiol Regul Integr Comp Physiol 2019; 316:R687-R696. [PMID: 30892913 DOI: 10.1152/ajpregu.00192.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Head and neck cancer treatments typically involve a combination of surgery and radiotherapy, often leading to collateral damage to nearby tissues causing unwanted side effects. Radiation damage to salivary glands frequently leads to irreversible dysfunction by poorly understood mechanisms. The P2X7 receptor (P2X7R) is a ligand-gated ion channel activated by extracellular ATP released from damaged cells as "danger signals." P2X7R activation initiates apoptosis and is involved in numerous inflammatory disorders. In this study, we utilized P2X7R knockout (P2X7R-/-) mice to determine the role of the receptor in radiation-induced salivary gland damage. Results indicate a dose-dependent increase in γ-radiation-induced ATP release from primary parotid gland cells of wild-type but not P2X7R-/- mice. Despite these differences, apoptosis levels are similar in parotid glands of wild-type and P2X7R-/- mice 24-72 h after radiation. However, γ-radiation caused elevated prostaglandin E2 (PGE2) release from primary parotid cells of wild-type but not P2X7R-/- mice. To attempt to uncover the mechanism underlying differential PGE2 release, we evaluated the expression and activities of cyclooxygenase and PGE synthase isoforms. There were no consistent trends in these mediators following radiation that could explain the reduction in PGE2 release in P2X7R-/- mice. Irradiated P2X7R-/- mice have stimulated salivary flow rates similar to unirradiated controls, whereas irradiated wild-type mice have significantly decreased salivary flow rates compared with unirradiated controls. Notably, treatment with the P2X7R antagonist A438079 preserves stimulated salivary flow rates in wild-type mice following γ-radiation. These data suggest that P2X7R antagonism is a promising approach for preventing γ-radiation-induced hyposalivation.
Collapse
Affiliation(s)
- Kristy E Gilman
- Department of Nutritional Sciences, The University of Arizona , Tucson, Arizona
| | - Jean M Camden
- Christopher S. Bond Life Sciences Center, Department of Biochemistry, The University of Missouri , Columbia, Missouri
| | - Rob R Klein
- Department of Pathology, The University of Arizona , Tucson, Arizona
| | - Qionghui Zhang
- Department of Nutritional Sciences, The University of Arizona , Tucson, Arizona
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, Department of Biochemistry, The University of Missouri , Columbia, Missouri
| | - Kirsten H Limesand
- Department of Nutritional Sciences, The University of Arizona , Tucson, Arizona
| |
Collapse
|
7
|
Woods LT, Camden JM, Khalafalla MG, Petris MJ, Erb L, Ambrus JL, Weisman GA. P2Y 2 R deletion ameliorates sialadenitis in IL-14α-transgenic mice. Oral Dis 2018; 24:761-771. [PMID: 29297959 DOI: 10.1111/odi.12823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/04/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Interleukin-14α-transgenic (IL-14αTG) mice develop an autoimmune exocrinopathy with characteristics similar to Sjögren's syndrome, including sialadenitis and hyposalivation. The P2Y2 receptor (P2Y2 R) for extracellular ATP and UTP is upregulated during salivary gland inflammation (i.e., sialadenitis) where it regulates numerous inflammatory responses. This study investigated the role of P2Y2 Rs in autoimmune sialadenitis in the IL-14αTG mouse model of Sjögren's syndrome. MATERIALS AND METHODS IL-14αTG mice were bred with P2Y2 R-/- mice to generate IL-14αTG × P2Y2 R-/- mice. P2Y2 R expression, lymphocytic focus scores, B- and T-cell accumulation, and lymphotoxin-α expression were evaluated in the submandibular glands (SMG) along with carbachol-stimulated saliva secretion in IL-14αTG, IL-14αTG × P2Y2 R-/- , and C57BL/6 control mice at 9 and 12 months of age. RESULTS Genetic ablation of P2Y2 Rs in IL-14αTG mice significantly reduced B and T lymphocyte infiltration of SMGs. However, reduced sialadenitis did not restore saliva secretion in IL-14αTG × P2Y2 R-/- mice. Decreased sialadenitis in IL-14αTG × P2Y2 R-/- mice correlated with decreased lymphotoxin-α levels, a critical proinflammatory cytokine associated with autoimmune pathology in IL-14αTG mice. CONCLUSIONS The results of this study suggest that P2Y2 Rs contribute to the development of salivary gland inflammation in IL-14αTG mice and may also contribute to autoimmune sialadenitis in humans.
Collapse
Affiliation(s)
- L T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - J M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - M G Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - M J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Nutritional Sciences and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - L Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - J L Ambrus
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, SUNY at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - G A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
8
|
Zimmermann H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 2015; 12:25-57. [PMID: 26545760 DOI: 10.1007/s11302-015-9483-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
P2Y2R activation by nucleotides released from the highly metastatic breast cancer cell MDA-MB-231 contributes to pre-metastatic niche formation by mediating lysyl oxidase secretion, collagen crosslinking, and monocyte recruitment. Oncotarget 2015; 5:9322-34. [PMID: 25238333 PMCID: PMC4253437 DOI: 10.18632/oncotarget.2427] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tumor microenvironmental hypoxia induces hypoxia inducible factor-1α (HIF-1α) overexpression, leading to the release of lysyl oxidase (LOX), which crosslinks collagen at distant sites to facilitate environmental changes that allow cancer cells to easily metastasize. Our previous study showed that activation of the P2Y2 receptor (P2Y2R) by ATP released from MDA-MB-231 cells increased MDA-MB-231 cell invasion through endothelial cells. Therefore, in this study, we investigated the role of P2Y2R in breast cancer cell metastasis to distant sites. ATP or UTP released from hypoxia-treated MDA-MB-231 cells induced HIF-1α expression and LOX secretion by the activation of P2Y2R, and this phenomenon was significantly reduced in P2Y2R-depleted MDA-MB-231 cells. Furthermore, P2Y2R-mediated LOX release induced collagen crosslinking in an in vitro model. Finally, nude mice injected with MDA-MB-231 cells showed high levels of LOX secretion, crosslinked collagen and CD11b+ BMDC recruitment in the lung; however, mice that were injected with P2Y2R-depleted MDA-MB-231 cells did not exhibit these changes. These results demonstrate that P2Y2R plays an important role in activation of the HIF-1α-LOX axis, the induction of collagen crosslinking and the recruitment of CD11b+ BMDCs. Furthermore, P2Y2R activation by nucleotides recruits THP-1 monocytes, resulting in primary tumor progression and pre-metastatic niche formation.
Collapse
|
10
|
Infection by Toxoplasma gondii, a severe parasite in neonates and AIDS patients, causes impaired anion secretion in airway epithelia. Proc Natl Acad Sci U S A 2015; 112:4435-40. [PMID: 25831498 DOI: 10.1073/pnas.1503474112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The airway epithelia initiate and modulate the inflammatory responses to various pathogens. The cystic fibrosis transmembrane conductance regulator-mediated Cl(-) secretion system plays a key role in mucociliary clearance of inhaled pathogens. We have explored the effects of Toxoplasma gondii, an opportunistic intracellular protozoan parasite, on Cl(-) secretion of the mouse tracheal epithelia. In this study, ATP-induced Cl(-) secretion indicated the presence of a biphasic short-circuit current (Isc) response, which was mediated by a Ca(2+)-activated Cl(-) channel (CaCC) and the cystic fibrosis transmembrane conductance regulator. However, the ATP-evoked Cl(-) secretion in T. gondii-infected mouse tracheal epithelia and the elevation of [Ca(2+)]i in T. gondii-infected human airway epithelial cells were suppressed. Quantitative reverse transcription-PCR revealed that the mRNA expression level of the P2Y2 receptor (P2Y2-R) increased significantly in T. gondii-infected mouse tracheal cells. This revealed the influence that pathological changes in P2Y2-R had on the downstream signal, suggesting that P2Y2-R was involved in the mechanism underlying T. gondii infection in airways. These results link T. gondii infection as well as other pathogen infections to Cl(-) secretion, via P2Y2-R, which may provide new insights for the treatment of pneumonia caused by pathogens including T. gondii.
Collapse
|
11
|
Erb L, Cao C, Ajit D, Weisman GA. P2Y receptors in Alzheimer's disease. Biol Cell 2014; 107:1-21. [PMID: 25179475 DOI: 10.1111/boc.201400043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 10% of people over the age of 65. Age is the greatest risk factor for AD, although a combination of genetic, lifestyle and environmental factors also contribute to disease development. Common features of AD are the formation of plaques composed of beta-amyloid peptides (Aβ) and neuronal death in brain regions involved in learning and memory. Although Aβ is neurotoxic, the primary mechanisms by which Aβ affects AD development remain uncertain and controversial. Mouse models overexpressing amyloid precursor protein and Aβ have revealed that Aβ has potent effects on neuroinflammation and cerebral blood flow that contribute to AD progression. Therefore, it is important to consider how endogenous signalling in the brain responds to Aβ and contributes to AD pathology. In recent years, Aβ has been shown to affect ATP release from brain and blood cells and alter the expression of G protein-coupled P2Y receptors that respond to ATP and other nucleotides. Accumulating evidence reveals a prominent role for P2Y receptors in AD pathology, including Aβ production and elimination, neuroinflammation, neuronal function and cerebral blood flow.
Collapse
Affiliation(s)
- Laurie Erb
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, MO, 65211, U.S.A
| | | | | | | |
Collapse
|
12
|
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
13
|
Abstract
Evidence for a significant role and impact of purinergic signaling in normal and diseased airways is now beyond dispute. The present review intends to provide the current state of knowledge of the involvement of purinergic pathways in the upper and lower airways and lungs, thereby differentiating the involvement of different tissues, such as the epithelial lining, immune cells, airway smooth muscle, vasculature, peripheral and central innervation, and neuroendocrine system. In addition to the vast number of well illustrated functions for purinergic signaling in the healthy respiratory tract, increasing data pointing to enhanced levels of ATP and/or adenosine in airway secretions of patients with airway damage and respiratory diseases corroborates the emerging view that purines act as clinically important mediators resulting in either proinflammatory or protective responses. Purinergic signaling has been implicated in lung injury and in the pathogenesis of a wide range of respiratory disorders and diseases, including asthma, chronic obstructive pulmonary disease, inflammation, cystic fibrosis, lung cancer, and pulmonary hypertension. These ostensibly enigmatic actions are based on widely different mechanisms, which are influenced by the cellular microenvironment, but especially the subtypes of purine receptors involved and the activity of distinct members of the ectonucleotidase family, the latter being potential protein targets for therapeutic implementation.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, London, UK.
| | | | | | | |
Collapse
|
14
|
Weisman GA, Ajit D, Garrad R, Peterson TS, Woods LT, Thebeau C, Camden JM, Erb L. Neuroprotective roles of the P2Y(2) receptor. Purinergic Signal 2012; 8:559-78. [PMID: 22528682 DOI: 10.1007/s11302-012-9307-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/04/2011] [Indexed: 02/07/2023] Open
Abstract
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim HJ, Ajit D, Peterson TS, Wang Y, Camden JM, Gibson Wood W, Sun GY, Erb L, Petris M, Weisman GA. Nucleotides released from Aβ₁₋₄₂ -treated microglial cells increase cell migration and Aβ₁₋₄₂ uptake through P2Y₂ receptor activation. J Neurochem 2012; 121:228-38. [PMID: 22353164 DOI: 10.1111/j.1471-4159.2012.07700.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Amyloid β-protein (Aβ) deposits in brains of Alzheimer's disease patients generate proinflammatory cytokines and chemokines that recruit microglial cells to phagocytose Aβ. Nucleotides released from apoptotic cells activate P2Y(2) receptors (P2Y(2) Rs) in macrophages to promote clearance of dead cells. In this study, we investigated the role of P2Y(2) Rs in the phagocytosis and clearance of Aβ. Treatment of mouse primary microglial cells with fibrillar (fAβ(1-42) ) and oligomeric (oAβ(1-42) ) Aβ(1-42) aggregation solutions caused a rapid release of ATP (maximum after 10 min). Furthermore, fAβ(1-42) and oAβ(1-42) treatment for 24 h caused an increase in P2Y(2) R gene expression. Treatment with fAβ(1-42) and oAβ(1-42) aggregation solutions increased the motility of neighboring microglial cells, a response inhibited by pre-treatment with apyrase, an enzyme that hydrolyzes nucleotides. The P2Y(2) R agonists ATP and UTP caused significant uptake of Aβ(1-42) by microglial cells within 30 min, which reached a maximum within 1 h, but did not increase Aβ(1-42) uptake by primary microglial cells isolated from P2Y(2) R(-/-) mice. Inhibitors of α(v) integrins, Src and Rac decreased UTP-induced Aβ(1-42) uptake, suggesting that these previously identified components of the P2Y(2) R signaling pathway play a role in Aβ phagocytosis by microglial cells. Finally, we found that UTP treatment enhances Aβ(1-42) degradation by microglial cells, but not in cells isolated from P2Y(2) R(-/-) mice. Taken together, our findings suggest that P2Y(2) Rs can activate microglial cells to enhance Aβ clearance and highlight the P2Y(2) R as a therapeutic target in Alzheimer's disease.
Collapse
Affiliation(s)
- Hye Jung Kim
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Peterson TS, Camden JM, Wang Y, Seye CI, Wood WG, Sun GY, Erb L, Petris MJ, Weisman GA. P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 2010; 41:356-66. [PMID: 20387013 DOI: 10.1007/s12035-010-8115-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/01/2010] [Indexed: 01/14/2023]
Abstract
Acute inflammation is important for tissue repair; however, chronic inflammation contributes to neurodegeneration in Alzheimer's disease (AD) and occurs when glial cells undergo prolonged activation. In the brain, stress or damage causes the release of nucleotides and activation of the G(q) protein-coupled P2Y(2) nucleotide receptor subtype (P2Y(2)R) leading to pro-inflammatory responses that can protect neurons from injury, including the stimulation and recruitment of glial cells. P2Y(2)R activation induces the phosphorylation of the epidermal growth factor receptor (EGFR), a response dependent upon the presence of a SH3 binding domain in the intracellular C terminus of the P2Y(2)R that promotes Src binding and transactivation of EGFR, a pathway that regulates the proliferation of cortical astrocytes. Other studies indicate that P2Y(2)R activation increases astrocyte migration. P2Y(2)R activation by UTP increases the expression in astrocytes of alpha(V)beta(3/5) integrins that bind directly to the P2Y(2)R via an Arg-Gly-Asp (RGD) motif in the first extracellular loop of the P2Y(2)R, an interaction required for G(o) and G(12) protein-dependent astrocyte migration. In rat primary cortical neurons (rPCNs) P2Y(2)R expression is increased by stimulation with interleukin-1beta (IL-1beta), a pro-inflammatory cytokine whose levels are elevated in AD, in part due to nucleotide-stimulated release from glial cells. Other results indicate that oligomeric beta-amyloid peptide (Abeta(1-42)), a contributor to AD, increases nucleotide release from astrocytes, which would serve to activate upregulated P2Y(2)Rs in neurons. Data with rPCNs suggest that P2Y(2)R upregulation by IL-1beta and subsequent activation by UTP are neuroprotective, since this increases the non-amyloidogenic cleavage of amyloid precursor protein. Furthermore, activation of IL-1beta-upregulated P2Y(2)Rs in rPCNs increases the phosphorylation of cofilin, a cytoskeletal protein that stabilizes neurite outgrowths. Thus, activation of pro-inflammatory P2Y(2)Rs in glial cells can promote neuroprotective responses, suggesting that P2Y(2)Rs represent a novel pharmacological target in neurodegenerative and other pro-inflammatory diseases.
Collapse
Affiliation(s)
- Troy S Peterson
- Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hellman B, Jansson L, Dansk H, Grapengiesser E. Effects of external ATP on Ca(2+) signalling in endothelial cells isolated from mouse islets. Endocrine 2007; 32:33-40. [PMID: 17992600 DOI: 10.1007/s12020-007-9004-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 11/25/2022]
Abstract
External ATP is believed to initiate and propagate Ca(2+) signals co-ordinating the insulin release pulses within and among the different islets in the pancreas. The possibility that islet endothelial cells participate in this process was evaluated by comparing the effects on [Ca(2+)](i) of purinoceptor activation in these cells with those in beta-cells. beta-Cell-rich pancreatic islets were isolated from ob/ob mice and dispersed into single cells/aggregates. After culture with or without endothelial cell growth supplement (ECGS), the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was measured with ratiometric fura-2 technique. Presence of ECGS or prolongation of culture (>5 days) resulted in proliferation of endothelial cells and altered their phenotype from rounded to elongated. Endothelial cells, preliminarily identified by attachment of Dynabeads coated with the Bandeiraea simplicifolia 1 lectin (BS-1), responded in a similar way as those stained with CD31 antibodies after measurements of [Ca(2+)](i). Spontaneous transients and oscillations of [Ca(2+)](i )were seen in beta-cells, but not in endothelial cells exposed to 20 mM glucose. Addition of ATP (10 microM) resulted in pronounced and more extended rise of [Ca(2+)](i) in endothelial cells than in beta-cells. The endothelial cells differed from the beta-cells by also responding with a rise of [Ca(2+)](i) to 10 microM UTP, but not to equimolar ADP and acetylcholine. The results support the idea of mutual interactions between islet endothelium and beta-cells based on ATP-induced Ca(2+) signals. It is suggested that the endothelial cells have a tonic inhibitory action on beta-cell P2 purinoceptors resulting in impaired synchronization of the insulin release pulses.
Collapse
Affiliation(s)
- Bo Hellman
- Department of Medical Cell Biology, University of Uppsala, Biomedicum Box 571, Uppsala, 751 23, Sweden.
| | | | | | | |
Collapse
|
18
|
Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 2006; 58:281-341. [PMID: 16968944 PMCID: PMC3471216 DOI: 10.1124/pr.58.3.3] [Citation(s) in RCA: 999] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors de-orphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review.
Collapse
Affiliation(s)
- Maria P Abbracchio
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, González FA, Seye CI, Erb L. Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 2006; 31:169-83. [PMID: 15953819 DOI: 10.1385/mn:31:1-3:169] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 01/05/2023]
Abstract
In the mammalian nervous system, P2 nucleotide receptors mediate neurotransmission, release of proinflammatory cytokines, and reactive astrogliosis. Extracellular nucleotides activate multiple P2 receptors in neurons and glial cells, including G protein-coupled P2Y receptors and P2X receptors, which are ligand-gated ion channels. In glial cells, the P2Y2 receptor subtype, distinguished by its ability to be equipotently activated by ATP and UTP, is coupled to pro-inflammatory signaling pathways. In situ hybridization studies with rodent brain slices indicate that P2Y2 receptors are expressed primarily in the hippocampus and cerebellum. Astrocytes express several P2 receptor subtypes, including P2Y2 receptors whose activation stimulates cell proliferation and migration. P2Y2 receptors, via an RGD (Arg-Gly-Asp) motif in their first extracellular loop, bind to alphavbeta3/beta5 integrins, whereupon P2Y2 receptor activation stimulates integrin signaling pathways that regulate cytoskeletal reorganization and cell motility. The C-terminus of the P2Y2 receptor contains two Src-homology-3 (SH3)-binding domains that upon receptor activation, promote association with Src and transactivation of growth factor receptors. Together, our results indicate that P2Y2 receptors complex with both integrins and growth factor receptors to activate multiple signaling pathways. Thus, P2Y2 receptors present novel targets to control reactive astrogliosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry and Neuroscience Program, University of Missouri-Columbia, Columbia, MO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Camden JM, Schrader AM, Camden RE, González FA, Erb L, Seye CI, Weisman GA. P2Y2 nucleotide receptors enhance alpha-secretase-dependent amyloid precursor protein processing. J Biol Chem 2005; 280:18696-702. [PMID: 15778502 DOI: 10.1074/jbc.m500219200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein (APP) is proteolytically processed by beta- and gamma-secretases to release amyloid beta, the main component in senile plaques found in the brains of patients with Alzheimer disease. Alternatively, APP can be cleaved within the amyloid beta domain by alpha-secretase releasing the non-amyloidogenic product sAPP alpha, which has been shown to have neuroprotective properties. Several G protein-coupled receptors are known to activate alpha-secretase-dependent processing of APP; however, the role of G protein-coupled nucleotide receptors in APP processing has not been investigated. Here it is demonstrated that activation of the G protein-coupled P2Y2 receptor (P2Y2R) subtype expressed in human 1321N1 astrocytoma cells enhanced the release of sAPP alpha in a time- and dose-dependent manner. P2Y2 R-mediated sAPP alpha release was dependent on extracellular calcium but was not affected by 1,2-bis(2-aminophenoxy)ethane-N,N,N,-trimethylammonium salt, an intracellular calcium chelator, indicating that P2Y2R-stimulated intracellular calcium mobilization was not involved. Inhibition of protein kinase C (PKC) with GF109203 or by PKC down-regulation with phorbol ester pre-treatment had no effect on UTP-stimulated sAPP alpha release, indicating a PKC-independent mechanism. U0126, an inhibitor of the mitogen-activated protein kinase pathway, partially inhibited sAPPalpha release by UTP, whereas inhibitors of Src-dependent epidermal growth factor receptor transactivation by P2Y2Rs had no effect. The metalloprotease inhibitors phenanthroline and TAPI-2 and the furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone also diminished UTP-induced sAPP alpha release. Furthermore, small interfering RNA silencing of an endogenous adamalysin, ADAM10 or ADAM17/TACE, partially suppressed P2Y2R-activated sAPP alpha release, whereas treatment of cells with both ADAM10 and ADAM17/TACE small interfering RNAs completely abolished UTP-activated sAPP alpha release. These results may contribute to an understanding of the non-amyloidogenic processing of APP.
Collapse
Affiliation(s)
- Jean M Camden
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211-7310, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Kannan S. Neutrophil chemotaxis: potential role of chemokine receptors in extracellular nucleotide induced Mac-1 expression. Med Hypotheses 2004; 61:577-9. [PMID: 14592789 DOI: 10.1016/s0306-9877(03)00234-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Extracellular nucleotide-induced stimulation and activation of neutrophil in the inflammatory foci followed by chemotaxis in to inflamed vasculature plays a critical role in inflammatory diseases and coronary artery diseases. The extracellular nucleotides stimulate a P2Y receptor(s) on human PMN with the pharmacological profile similar to that of the P2Y2 receptor. Consequent to the activation of P2Y2, arachidonic acid is formed from the membrane bound lipids by phospholipase A2, which subsequently metabolized by 5 lipoxygenase to form the leukotrienes. Of the several leukotrienes generated, LTB(4) is a potent proinflammatory chemokine. Upon its release LTB(4) binds to the PMN by autocrine manner in the same neutrophil and also in a paracrine manner to other neutrophils, leading to the accelerated Mac-1 expression on PMN membrane resulting chemotaxis. Thus it is suggested that the extracellular nucleotide(s) released from the activated platelets and other damaged cell types exacerbate inflammatory response by leukotriene generation. In turn the leukotriene will act in both autocrine and paracrine manner to amplify the process of chemotaxis in PMN by upregulation of Mac-1 expression.
Collapse
Affiliation(s)
- S Kannan
- Temple University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Liu J, Liao Z, Camden J, Griffin KD, Garrad RC, Santiago-Pérez LI, González FA, Seye CI, Weisman GA, Erb L. Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J Biol Chem 2003; 279:8212-8. [PMID: 14670955 DOI: 10.1074/jbc.m312230200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many G protein-coupled receptors activate growth factor receptors, although the mechanisms controlling this transactivation are unclear. We have identified two proline-rich, SH3 binding sites (PXXP) in the carboxyl-terminal tail of the human P2Y(2) nucleotide receptor that directly associate with the tyrosine kinase Src in protein binding assays. Furthermore, Src co-precipitated with the P2Y(2) receptor in 1321N1 astrocytoma cells stimulated with the P2Y(2) receptor agonist UTP. A mutant P2Y(2) receptor lacking the PXXP motifs was found to stimulate calcium mobilization and serine/threonine phosphorylation of the Erk1/2 mitogen-activated protein kinases, like the wild-type receptor, but was defective in its ability to stimulate tyrosine phosphorylation of Src and Src-dependent tyrosine phosphorylation of the proline-rich tyrosine kinase 2, epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor. Dual immunofluorescence labeling of the P2Y(2) receptor and the EGFR indicated that UTP caused an increase in the co-localization of these receptors in the plasma membrane that was prevented by the Src inhibitor PP2. Together, these data suggest that agonist-induced binding of Src to the SH3 binding sites in the P2Y(2) receptor facilitates Src activation, which recruits the EGFR into a protein complex with the P2Y(2) receptor and allows Src to efficiently phosphorylate the EGFR.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gendron FP, Chalimoniuk M, Strosznajder J, Shen S, González FA, Weisman GA, Sun GY. P2X7 nucleotide receptor activation enhances IFN gamma-induced type II nitric oxide synthase activity in BV-2 microglial cells. J Neurochem 2003; 87:344-52. [PMID: 14511112 DOI: 10.1046/j.1471-4159.2003.01995.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Under normal and pathological conditions, brain cells release nucleotides that regulate a wide range of cellular responses due to activation of P2 nucleotide receptors. In this study, the effect of extracellular nucleotides on IFN gamma-induced NO release in murine BV-2 microglial cells was investigated. BV-2 cells expressed mRNA for metabotropic P2Y and ionotropic P2X receptors. Among the P2 receptor agonists tested, ATP, ADP, 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP), and 2-methylthio-ATP (2-MeSATP), but not UTP, enhanced IFN gamma-induced iNOS expression and NO production, suggesting that the uridine nucleotide receptors P2Y2 and P2Y6 are not involved in this response. U0126, an antagonist for MEK1/2, a kinase that phosphorylates the extracellular signal-regulated kinases ERK1/2, decreased IFN gamma-induced NO production. BzATP, a potent P2X7 receptor agonist, was more effective than ATP, ADP, or 2-MeSATP at enhancing IFN gamma-induced ERK1/2 phosphorylation. Consistent with activation of the P2X7 receptor, periodate-oxidized ATP, a P2X7 receptor antagonist, and suramin, a non-specific P2 receptor antagonist, inhibited the effect of ATP or BzATP on IFN gamma-induced NO production, whereas pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), an antagonist of several P2X receptor subtypes, was ineffective. These results suggest that activation of P2X7 receptors may contribute to inflammatory responses in microglial cells seen in neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernand-Pierre Gendron
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Seye CI, Yu N, Jain R, Kong Q, Minor T, Newton J, Erb L, González FA, Weisman GA. The P2Y2 nucleotide receptor mediates UTP-induced vascular cell adhesion molecule-1 expression in coronary artery endothelial cells. J Biol Chem 2003; 278:24960-5. [PMID: 12714597 DOI: 10.1074/jbc.m301439200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P2Y2 receptor up-regulation and activation induces intimal hyperplasia and monocyte/macrophage infiltration in the collared rabbit carotid artery model of vascular injury, suggesting a potential role for P2Y2 receptors in monocyte recruitment by vascular endothelium. In this study, we addressed the hypothesis that activation of P2Y2 receptors by extracellular nucleotides modulates the expression of adhesion molecules on vascular endothelial cells that are important for monocyte recruitment. Results indicated that the equipotent P2Y2 receptor agonists UTP or ATP (1-100 microm) stimulated the expression of vascular cell adhesion molecule-1 (VCAM-1) in human coronary artery endothelial cells (HCAEC) in a time- and dose-dependent manner. P2Y2 antisense oligonucleotides inhibited VCAM-1 expression induced by UTP but not by tumor necrosis factor-alpha. Furthermore, UTP induced VCAM-1 expression in human 1321N1 astrocytoma cell transfectants expressing the recombinant P2Y2 receptor, whereas vector-transfected control cells did not respond to UTP. The effect of UTP on VCAM-1 expression in HCAEC was prevented by depletion of intracellular calcium stores with thapsigargin or by inhibition of p38 mitogen-activated protein kinase or Rho kinase, but was not affected by inhibitors of the mitogen-activated protein/extracellular signal-regulated kinase pathway (i.e. MEK1/2). Consistent with a role for VCAM-1 in the recruitment of monocytes, UTP or ATP increased the adherence of monocytic U937 cells to HCAEC, an effect that was inhibited by anti-VCAM-1 antibodies. These findings suggest a novel role for the P2Y2 receptor in the p38- and Rho kinase-dependent expression of VCAM-1 that mediates the recruitment of monocytes by vascular endothelium associated with the development of atherosclerosis.
Collapse
Affiliation(s)
- Cheikh I Seye
- Department of Biochemistry, University of Missouri, Columbia 65212, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gendron FP, Neary JT, Theiss PM, Sun GY, Gonzalez FA, Weisman GA. Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells. Am J Physiol Cell Physiol 2003; 284:C571-81. [PMID: 12529254 DOI: 10.1152/ajpcell.00286.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Astrocytes are involved in normal and pathological brain functions, where they become activated and undergo reactive gliosis. Astrocytes have been shown to respond to extracellular nucleotides via the activation of P2 receptors, either G protein-coupled P2Y receptors or P2X receptors that are ligand-gated ion channels. In this study, we have examined the manner in which activation of the P2X(7) nucleotide receptor, an extracellular ATP-gated ion channel expressed in astrocytes, can lead to the phosphorylation of ERK1/2. Results showed that the P2X(7) receptor agonist 2',3'-O-(4-benzoyl)benzoyl-ATP induced ERK1/2 phosphorylation in human astrocytoma cells overexpressing the recombinant rat P2X(7) receptor (rP2X(7)-R), a response that was inhibited by the P2X(7) receptor antagonist, oxidized ATP. Other results suggest that rP2X(7)-R-mediated ERK1/2 phosphorylation was linked to the phosphorylation of the proline-rich/Ca(2+)-activated tyrosine kinase Pyk2, c-Src, phosphatidylinositol 3'-kinase, and protein kinase Cdelta activities and was dependent on the presence of extracellular Ca(2+). These results support the hypothesis that the P2X(7) receptor and its signaling pathways play a role in astrocyte-mediated inflammation and neurodegenerative disease.
Collapse
Affiliation(s)
- Fernand-Pierre Gendron
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65212, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Kannan S. Amplification of extracellular nucleotide-induced leukocyte(s) degranulation by contingent autocrine and paracrine mode of leukotriene-mediated chemokine receptor activation. Med Hypotheses 2002; 59:261-5. [PMID: 12208150 DOI: 10.1016/s0306-9877(02)00213-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular nucleotide-induced stimulation and activation of peripheral blood leukocytes and subsequent degranulation play a critical role in immediate-type hypersensitivity reaction and other inflammatory diseases. The extracellular nucleotides stimulate a P2Y receptor(s) on human PMN with the pharmacological profile similar to that of the P2Y2 receptor. Upon activation of P2Y2, arachidonic acid, formed from the membrane bound lipids by phospholipase A2, which subsequently metabolized by 5-lipoxygenase to form the leukotrienes. Of the several leukotrienes generated, LTB(4) is a potent pro-inflammatory chemokine. Upon its release LTB(4) binds to the PMN in a paracrine manner and also other leukocytes such as monocytes at the site of vascular injury, leading to an accelerated rate of degranulation. It is known that LTA(4) formed in the 5-lipoxygenase pathway in PMN could be released from PMN by receptor-mediated transport. Upon its release, the monocytes, erythrocytes, platelet, endothelial or smooth muscle cells can take up LTA(4). The endogenous LTA(4) hydrolase form the LTB(4) from LTA(4) in erythrocytes, platelet, endothelial or smooth muscle cells. As in PMN, LTB(4) is released from these cells via receptor-mediated transport to the extracellular milieu. Thus, released LTB(4) most likely acts as potentially accelerating factor in PMN and MN degranulation through its receptor-specific binding. It is not known whether any LTB(4) receptor exists in cytoplasm in any given cell type and also, the existence of any other signaling cascade for the extracellular nucleotide-induced leukocyte degranulation. Thus, it is convincing that the extracellular nucleotides released from the activated platelets and other damaged cell types exacerbate the inflammatory response by leukotriene generation. In turn the leukotriene will act in both autocrine and paracrine manner to amplify the degranulation processes in leukocytes invoked by extracellular nucleotides.
Collapse
Affiliation(s)
- S Kannan
- Department of Physiology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
27
|
Shah MK, Kadowitz PJ. Cyclic adenosine monophosphate-dependent vascular responses to purinergic agonists adenosine triphosphate and uridine triphosphate in the anesthetized mouse. J Cardiovasc Pharmacol 2002; 39:142-9. [PMID: 11743236 DOI: 10.1097/00005344-200201000-00015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanism by which purinergic agonist adenosine triphosphate (ATP) and uridine triphosphate (UTP) decrease systemic arterial pressure in the anesthetized mouse was investigated. Intravenous injections of adenosine triphosphate (ATP) and uridine triphosphate (UTP) produced dose-dependent decreases in systemic blood pressure in the mouse. The order of potency was ATP > UTP. Vasodilator responses to ATP and UTP were altered by the cyclic adenosine monophosphate (cAMP) phosphodiesterase inhibitor rolipram. The vascular responses to ATP and UTP were not altered by a nitric oxide synthase inhibitor, a cyclooxygenase inhibitor, a cGMP phosphodiesterase inhibitor, or a particular P2 receptor antagonist. These data suggest that ATP and UTP cause a decrease in systemic arterial pressure in the mouse via a cAMP-dependent pathway via a novel P2 receptor linked to adenylate cyclase and that nitric oxide release, prostaglandin synthesis, cGMP, and P2X1, P2Y1, and P2Y4 receptors play little or no role in the vascular effects of these purinergic agonists in the mouse.
Collapse
Affiliation(s)
- Mrugeshkumar K Shah
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| | | |
Collapse
|
28
|
Kannan S. Neutrophil degranulation: coactivation of chemokine receptor(s) is required for extracellular nucleotide-induced neutrophil degranulation. Med Hypotheses 2001; 57:306-9. [PMID: 11516221 DOI: 10.1054/mehy.2001.1313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extracellular nucleotide-induced stimulation of leukocytes and subsequent adhesion to endothelium plays a critical role in inflammatory diseases. The extracellular nucleotides stimulate a P2Y receptor on human PMN with the pharmacological profile of the P2Y2 receptor. Followed by generation of arachidonic acid, subsequently metabolized by 5 lipoxygenase forming the leukotrienes (LT). Of the several LTs generated, LTB(4)is a potent chemokine and upon its release binds to the PMN in an autocrine manner leading to the PMN degranulation. It is known that LTB(4)causes neutrophil degranulation through its receptor specific binding while the molecular mechanism remains not known at present. However, it is not known whether any LTB(4)receptor exists in cytoplasm in any given cell type and also, the existence of any other signaling cascade for the extracellular nucleotide-induced neutrophil degranulation. Based on the few direct experimental and numerous circumstantial evidence, it is conceivable that the extracellular nucleotides require LT generation, as an essential intermediate for mediating neutrophil degranulation.
Collapse
Affiliation(s)
- S Kannan
- Department of Physiology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
29
|
Shah MK, Bivalacqua TJ, Champion HC, Kadowitz PJ. Vasodilator responses to ATP and UTP are cAMP dependent in the mesenteric vascular bed of the cat. J Cardiovasc Pharmacol Ther 2001; 6:287-95. [PMID: 11584335 DOI: 10.1177/107424840100600309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND This study was designed to examine the responses to and the mechanism by which purinergic agonists decrease vascular resistance in the mesenteric vascular bed of the cat. METHODS AND RESULTS Injections of ATP, UTP, and 2-MethylThioATP (2-MetSATP) into the mesenteric perfusion circuit elicited dose-dependent decreases in perfusion pressure while injections of beta,gamma-MethylATP (beta,gamma-MetATP) produced a biphasic response with an initial vasopressor response followed by a vasodilator response. The order of potency of the vasodilator response was 2-MetSATP > ATP > UTP > beta,gamma-MetATP. The vasodilator responses to ATP, UTP, 2-MetSATP, and beta,gamma-MetATP were increased in duration by the cAMP phosphodiesterase inhibitor, rolipram. However, vasodilator responses were not altered by the adminstration of a nitric oxide synthase inhibitor, a cGMP phosphodiesterase inhibitor, or a cyclooxygenase inhibitor. Treatment with PPADS, a P2X(1), P2Y(1), and P2Y(4) receptor antagonist, did not alter vasodilator responses to the purinergic agonists; however, the vasopressor component of the response to beta,gamma-MetATP was decreased. CONCLUSIONS These data suggest that ATP, UTP, 2-MetSATP, and beta,gamma-MetATP dilate the mesentary vascular bed in the cat by a cAMP dependent mechanism, and that nitric oxide or prostaglandin release, cGMP accumulation, or activation of P2X(1), P2Y(1), or P2Y(4) receptors play little or no role in mediating vasodilator responses to the purinergic agonists in this regional vascular bed. In addition, these results suggest that the pressor component of the response to beta,gamma-MetATP is mediated by the activation of P2X(1) receptors.
Collapse
Affiliation(s)
- M K Shah
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | |
Collapse
|
30
|
Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Pérez LI, González FA, Gresham HD, Turner JT, Weisman GA. An RGD sequence in the P2Y(2) receptor interacts with alpha(V)beta(3) integrins and is required for G(o)-mediated signal transduction. J Cell Biol 2001; 153:491-501. [PMID: 11331301 PMCID: PMC2190579 DOI: 10.1083/jcb.153.3.491] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The P2Y(2) nucleotide receptor (P2Y(2)R) contains the integrin-binding domain arginine-glycine-aspartic acid (RGD) in its first extracellular loop, raising the possibility that this G protein-coupled receptor interacts directly with an integrin. Binding of a peptide corresponding to the first extracellular loop of the P2Y(2)R to K562 erythroleukemia cells was inhibited by antibodies against alpha(V)beta(3)/beta(5) integrins and the integrin-associated thrombospondin receptor, CD47. Immunofluorescence of cells transfected with epitope-tagged P2Y(2)Rs indicated that alpha(V) integrins colocalized 10-fold better with the wild-type P2Y(2)R than with a mutant P2Y(2)R in which the RGD sequence was replaced with RGE. Compared with the wild-type P2Y(2)R, the RGE mutant required 1,000-fold higher agonist concentrations to phosphorylate focal adhesion kinase, activate extracellular signal-regulated kinases, and initiate the PLC-dependent mobilization of intracellular Ca(2+). Furthermore, an anti-alpha(V) integrin antibody partially inhibited these signaling events mediated by the wild-type P2Y(2)R. Pertussis toxin, an inhibitor of G(i/o) proteins, partially inhibited Ca(2+) mobilization mediated by the wild-type P2Y(2)R, but not by the RGE mutant, suggesting that the RGD sequence is required for P2Y(2)R-mediated activation of G(o), but not G(q). Since CD47 has been shown to associate directly with G(i/o) family proteins, these results suggest that interactions between P2Y(2)Rs, integrins, and CD47 may be important for coupling the P2Y(2)R to G(o).
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, CD/metabolism
- CD47 Antigen
- Calcium/metabolism
- Carrier Proteins/metabolism
- Focal Adhesion Kinase 1
- Focal Adhesion Protein-Tyrosine Kinases
- GTP-Binding Protein alpha Subunits, Gi-Go
- Heterotrimeric GTP-Binding Proteins/metabolism
- Humans
- Integrins/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Oligopeptides/metabolism
- Phosphorylation
- Point Mutation
- Protein Binding
- Protein-Tyrosine Kinases
- Receptors, Purinergic P2/isolation & purification
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1
- Receptors, Purinergic P2Y2
- Receptors, Vitronectin/genetics
- Receptors, Vitronectin/isolation & purification
- Receptors, Vitronectin/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
Collapse
Affiliation(s)
- L Erb
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65212, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
ATP, besides an intracellular energy source, is an agonist when applied to a variety of different cells including cardiomyocytes. Sources of ATP in the extracellular milieu are multiple. Extracellular ATP is rapidly degraded by ectonucleotidases. Today ionotropic P2X(1--7) receptors and metabotropic P2Y(1,2,4,6,11) receptors have been cloned and their mRNA found in cardiomyocytes. On a single cardiomyocyte, micromolar ATP induces nonspecific cationic and Cl(-) currents that depolarize the cells. ATP both increases directly via a G(s) protein and decreases Ca(2+) current. ATP activates the inward-rectifying currents (ACh- and ATP-activated K(+) currents) and outward K(+) currents. P2-purinergic stimulation increases cAMP by activating adenylyl cyclase isoform V. It also involves tyrosine kinases to activate phospholipase C-gamma to produce inositol 1,4,5-trisphosphate and Cl(-)/HCO(3)(-) exchange to induce a large transient acidosis. No clear correlation is presently possible between an effect and the activation of a given P2-receptor subtype in cardiomyocytes. ATP itself is generally a positive inotropic agent. Upon rapid application to cells, ATP induces various forms of arrhythmia. At the tissue level, arrhythmia could be due to slowing of electrical spread after both Na(+) current decrease and cell-to-cell uncoupling as well as cell depolarization and Ca(2+) current increase. In as much as the information is available, this review also reports analog effects of UTP and diadenosine polyphosphates.
Collapse
Affiliation(s)
- G Vassort
- Institut National de la Santé et de la Recherche Médicale U. 390, Centre Hospitalier Universitaire Arnaud de Villeneuve, Montpellier, France.
| |
Collapse
|
32
|
Lacza Z, Káldi K, Kövecs K, Görlach C, Nagy Z, Sándor P, Benyó Z, Wahl M. Involvement of prostanoid release in the mediation of UTP-induced cerebrovascular contraction in the rat. Brain Res 2001; 896:169-74. [PMID: 11277988 DOI: 10.1016/s0006-8993(01)02083-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between uridine-5'-triphosphate (UTP) and prostanoids was studied in isolated rat middle cerebral arteries (MCAs). The strong contractions in MCA segments induced by UTP were weakened significantly by indomethacin and more markedly by the thromboxane receptor antagonist ICI 192605. Thromboxane A(2) (TXA(2)) release by MCAs was below the detection limit of the chemiluminescence enzyme immunoassay, but increased TXA(2) formation was detected in basilar arteries in the presence of UTP. Prostacyclin (PGI(2)) formation by MCAs also increased in the presence of UTP. These results suggest that UTP stimulates the release of both TXA(2) and PGI(2) from the rat MCA but the vascular effect of TXA(2) is dominant.
Collapse
Affiliation(s)
- Z Lacza
- Department of Physiology, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Champion HC, Kadowitz PJ. Vasodilator responses to ATP and UTP are not dependent on nitric oxide release, K+ATP channel activation, or the release of vasodilator prostaglandins in the hindlimb vascular bed of the cat. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of the purinergic agonists, ATP, ATPγS, UTP, and 2-Met-Thio AP, were investigated in the hindlimb vascular bed of the cat. Under constant-flow conditions, injections of the purinergic agonists into the perfusion circuit elicited dose-related decreases in perfusion pressure. The order of potency was 2-Met-Thio ATP > ATPγS > ATP > UTP. In contrast, injections of GTPγS, cAMP, UDP, and UMP had no effect. Vasodilator responses to ATP, ATPγS, UTP, and 2-Met-Thio ATP were increased in duration by the cAMP phosphodiesterase inhibitor rolipram, whereas the cGMP phosphodiesterase inhibitor zaprinast had no effect. Responses to the purinergic agonists were not altered by nitric oxide synthase inhibitors, K+ATP channel antagonists, cyclooxygenase inhibitors, or agents that interfere with the actions of the adrenergic nervous system. These data suggest that ATP, ATPγS, UTP, and 2-Met-Thio ATP dilate the hindlimb vascular bed by a direct cAMP-dependent mechanism, and that the release of nitric oxide, vasodilator prostaglandins, K+ATP channel opening, or an inhibitory effect on the adrenergic nervous system play little, if any, role in mediating or modulating responses to the purinergic agonists in the hindlimb circulation of the cat.Key words: purinergic agonists, P2 purinergic receptors, cAMP-dependent vasodilator activity, adrenergic system, nitric oxide prostaglandins.
Collapse
|
34
|
Otero M, Garrad RC, Velázquez B, Hernández-Pérez MG, Camden JM, Erb L, Clarke LL, Turner JT, Weisman GA, González FA. Mechanisms of agonist-dependent and -independent desensitization of a recombinant P2Y2 nucleotide receptor. Mol Cell Biochem 2000; 205:115-23. [PMID: 10821429 DOI: 10.1023/a:1007018001735] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UTP activates P2Y, receptors in both 1321N1 cell transfectants expressing the P2Y2 receptor and human HT-29 epithelial cells expressing endogenous P2Y, receptors with an EC50 of 0.2-1.0 microM. Pretreatment of these cells with UTP diminished the effectiveness of a second dose of UTP (the IC50 for UTP-induced receptor desensitization was 0.3-1.0 microM for both systems). Desensitization and down-regulation of the P2Y2 nucleotide receptor may limit the effectiveness of UTP as a therapeutic agent. The present studies investigated the phenomenon of P2Y2 receptor desensitization in human 1321N1 astrocytoma cells expressing recombinant wild type and C-terminal truncation mutants of the P2Y2 receptor. In these cells, potent P2Y2 receptor desensitization was observed after a 5 min exposure to UTP. Full receptor responsiveness returned 5-10 min after removal of UTP. Thapsigargin, an inhibitor of Ca2+-ATPase in the endoplasmic reticulum, induced an increase in the intracellular free calcium concentration, [Ca2+]i, after addition of desensitizing concentrations of UTP, indicating that P2Y2 receptor desensitization is not due to depletion of calcium from intracellular stores. Single cell measurements of increases in [Ca2+]i induced by UTP in 1321N1 cell transfectants expressing the P2Y2 receptor indicate that time- and UTP concentration-dependent desensitization occurred uniformly across a cell population. Other results suggest that P2Y2 receptor phosphorylation/dephosphorylation regulate receptor desensitization/resensitization. A 5 min preincubation of 1321N1 cell transfectants with the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), reduced the subsequent response to UTP by about 50%, whereas co-incubation of PMA with UTP caused a greater inhibition in the response. The protein phosphatases-1 and -2A inhibitor, okadaic acid, partially blocked resensitization of the receptor. Furthermore, C-terminal truncation mutants of the P2Y2 receptor that eliminated several potential phosphorylation sites including two for PKC were resistant to UTP-, but not phorbol ester-induced desensitization. Down regulation of protein kinase C isoforms prevented phorbol ester-induced desensitization but had no effect on agonist-induced desensitization of wild type or truncation mutant receptors. These results suggest that phosphorylation of the C-terminus of the P2Y2 receptor by protein kinases other than protein kinase C mediates agonist-induced receptor desensitization. A better understanding of the molecular mechanisms of P2Y2 nucleotide receptor desensitization may help optimize a promising cystic fibrosis pharmacotherapy based on the activation of anion secretion in airway epithelial cells by P2Y, receptor agonists.
Collapse
Affiliation(s)
- M Otero
- Department of Chemistry, University of Puerto Rico, San Juan 00931-3346, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen BC, Lin LL, Lin WW. Protein kinase C epsilon-dependent pathway of extracellular signal-regulated protein kinase activation by P2Y1 and P2Y2 purinoceptors that activate cytosolic phospholipase A2 in endothelial cells. Eur J Pharmacol 1999; 373:101-10. [PMID: 10408256 DOI: 10.1016/s0014-2999(99)00238-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this study was to investigate the stimulating effects on arachidonic acid release of P2Y1 and P2Y2 receptor-selective agonists, 2-methylthio-ATP (2MeSATP) and UTP, respectively, in bovine pulmonary artery endothelial cells. Exposure of cells to 2MeSATP and UTP led to the release of arachidonic acid, a response which was abolished by the removal of extracellular Ca2+ and methyl arachidonyl fluorophosphonate. Phorbol 12-myristate 13-acetate (PMA) itself not only stimulated arachidonic acid release but also played a permissive role in the response to UTP. However, PMA failed to enhance the arachidonic acid response induced by 2MeSATP, probably due to greater attenuation of the [Ca2+]i increase caused by 2MeSATP than UTP. Inhibition of protein kinase C with Ro 31-8220 (1-[3-(amidinothio) propyl-1H-indoyl-3-yl]-3-(1-methyl-1H-indoyl-3-yl)-maleimide -methane sulphate) and staurosporine, but not with Go 6976 (12-(-2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-indolo(2, 3-a)pyrrolo(3,4-c)carbazole), reduced the arachidonic acid response of 2MeSATP, UTP and PMA. PMA-induced potentiation of the UTP response reached a maximum after a 1-h preincubation, then declined and eventually lost its effect when the preincubation lasted up to 8 h. Among the protein kinase C isoforms present in endothelial cells, betaI and epsilon could be down-regulated by treatment with PMA for 4-24 h. PD 098059 (2-(2-Amino-3-methoxyphenyl)-4H-1-benzopyran-4-one) inhibited extracellular signal-regulated protein kinase activation, cytosolic phospholipase A2 phosphorylation and arachidonic acid release caused by 2MeSATP, UTP and PMA. Taken together, our results demonstrate that P2Y1 and P2Y2 purinoceptors mediate arachidonic acid release by activating cytosolic phospholipase A2 through an elevation of [Ca2+]i and protein kinase C epsilon-, extracellular signal-regulated protein kinase-dependent phosphorylation.
Collapse
Affiliation(s)
- B C Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei
| | | | | |
Collapse
|
36
|
Satterwhite CM, Farrelly AM, Bradley ME. Chemotactic, mitogenic, and angiogenic actions of UTP on vascular endothelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H1091-7. [PMID: 10070096 DOI: 10.1152/ajpheart.1999.276.3.h1091] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial cells express receptors for ATP and UTP, and both UTP and ATP elicit endothelial release of vasoactive compounds such as prostacyclin and nitric oxide; however, the distinction between purine and pyrimidine nucleotide signaling is not known. We hypothesized that UTP plays a more important role in endothelial mitogenesis and chemotaxis than does ATP and that UTP is angiogenic. In cultured endothelial cells from guinea pig cardiac vasculature (CEC), both UTP and vascular endothelial growth factor (VEGF) were significant mitogenic and chemotactic factors; in contrast, ATP demonstrated no significant chemotaxis in CEC. In chick chorioallantoic membranes (CAM), UTP and VEGF treatments produced statistically significant increases in CAM vascularity compared with controls. These findings are the first evidence of chemotactic or angiogenic effects of pyrimidines; they suggest a role for pyrimidine nucleotides that is distinct from those assumed by purine nucleotides and provide for the possibility that UTP serves as an extracellular signal for processes such as endothelial repair and angiogenesis.
Collapse
Affiliation(s)
- C M Satterwhite
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
37
|
Garrad RC, Otero MA, Erb L, Theiss PM, Clarke LL, Gonzalez FA, Turner JT, Weisman GA. Structural basis of agonist-induced desensitization and sequestration of the P2Y2 nucleotide receptor. Consequences of truncation of the C terminus. J Biol Chem 1998; 273:29437-44. [PMID: 9792648 DOI: 10.1074/jbc.273.45.29437] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular determinants of P2Y2 receptor desensitization and sequestration have been investigated. Wild-type P2Y2 receptors and a series of five C-terminal truncation mutants of the receptor were epitope-tagged and stably expressed in 1321N1 cells. These constructs were used to assess the importance of the intracellular C terminus on 1) UTP-stimulated increases in intracellular calcium concentration, 2) homologous desensitization of the receptor, and 3) agonist-induced decreases in cell-surface density (receptor sequestration) of epitope-tagged receptors using fluorescence-activated cell sorting. The potency and efficacy of UTP were similar for the wild-type and all mutant P2Y2 receptors. Truncation of 18 or more amino acids from the C terminus increased by approximately 30-fold the concentration of UTP necessary to desensitize the receptor. Both the rate and magnitude of UTP-induced receptor sequestration were decreased with progressively larger truncations of the C terminus. Furthermore, the recovery from sequestration was slower for the most extensively truncated receptor. Complete desensitization was obtained with >50% of the original receptor complement remaining on the cell surface. Protein kinase C activation, which desensitizes the P2Y2 receptor, had no effect on sequestration, consistent with the ideas that desensitization and sequestration are discrete events and that agonist occupancy is required for receptor sequestration.
Collapse
Affiliation(s)
- R C Garrad
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Beck R, Bertolino S, Abbot SE, Aaronson PI, Smirnov SV. Modulation of arachidonic acid release and membrane fluidity by albumin in vascular smooth muscle and endothelial cells. Circ Res 1998; 83:923-31. [PMID: 9797341 DOI: 10.1161/01.res.83.9.923] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Albumin is the major plasma protein circulating in blood. Albumin potently decreases capillary permeability, although the mechanisms are not understood completely. Albumin also effectively binds arachidonic acid (AA), which increases capillary permeability. To investigate the interactions of BSA and AA with the cell membrane, the effect of these substances on [3H]AA release and membrane fluidity was studied in vascular myocytes and endothelial cells. BSA (0.2 and 1 mg . mL-1) stimulated a significant release of [3H]AA from both intact rat aorta and cultured smooth muscle cells. This effect was not mimicked by gamma-globulin or myoglobin (both 1 mg . mL-1) in intact tissue. BSA, but not gamma-globulin and myoglobin, decreased the membrane fluidity (assessed as changes in the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3, 5-hexatriene) in a concentration-dependent manner with a half-maximum concentration between 0.007 and 0.4 mg . mL-1 in both freshly isolated and cultured rat aortic myocytes and human umbilical vein endothelial cells. AA (1 to 200 micromol/L) caused the opposite effect, increasing membrane fluidity and antagonizing the effect of BSA. BSA modified at its arginine residues, which are thought to be important in AA binding, did not stimulate [3H]AA release and was significantly less potent than native BSA in altering the membrane fluidity. The effect of BSA can be explained by a high-affinity binding of AA to the protein and extraction of AA from the cell membrane. The interaction between BSA and AA could play a role in the regulation of vascular permeability.
Collapse
Affiliation(s)
- R Beck
- Department of Pharmacology, UMDS of Guy's and St Thomas's Hospitals, St Thomas's Campus, London, UK
| | | | | | | | | |
Collapse
|
39
|
Duchêne AD, Takeda K. P2Y- and P2U-mediated increases in internal calcium in single bovine aortic endothelial cells in primary culture. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1998; 5:277-86. [PMID: 9588819 DOI: 10.3109/10623329709052592] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increases in intracellular calcium ([Ca2+]i) to ATP, ADP, AMP, adenosine, UTP, 2-methylthio ATP (2-MeSATP), 2-methylthio ADP (2-MeSADP) and alpha,beta-methylene ATP (alpha,beta-meATP) were investigated in single bovine aortic endothelial cells (BAEC) in primary culture using Indo-1. Evidence was obtained for the presence of P2Y and P2U, but not P2X receptors. Normalized concentration-effect curves for ATP, UTP and 2-MeSATP were biphasic in shape. At 10 nM, the agonist rank order was UTP > ATP approximately 2-MeSATP, while above 1 microM, it was ATP > or = UTP > or = 2-MeSATP. No cross-desensitization between responses to P2U and P2Y receptors was observed in normal external solution. However, when internal Ca2+ stores were depleted by exposure to 2-MeSATP or UTP in Ca2+-free solution and agonists then re-applied in presence of external Ca2+, homologous but not heterologous desensitization was seen. In the same conditions, heterologous desensitization was observed for UTP after ATP but not for ATP after UTP. Taken together, the results are consistent with the coexistence of P2Y and P2U receptors in primary-cultured BAEC and suggest that upon activation, different intracellular signaling pathways could be involved in increasing [Ca2+]i.
Collapse
Affiliation(s)
- A D Duchêne
- Université Louis Pasteur de Strasbourg, Laboratoire de Pharmacologie et Physiopathologie Cellulaires, CNRS URA600, Illkirch, France
| | | |
Collapse
|
40
|
Hillaire-Buys D, Chapal J, Linck N, Blayac JP, Petit P, Loubatières-Mariani MM. Involvement of K+ channel permeability changes in the L-NAME and indomethacin resistant part of adenosine-5'-O-(2-thiodiphosphate)-induced relaxation of pancreatic vascular bed. Br J Pharmacol 1998; 124:149-56. [PMID: 9630354 PMCID: PMC1565375 DOI: 10.1038/sj.bjp.0701826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. We have previously demonstrated that adenosine-5'-O-(2-thiodiphosphate) (ADPbetaS), a potent P2Y-purinoceptor agonist, relaxed pancreatic vasculature not only through prostacyclin (PGI2) and nitric oxide (NO) release from the endothelium but also through other mechanism(s). In this study, we investigated the effects of an inhibitor of the Na+/K+ pump, of ATP-sensitive K+ (K(ATP)) channels and of small (SK(Ca)) or large (BK(Ca)) conductance Ca2+-activated K+ channels. Experiments were performed at basal tone and during the inhibition of NO synthase and cyclo-oxygenase. 2. In control conditions, ADPbetaS (15 microM) induced an initial transient vasoconstriction followed by a progressive and sustained vasodilatation. In the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME, 200 microM) the transient vasoconstriction was reversed into a one minute vasodilator effect, which was then followed by a progressive and sustained vasodilatation similar to that observed with ADPbetaS alone. The addition of indomethacin (10 microM) did not significantly modify the profile of ADPbetaS-induced vasodilatation. 3. Ouabain (100 microM) decreased basal pancreatic flow rate and did not modify ADPbetaS-induced relaxation. This inhibitor of the Na+/K+ pump increased the pancreatic vasoconstriction induced by L-NAME or by the co-administration of L-NAME and indomethacin. Ouabain did not modify either the L-NAME or the L-NAME/indomethacin resistant part of the ADPbetaS vasodilatation. 4. The K(ATP) inhibitor tolbutamide (185 microM) did not significantly modify basal pancreatic flow rate and ADPbetaS-induced relaxation. This inhibitor which did not change L-NAME-induced vasoconstriction, significantly diminished the L-NAME resistant part of ADPbetaS-induced vasodilatation. Tolbutamide intensified the vasoconstriction induced by the co-administration of L-NAME and indomethacin. In contrast, the L-NAME/indomethacin resistant part of ADPbetaS vasodilatation was not changed by the closure of K(ATP). 5. The SK(Ca) inhibitor apamin (0.1 microM) did not significantly change pancreatic vascular resistance whatever the experimental conditions (in the absence or in presence of L-NAME or L-NAME/indomethacin). In the presence of L-NAME, the closure of SK(Ca) channels changed the one minute vasodilator effect of ADPbetaS into a potent vasoconstriction and thereafter modified only the beginning of the second part of the L-NAME-resistant part of the ADPbetaS-induced vasodilatation. In contrast, the L-NAME/indomethacin resistant part of ADPbetaS-induced relaxation remained unchanged in the presence of apamin. 6. Charybdotoxin (0.2 microM), an inhibitor of BK(Ca), increased pancreatic vascular resistance in the presence of L-NAME/indomethacin. In the presence of L-NAME, the closure of BK(Ca) channels reversed the one minute vasodilator effect of ADPbetaS into a potent vasoconstriction and drastically diminished the sustained vasodilatation. In contrast the L-NAME/indomethacin resistant part of ADPbetaS-induced relaxation was not modified by the presence of charybdotoxin. Under L-NAME/indomethacin/charybdotoxin/apamin infusions, ADPbetaS evoked a drastic and transient vasoconstriction reaching a maximum at the second minute, which was followed by a sustained increase in the flow rate throughout the ADPbetaS infusion. The maximal vasodilator effect of ADPbetaS observed was not modified by the addition of apamin. 7. The results suggest that the L-NAME-resistant relaxation induced by ADPbetaS in the pancreatic vascular bed involves activation of BK(Ca), K(ATP) and to a lesser extent of SK(Ca) channels, but the L-NAME/indomethacin resistant part of ADPbetaS-induced relaxation is insensitive to the closure of K(ATP), SK(Ca) and BK(Ca) channels.
Collapse
Affiliation(s)
- D Hillaire-Buys
- Faculté de Médecine, Laboratoire de Pharmacologie (UPRES EA 1677), Montpellier, France
| | | | | | | | | | | |
Collapse
|
41
|
Matsumoto T, Nakane T, Chiba S. UTP induces vascular responses in the isolated and perfused canine epicardial coronary artery via UTP-preferring P2Y receptors. Br J Pharmacol 1997; 122:1625-32. [PMID: 9422807 PMCID: PMC1565115 DOI: 10.1038/sj.bjp.0701559] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Vasoconstrictor responses of the isolated and perfused canine epicardial coronary artery to uridine 5'-triphosphate (UTP) were analysed pharmacologically. 2. At basal perfusion pressure, UTP induced vasoconstriction in a dose-related manner and the vasoconstriction was sometimes followed by a slight vasodilatation at large doses (more than 10 nmol). The rank order of potency for vasoconstriction was UTP = UDP > ATP > TTP > or = ITP >> UMP. At raised perfusion pressure by 20 mM KCl, the vasoconstriction was not changed and a small vasodilatation was induced at large doses. The rank order of potency for vasodilatation was induced at large doses. The rank order of potency for vasodilatation was ATP >> ITP > or = UDP > UTP > or = TTP. The maximal vasodilator response to UTP was much less than that to ATP. UMP did not induce vasodilatation. 3. The P2X receptor agonist and desensitizing agent alpha, beta-methylene ATP (1 microM) and the P2 receptor antagonist suramin (100 microM) inhibited the vasoconstrictor responses to ATP but not those to UTP and UDP. The P2 receptor antagonist reactive blue 2 (30 microM) did not inhibit the vascular responses to UTP. 4. UTP (200 microM) desensitized the vasoconstrictor responses to UTP, but not either the vasodilator responses to UTP or the vasoconstrictor responses to ATP and UDP. UDP (200 microM) did not desensitize the vascular responses to UTP. 5. Preincubating the UDP stock solution and arterial preparation with hexokinase (10 and 1 uml-1, respectively) did not change the vasoconstrictor responses to UDP. 6. The Ca channel blocker diltiazem (1 microM) inhibited the vasoconstrictor responses to UTP but not those to ATP and UDP. Incubation in a Ca(2+)-free solution containing 1 mM EGTA inhibited the vascular responses to ATP, UTP and UDP. 7. Removal of the endothelium by an intraluminal injection of saponin (1 mg) inhibited the vasodilator responses to UTP. Indomethacin, a cyclo-oxygenase inhibitor (1 microM), inhibited the vasodilator responses to UTP, but NG-nitro-L-arginine, a nitric oxide synthase inhibitor (300 microM), did not have an inhibitory effect. 8. The results suggest that (1) UTP induces vasoconstriction via UTP-preferring P2Y receptors on the smooth muscle and vasodilatation via receptors different from those mediating the vasoconstriction induced by UTP and mediating the vasodilatation by ATP on the endothelium, through mainly the release of prostacyclin in the canine epicardial coronary artery; (2) UDP induces vasoconstriction via UDP-preferring P2Y receptors; and (3) L-type Ca ion channels are involved in the vasoconstriction induced by UTP, but not in that induced by UDP.
Collapse
Affiliation(s)
- T Matsumoto
- Department of Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | |
Collapse
|
42
|
Kurihara K, Nakanishi N, Ueha T. A calcium channel in human submandibular duct cell line, HSG cells, not regulated by P2U purinergic receptor-mediated intracellular calcium mobilization. Arch Oral Biol 1997; 42:547-57. [PMID: 9347117 DOI: 10.1016/s0003-9969(97)89060-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Signal transduction via P2 purinergic receptors was investigated in HSG cells, a continuous cell line originally derived from an irradiated human salivary gland. Ligand specificity for nucleotide receptors in HSG cells was investigated with various nucleotides and their analogues. Inositol 1,4,5-trisphosphate (IP3) production was significantly increased by ATP, UTP and ATP gamma S. The ligand specificity of this effect agreed well with that of the P2U purinergic receptor. On the other hand, 45Ca2+ influx was stimulated by ATP, UTP > ATP gamma S, ADP, UDP > ADP beta S > AMPPNP, GTP, TTP > CTP, GDP, TDP, AMPPCP, AMPCPP. This ligand specificity of 45Ca2+ influx was much broader than IP3 production. Also pertussis and cholera toxin had no effect on both IP3 production and 45Ca2+ influx by ATP or UTP. 3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (Bz-ATP) stimulates 45Ca2+ influx more effectively than IP3 formation. A 53-kDa membrane protein was photolabelled with [alpha-32P]Bz-ATP. This 53-kDa protein is a putative P2 purinergic receptor. In particular, the labelling was inhibited by a ligand profile that corresponded to that for 45Ca2+ influx. These findings suggest that nucleotides stimulate 45Ca2+ influx and IP3 formation by separate pathways via pertussis and cholera toxin-insensitive G proteins. Thus, in HSG cells, IP3 formation is coupled to the P2U subclass, while 45Ca2+ influx is coupled to another subclass, such as P2X, that regulates calcium channels.
Collapse
Affiliation(s)
- K Kurihara
- Department of Oral Physiology, Meikai University School of Dentistry, Saitama, Japan.
| | | | | |
Collapse
|
43
|
Pirotton S, Communi D, Motte S, Janssens R, Boeynaems JM. Endothelial P2-purinoceptors: subtypes and signal transduction. JOURNAL OF AUTONOMIC PHARMACOLOGY 1996; 16:353-6. [PMID: 9131415 DOI: 10.1111/j.1474-8673.1996.tb00052.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Adenine nucleotides stimulate the synthesis and release of prostacyclin and nitric oxide (two potent platelet aggregation inhibitors) by endothelial cells from different origins. These responses are mediated by P2 purinergic receptors, coupled to the production of inositol (1,4,5)trisphosphate (InsP3) and to the increase of intracytoplasmic calcium concentration. 2. In bovine aortic endothelial cells (BAEC), both 2-MeSATP and UTP stimulate the production of InsP3. By experiments of additivity and cross desensitization, we have confirmed the expression of both P2Y/P2Y1 and P2U/P2Y2 receptors on these cells. Moreover, these receptors are not segregated on different subpopulations but are co-localized on the same cells. 3. The action of UTP on InsP3 production was inhibited by pertussis toxin and was unaffected by a pretreatment with phorbol 12-myristate, 13-acetate (PMA). On the other hand, the response induced by 2-MeSATP was inhibited by PMA but insensitive to pertussis toxin. These results suggest that P2Y/P2Y1 and P2U/P2Y2 receptors are respectively coupled to Gq/G11 and G1 proteins. 4. Northern blotting experiments revealed the expression of the P2Y1 (doublet of 2 and 2.2 kb) and of the P2Y2 (2.4 kb) receptor messengers in BAEC. A signal corresponding to the P2Y2 mRNA was also detectable in human umbilical vein endothelial cells. 5. These various results thus demonstrate the expression of the P2Y1 and P2Y2 receptors in vascular endothelial cells.
Collapse
Affiliation(s)
- S Pirotton
- Institute of Interdisciplinary Research, Faculte de Médecine, Brussels, Belgium
| | | | | | | | | |
Collapse
|
44
|
Saïag B, Hillaire-Buys D, Chapal J, Petit P, Pape D, Rault B, Allain H, Loubatières-Mariani MM. Study of the mechanisms involved in adenosine-5'-O-(2-thiodiphosphate) induced relaxation of rat thoracic aorta and pancreatic vascular bed. Br J Pharmacol 1996; 118:804-10. [PMID: 8762111 PMCID: PMC1909724 DOI: 10.1111/j.1476-5381.1996.tb15471.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The endothelium-dependent relaxation of blood vessels induced by P2Y-purinoceptor activation has often been shown to involve prostacyclin and/or nitric oxide (NO) release. In this work, we have investigated the mechanisms involved in the relaxant effect of the P2Y agonist, adenosine -5'-O-(2-thiodiphosphate) (ADP beta S) using two complementary preparations: rat pancreatic vascular bed and aortic ring. 2. On the pancreatic vascular bed, ADP beta S (1.5 and 15 microM) infused for 30 min induced a concentration-dependent vasodilatation; it was progressive during the first 10 min (first period) and sustained from 10 to 30 min (second period). Indomethacin (10 microM) delayed ADP beta S-induced vasodilatation (1.5 and 15 microM) by about 6 min. N omega-nitro-L-arginine methyl ester (L-NAME) (200 microM) suppressed the relaxation for about 5 min but thereafter ADP beta S at the two concentrations progressively induced an increase in the flow rate. Even the co-administration of L-NAME and indomethacin did not abolish the ADP beta S-induced vasorelaxation. 3. On 5-hydroxy tryptamine (5-HT) precontracted rings mounted in isometric conditions in organ baths, we observed that ADP beta S induced a concentration-dependent relaxation of rings with a functional endothelium; this effect was stable for 25 min. The ADP beta S relaxant effect was strongly inhibited by Reactive Blue 2 (30 microM) and was suppressed by pretreatment of rings with saponin (0.05 mg ml-1 for 30 min), which also abolished the acetylcholine-induced relaxation. 4. ADP beta S-induced relaxation of 5-HT precontracted rings is largely inhibited by indomethacin (100 or 10 microM) or L-NAME (100 microM). 5. We conclude that: the ADP beta S-induced relaxation is endothelium-dependent, mediated by P2Y-purinoceptors, and at least in part linked to NO and prostacyclin release, depending on the preparation used. Furthermore, on the pancreatic vascular bed, (an)other mechanism(s) than prostacyclin and NO releases may be involved in ADP beta S-induced vasodilatation.
Collapse
Affiliation(s)
- B Saïag
- Faculté de Pharmacie, Laboratoire de Pysiologie, Unité "Biologie de la paroi vasculaire", Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Miyagi Y, Kobayashi S, Nishimura J, Fukui M, Kanaide H. P2U receptor is linked to cytosolic Ca2+ transient and release of vasorelaxing factor in bovine endothelial cells in situ. J Physiol 1996; 492 ( Pt 3):751-61. [PMID: 8734987 PMCID: PMC1158897 DOI: 10.1113/jphysiol.1996.sp021343] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. With the use of front-surface fluorimetry and fura-2-loaded strips of bovine aortic valve, we characterized the [Ca2+]i transients induced in endothelial cells in situ using a non-selective purinergic agonist (adenosine 5'-triphosphate (ATP)), and selective agonists for P2X (alpha, beta-methylene ATP), P2Y (2-methylthio-ATP (2MeSATP)) and P2U (uridine 5'-triphosphate (UTP)) purinoceptors and an unrelated agonist bradykinin (BK). 2. Double staining with fura-2 and acetylated low-density lipoprotein labelled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indo-carbocyanine perchlorate showed that the fura-2 fluorescence arose exclusively from a single monolayer of endothelial cells covering the surface of the valvular strips. 3. All nucleotides (ATP, UTP and 2MeSATP) induced an elevation of the intracellular Ca2+ concentration ([Ca2+]i), with an initial transient peak and a subsequent lower sustained elevation. Blockade of the Ca2+ influx with 1 mM Ni2+ did not affect the peak levels of the [Ca2+]i transients, whereas it abolished the sustained increases in [Ca2+]i induced by these nucleotides. 4. The potency order of these nucleotides was 2MeSATP > ATP > UTP, while the order of the maximum responses was UTP = ATP > 2MeSATP. alpha, beta-Methylene ATP (up to 1 mM) had only a minimal effect. 5. Prolonged exposure to ATP or UTP, at concentrations giving a maximum response, desensitized the responses to ATP, UTP and 2MeSATP, but not to BK. Prolonged exposure to 2MeSATP at concentrations giving a maximum response did not desensitize the responses to UTP or BK, but did desensitize those to ATP and 2MeSATP. Prolonged exposure to BK did not induce heterologous desensitization to any of the three nucleotides. 6. [Ca2+]i elevation in valvular endothelial cells induced by UTP was associated with the relaxation of adjacent vascular medial strips precontracted with U-46619, the stable analogue of thromboxane A2. 7. We conclude that: (1) the peak elevation of the [Ca2+]i transient induced by these nucleotides is independent of extracellular Ca2+, which therefore suggests the release of intracellular Ca2+ and, (2) mature endothelial cells in situ, in a valvular preparation, have a common receptor for ATP and UTP (nucleotide or P2U receptor), which coexists with the P2Y receptor. Thus we propose that the activation of the nucleotide receptor, P2U, induces [Ca2+]i elevation in endothelial cells in situ, and thus leads to the release of vasorelaxing factors.
Collapse
Affiliation(s)
- Y Miyagi
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
46
|
Gödecke S, Decking UK, Gödecke A, Schrader J. Cloning of the rat P2u receptor and its potential role in coronary vasodilation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C570-7. [PMID: 8779921 DOI: 10.1152/ajpcell.1996.270.2.c570] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We cloned and sequenced the cDNA as well as the genomic DNA of the P2u receptor gene from the rat. The coding region of the gene is not interrupted by introns. P2u is expressed in a variety of rat organs with pronounced differences of expression intensities. Highest expression was found in liver and testis, while no expression could be detected in the brain. High P2u expression was found in primary microvascular endothelial cells from the rat heart, but not in cardiac myocytes. By in situ analysis, we localized P2u expression in epithelial cells of esophagus and bronchi. Functional analysis revealed that, in isolated perfused rat hearts, the P2u ligands UTP and ATP induce a pronounced vasodilation of coronary blood vessels. In contrast, UMP and uridine, the degradative products of UTP, act as potent vasoconstrictors. Our experiments suggest that, in the rat heart, endothelial P2u receptors are involved in the ATP/UTP-mediated vasodilation of coronary blood vessels.
Collapse
Affiliation(s)
- S Gödecke
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität, Dusseldorf, Germany
| | | | | | | |
Collapse
|
47
|
Enomoto K, Furuya K, Yamagishi S, Oka T, Maeno T. Release of arachidonic acid via Ca2+ increase stimulated by pyrophosphonucleotides and bradykinin in mammary tumour cells. Cell Biochem Funct 1995; 13:279-86. [PMID: 8565149 DOI: 10.1002/cbf.290130409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The relationship between the increase of intracellular Ca2+ and the release of arachidonic acid by bradykinin and pyrophosphonucleotides was studied in cultured mammary tumour cells, MMT060562. Bradykinin, ATP, UTP and UDP induced an increase of intracellular Ca2+ and the release of arachidonic acid from phospholipids into the extracellular fluid. Release of arachidonic acid was also induced by the application of the Ca2+ ionophore, A23187. Liberation of arachidonic acid by bradykinin and ATP was reduced by mepacrine, a blocker of phospholipase A2 and W-7, a calmodulin antagonist. It is suggested that the increase in cytosolic Ca(2+)-induced release of arachidonic acid occurs through activation of calmodulin-dependent phospholipase A2.
Collapse
Affiliation(s)
- K Enomoto
- Department of Physiology, Shimane Medical University, Japan
| | | | | | | | | |
Collapse
|
48
|
Boarder MR, Weisman GA, Turner JT, Wilkinson GF. G protein-coupled P2 purinoceptors: from molecular biology to functional responses. Trends Pharmacol Sci 1995; 16:133-9. [PMID: 7610499 DOI: 10.1016/s0165-6147(00)89001-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nucleotides such as ATP and ADP act as intercellular messengers and exert a widespread influence on cellular function by acting on a variety of cell surface receptors. Until recently, progress has been restrained, in part, by a lack of cloned receptors. Now, however, the successful cloning of a variety of P2 purinoceptors is holding out the prospect of rapid advances in the understanding of this diverse group of receptors and the potent therapeutic resource they represent. In this article, Michael Boarder and colleagues summarize the findings of recent cloning studies, and assess the impact of these on the understanding of the function of the G protein-coupled P2 purinoceptors in several types of cells and tissues.
Collapse
Affiliation(s)
- M R Boarder
- Department of Cell Physiology and Pharmacology, University of Leicester, UK
| | | | | | | |
Collapse
|
49
|
Erb L, Garrad R, Wang Y, Quinn T, Turner JT, Weisman GA. Site-directed mutagenesis of P2U purinoceptors. Positively charged amino acids in transmembrane helices 6 and 7 affect agonist potency and specificity. J Biol Chem 1995; 270:4185-8. [PMID: 7876172 DOI: 10.1074/jbc.270.9.4185] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two subtypes of G protein-coupled receptors for nucleotides (P2U and P2Y purinoreceptors) contain several conserved positively charged amino acids in the third, sixth, and seventh putative transmembrane helices (TMHs). Since the fully ionized form of nucleotides has been shown to be an activating ligand for both P2U and P2Y purinoceptors (P2UR and P2YR), we postulated that some of these positively charged amino acids are involved in binding of the negatively charged phosphate groups of nucleotides. To investigate the role of the conserved positively charged amino acids in purinoceptor function, a series of mutant P2UR cDNAs were constructed so that lysine 107 and arginine 110 in TMH 3, histidine 262 and arginine 265 in TMH 6, and arginine 292 in TMH 7 were changed to the neutral amino acid leucine or isoleucine. The mutated P2UR cDNAs were stably expressed in 1321N1 astrocytoma cells and receptor activity was monitored by quantitating changes in the concentration of intracellular Ca2+ upon stimulation with full (ATP, UTP) or partial (ADP, UDP) P2UR agonists. Neutralization of His262, Arg265, or Arg292 caused a 100-850-fold decrease in the potency of ATP and UTP relative to the unmutated P2UR and rendered ADP and UDP ineffective. In contrast, neutralization of Lys107 or Arg110 did not alter the agonist potency or specificity of the P2UR. Neutralization of Lys289 in the P2UR, which is expressed as a glutamine residue in the P2Y subtype, did not alter receptor activity; however, a conservative change from lysine to arginine at this position altered the rank order of agonist potency so that ADP and UDP were approximately 100-fold more potent than ATP and UTP. A three-dimensional model of the P2UR indicates the feasibility of His262, Arg265, and Arg292 interactions with the phosphate groups of nucleotides.
Collapse
Affiliation(s)
- L Erb
- Department of Biochemistry, University of Missouri, Columbia 65212
| | | | | | | | | | | |
Collapse
|
50
|
Pintor J, Miras-Portugal MT. P2 purinergic receptors for diadenosine polyphosphates in the nervous system. GENERAL PHARMACOLOGY 1995; 26:229-35. [PMID: 7590071 DOI: 10.1016/0306-3623(94)00182-m] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. The actions of diadenosine polyphosphates, diadenosine tetraphosphate (Ap4A), diadenosine pentaphosphate (Ap5A) and diadenosine hexaphosphate (Ap6A) in the nervous system have been reviewed. 2. In the peripheral nervous system, diadenosine polyphosphates bind to P2-purinergic receptors such as the P2Y in chromaffin cells and Torpedo synaptosomes, P2X in vas deferens and urinary bladder and also Torpedo synaptosomes and P2U in endothelial chromaffin cells. 3. In the central nervous system ApnA compounds can act through P2X-purinoceptors opening cation channels in nodose ganglion neurones. Diadenosine polyphosphates bind to a P2d-purinergic receptor in rat brain synaptic terminals and hippocampus, linked to protein kinase C (PKC) activation. 4. P4-purinoceptors are specific receptors for diadenosine polyphosphates, coupled to the Ca2+ influx, in the central synapses. This purinoceptor is not activated by ATP and synthetic analogs. The P4-purinoceptor could act as a positive modulator of the synaptic transmission, giving even more importance to diadenosine polyphosphates as neurotransmitters.
Collapse
|