1
|
Garcia Jareño P, Bartley OJM, Precious SV, Rosser AE, Lelos MJ. Challenges in progressing cell therapies to the clinic for Huntington's disease: A review of the progress made with pluripotent stem cell derived medium spiny neurons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:1-48. [PMID: 36424090 DOI: 10.1016/bs.irn.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Huntington's disease (HD) is a hereditary, neurodegenerative disorder characterized by a triad of symptoms: motor, cognitive and psychiatric. HD is caused by a genetic mutation, expansion of the CAG repeat in the huntingtin gene, which results in loss of medium spiny neurons (MSNs) of the striatum. Cell replacement therapy (CRT) has emerged as a possible therapy for HD, aiming to replace those cells lost to the disease process and alleviate its symptoms. Initial pre-clinical studies used primary fetal striatal cells to provide proof-of-principal that CRT can bring about functional recovery on some behavioral tasks following transplantation into HD models. Alternative donor cell sources are required if CRT is to become a viable therapeutic option and human pluripotent stem cell (hPSC) sources, which have undergone differentiation toward the MSNs lost to the disease process, have proved to be strong candidates. The focus of this chapter is to review work conducted on the functional assessment of animals following transplantation of hPSC-derived MSNs. We discuss different ways that graft function has been assessed, and the results that have been achieved to date. In addition, this chapter presents and discusses challenges that remain in this field.
Collapse
Affiliation(s)
| | - Oliver J M Bartley
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sophie V Precious
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; Cardiff University Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Besusso D, Schellino R, Boido M, Belloli S, Parolisi R, Conforti P, Faedo A, Cernigoj M, Campus I, Laporta A, Bocchi VD, Murtaj V, Parmar M, Spaiardi P, Talpo F, Maniezzi C, Toselli MG, Biella G, Moresco RM, Vercelli A, Buffo A, Cattaneo E. Stem Cell-Derived Human Striatal Progenitors Innervate Striatal Targets and Alleviate Sensorimotor Deficit in a Rat Model of Huntington Disease. Stem Cell Reports 2020; 14:876-891. [PMID: 32302555 PMCID: PMC7220987 DOI: 10.1016/j.stemcr.2020.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/13/2023] Open
Abstract
Huntington disease (HD) is an inherited late-onset neurological disorder characterized by progressive neuronal loss and disruption of cortical and basal ganglia circuits. Cell replacement using human embryonic stem cells may offer the opportunity to repair the damaged circuits and significantly ameliorate disease conditions. Here, we showed that in-vitro-differentiated human striatal progenitors undergo maturation and integrate into host circuits upon intra-striatal transplantation in a rat model of HD. By combining graft-specific immunohistochemistry, rabies virus-mediated synaptic tracing, and ex vivo electrophysiology, we showed that grafts can extend projections to the appropriate target structures, including the globus pallidus, the subthalamic nucleus, and the substantia nigra, and receive synaptic contact from both host and graft cells with 6.6 ± 1.6 inputs cell per transplanted neuron. We have also shown that transplants elicited a significant improvement in sensory-motor tasks up to 2 months post-transplant further supporting the therapeutic potential of this approach.
Collapse
Affiliation(s)
- Dario Besusso
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy.
| | - Roberta Schellino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10124, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10124, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | - Sara Belloli
- Institute of Molecular Bioimaging and Physiology of CNR, Segrate, Milan, 20090 Italy; PET and Nuclear Medicine Unit, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Roberta Parolisi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10124, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy
| | - Andrea Faedo
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy
| | - Manuel Cernigoj
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy
| | - Ilaria Campus
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy
| | - Angela Laporta
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy
| | - Vittoria Dickinson Bocchi
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy
| | - Valentina Murtaj
- PET and Nuclear Medicine Unit, San Raffaele Scientific Institute, Milan 20132, Italy; PhD Program in Neuroscience, Department of Medicine and Surgery, University of Milano - Bicocca, Monza MB, 20900 Italy
| | - Malin Parmar
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Paolo Spaiardi
- Department of Biology and Biotechnologies, University of Pavia, Pavia, 27100 Italy
| | - Francesca Talpo
- Department of Biology and Biotechnologies, University of Pavia, Pavia, 27100 Italy
| | - Claudia Maniezzi
- Department of Biology and Biotechnologies, University of Pavia, Pavia, 27100 Italy
| | | | - Gerardo Biella
- Department of Biology and Biotechnologies, University of Pavia, Pavia, 27100 Italy
| | - Rosa Maria Moresco
- Institute of Molecular Bioimaging and Physiology of CNR, Segrate, Milan, 20090 Italy; PET and Nuclear Medicine Unit, San Raffaele Scientific Institute, Milan 20132, Italy; Department of Medicine and Surgery, University of Milano - Bicocca, Monza MB, 20900 Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10124, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10124, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy.
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy.
| |
Collapse
|
3
|
Crane AT, Voth JP, Shen FX, Low WC. Concise Review: Human-Animal Neurological Chimeras: Humanized Animals or Human Cells in an Animal? Stem Cells 2019; 37:444-452. [PMID: 30629789 DOI: 10.1002/stem.2971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Blastocyst complementation is an emerging methodology in which human stem cells are transferred into genetically engineered preimplantation animal embryos eventually giving rise to fully developed human tissues and organs within the animal host for use in regenerative medicine. The ethical issues surrounding this method have caused the National Institutes of Health to issue a moratorium on funding for blastocyst complementation citing the potential for human cells to substantially contribute to the brain of the chimeric animal. To address this concern, we performed an in-depth review of the neural transplantation literature to determine how the integration of human cells into the nonhuman neural circuitry has altered the behavior of the host. Despite reports of widespread integration of human cell transplants, our review of 150 transplantation studies found no evidence suggestive of humanization of the animal host, and we thus conclude that, at present, concerns over humanization should not prevent research on blastocyst complementation to continue. We suggest proceeding in a controlled and transparent manner, however, and include recommendations for future research with careful consideration for how human cells may contribute to the animal host nervous system. Stem Cells 2019;37:444-452.
Collapse
Affiliation(s)
- Andrew T Crane
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Minnesota Craniofacial Research Training Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph P Voth
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Francis X Shen
- University of Minnesota Law School, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Walter C Low
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Tartaglione AM, Popoli P, Calamandrei G. Regenerative medicine in Huntington's disease: Strengths and weaknesses of preclinical studies. Neurosci Biobehav Rev 2017; 77:32-47. [PMID: 28223129 DOI: 10.1016/j.neubiorev.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 01/22/2023]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder, characterized by impairment in motor, cognitive and psychiatric domains. Currently, there is no specific therapy to act on the onset or progression of HD. The marked neuronal death observed in HD is a main argument in favour of stem cells (SCs) transplantation as a promising therapeutic perspective to replace the population of lost neurons and restore the functionality of the damaged circuitry. The availability of rodent models of HD encourages the investigation of the restorative potential of SCs transplantation longitudinally. However, the results of preclinical studies on SCs therapy in HD are so far largely inconsistent; this hampers the individuation of the more appropriate model and precludes the comparative analysis of transplant efficacy on behavioural end points. Thus, this review will describe the state of the art of in vivo research on SCs therapy in HD, analysing in a translational perspective the strengths and weaknesses of animal studies investigating the therapeutic potential of cell transplantation on HD progression.
Collapse
Affiliation(s)
- A M Tartaglione
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Popoli
- National Centre for Medicines Research and Preclinical/Clinical Evaluation, Rome, Italy
| | - G Calamandrei
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
5
|
Lelos MJ, Roberton VH, Vinh NN, Harrison C, Eriksen P, Torres EM, Clinch SP, Rosser AE, Dunnett SB. Direct Comparison of Rat- and Human-Derived Ganglionic Eminence Tissue Grafts on Motor Function. Cell Transplant 2016; 25:665-75. [DOI: 10.3727/096368915x690297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a debilitating, genetically inherited neurodegenerative disorder that results in early loss of medium spiny neurons from the striatum and subsequent degeneration of cortical and other subcortical brain regions. Behavioral changes manifest as a range of motor, cognitive, and neuropsychiatric impairments. It has been established that replacement of the degenerated medium spiny neurons with rat-derived fetal whole ganglionic eminence (rWGE) tissue can alleviate motor and cognitive deficits in preclinical rodent models of HD. However, clinical application of this cell replacement therapy requires the use of human-derived (hWGE), not rWGE, tissue. Despite this, little is currently known about the functional efficacy of hWGE. The aim of this study was to directly compare the ability of the gold standard rWGE grafts, against the clinically relevant hWGE grafts, on a range of behavioral tests of motor function. Lister hooded rats either remained as unoperated controls or received unilateral excitotoxic lesions of the lateral neostriatum. Subsets of lesioned rats then received transplants of either rWGE or hWGE primary fetal tissue into the lateral striatum. All rats were tested postlesion and postgraft on the following tests of motor function: staircase test, apomorphine-induced rotation, cylinder test, adjusting steps test, and vibrissae-evoked touch test. At 21 weeks postgraft, brain tissue was taken for histological analysis. The results revealed comparable improvements in apomorphine-induced rotational bias and the vibrissae test, despite larger graft volumes in the hWGE cohort. hWGE grafts, but not rWGE grafts, stabilized behavioral performance on the adjusting steps test. These results have implications for clinical application of cell replacement therapies, as well as providing a foundation for the development of stem cell-derived cell therapy products.
Collapse
Affiliation(s)
- Mariah J. Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Victoria H. Roberton
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Ngoc-Nga Vinh
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Carl Harrison
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Peter Eriksen
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Eduardo M. Torres
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Susanne P. Clinch
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Anne E. Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
- Neuroscience and Mental Health Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Stephen B. Dunnett
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
6
|
McLeod MC, Kobayashi NR, Sen A, Baghbaderani BA, Sadi D, Ulalia R, Behie LA, Mendez I. Transplantation of GABAergic cells derived from bioreactor-expanded human neural precursor cells restores motor and cognitive behavioral deficits in a rodent model of Huntington's disease. Cell Transplant 2012; 22:2237-56. [PMID: 23127784 DOI: 10.3727/096368912x658809] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that is characterized by progressive dementia, choreiform involuntary movements, and emotional deterioration. Neuropathological features include the progressive degeneration of striatal γ-aminobutyric acid (GABA) neurons. New therapeutic approaches, such as the transplantation of human neural precursor cells (hNPCs) to replace damaged or degenerated cells, are currently being investigated. The aim of this study was to investigate the potential for utilizing telencephalic hNPCs expanded in suspension bioreactors for cell restorative therapy in a rodent model of HD. hNPCs were expanded in a hydrodynamically controlled and homogeneous environment under serum-free conditions. In vitro analysis revealed that the bioreactor-expanded telencephalic (BET)-hNPCs could be differentiated into a highly enriched population of GABAergic neurons. Behavioral assessments of unilateral striatal quinolinic acid-lesioned rodents revealed a significant improvement in motor and memory deficits following transplantation with GABAergic cells differentiated from BET-hNPCs. Immunohistochemical analysis revealed that transplanted BET-hNPCs retained a GABAergic neuronal phenotype without aberrant transdifferentiation or tumor formation, indicating that BET-hNPCs are a safe source of cells for transplantation. This preclinical study has important implications as the transplantation of GABAergic cells derived from predifferentiated BET-hNPCs may be a safe and feasible cell replacement strategy to promote behavioral recovery in HD.
Collapse
Affiliation(s)
- Marcus C McLeod
- Cell Restoration Laboratory, Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Manganas LN, Maletic-Savatic M. Stem cell therapy for central nervous system demyelinating disease. Curr Neurol Neurosci Rep 2005; 5:225-31. [PMID: 15865888 PMCID: PMC4031751 DOI: 10.1007/s11910-005-0050-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances in cell-based therapies for demyelinating central nervous system diseases have demonstrated the ability to restore damaged neuronal architecture and function. Demyelinated axons in patients with multiple sclerosis can spontaneously remyelinate over time; however, the rate and extent at which remyelination occurs is inadequate for complete recovery. Previous attempts aimed at regenerating myelin-forming cells have been successful but limited by the multifocal nature of the lesions and the inability to produce large numbers of myelin-producing cells in culture. Stem cell-based therapy can overcome these limitations to some extent and may prove useful in the future treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Louis N. Manganas
- Department of Neurology, Stony Brook University, Stony Brook, NY 11794-8121, Tel: 631-444-8120, Fax:631-444-1474, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, Tel 516-367-6827, Fax 516-367-6805
| | - Mirjana Maletic-Savatic
- Department of Neurology, Stony Brook University, Stony Brook, NY 11794-8121, Tel: 631-444-8120, Fax:631-444-1474, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, Tel 516-367-6827, Fax 516-367-6805
| |
Collapse
|
9
|
Rosser AE, Barker RA, Armstrong RJE, Elneil S, Jain M, Hurelbrink CB, Prentice A, Carne C, Thornton S, Hutchinson H, Dunnett SB. Staging and preparation of human fetal striatal tissue for neural transplantation in Huntington's disease. Cell Transplant 2004; 12:679-86. [PMID: 14653615 DOI: 10.3727/000000003108747299] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of human fetal central nervous system tissue has been shown to be of benefit in Parkinson's disease, and is currently being explored as a therapeutic option in Huntington's disease. The success of a neural transplant is dependent on a number of factors, including the requirement that donor cells are harvested within a given developmental window and that the cell preparation protocols take account of the biological parameters identified in animal models. Although many of the criteria necessary for a successful neural transplant have been defined in animal models, ultimately they must be validated in human studies, and some issues can only ever be addressed in human studies. Furthermore, because neural transplantation of human fetal tissue is limited to small numbers of patients in any one surgical center, largely due to practical constraints, it is crucial that tissue preparation protocols are clearly defined and reproducible, so that (i) multicenter trials are possible and are based on consistent tissue preparation parameters, and (ii) results between centers can be meaningfully analyzed. Here we describe the preparation of human fetal striatum for neural transplantation in Huntington's disease, and report on the validation of a method for estimating the developmental stage of the fetus based on direct morphometric measurements of the embryonic tissue.
Collapse
Affiliation(s)
- A E Rosser
- School of Biosciences, Cardiff University, PO Box 911, Museum Av, Cardiff CF10 3US, Wales, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Stem cells are widely believed to have significant potential in the treatment of human disease. Comments such as '[stem cells]...could prove the Holy Grail in finding treatments for cancer, Parkinson's disease, diabetes, osteoporosis, spinal cord injuries, Alzheimer's disease, leukaemia and multiple sclerosis...transform[ing] the lives of hundreds of thousands of people' (Yvette Cooper, Public Health minister, quoted in The Times, December 16 2000, authors' italics) serve to reinforce the extraordinary expectations of stem cells, particularly in neurological disease. Stem cells, traditionally defined as clone forming, self-renewing, pluripotent, progenitor cells, have already proved themselves to be an invaluable source of transplantation material in several clinical settings, most notably malignant haematology, and attention is now turning to a wider variety of diseases in which there may be potential for therapeutic intervention with stem cell transplantation. Neurological diseases have been highlighted as a priority and this is understandable given their unenviable reputation for relentless progression and the paucity of disease-modifying treatments. However, it is important that the potential of stem cells to treat neurological disease is critically appraised if the hopes of patients and doctors are not to be raised without foundation.
Collapse
Affiliation(s)
- C M Rice
- University of Bristol Institute of Clinical Neurosciences Frenchay Hospital, Bristol, UK
| | | | | |
Collapse
|
11
|
Mahmood A, Lu D, Lu M, Chopp M. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 2003; 53:697-702; discussion 702-3. [PMID: 12943585 DOI: 10.1227/01.neu.0000079333.61863.aa] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 04/23/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We investigated the effect of human bone marrow stromal cells (hMSCs) administered intravenously on functional outcome after traumatic brain injury in adult rats. METHODS hMSCs were harvested from three human donors. A controlled cortical impact was delivered to 27 adult male rats to induce traumatic brain injury, and 24 hours after injury, hMSCs were injected into the tail veins of the rats (n = 18). These rats were divided into two groups: Group 1 was administered 1 x 10(6) hMSCs, and Group 2 was administered 2 x 10(6) hMSCs. Group 3 (control) rats received saline intravenously. Neurological function was evaluated according to the rotarod test and modified neurological severity score. All rats were killed 1 month after injury, and immunohistochemical staining was performed on the brain sections to identify donor hMSCs. To study the phenotypic differentiation of hMSCs, coronal brain sections were stained for neuronal (Tuj1) and astrocytic (glial fibrillary acidic protein) markers. RESULTS Treatment with 2 x 10(6) hMSCs significantly improved the rats' functional outcomes (P < 0.05). The transplanted cells successfully migrated into injured brain and were preferentially localized around the injury site. Some of the donor cells also expressed the neuronal and astrocytic markers. CONCLUSION These data suggest that hMSCs may be a potential therapy for patients who have sustained traumatic brain injuries.
Collapse
Affiliation(s)
- Asim Mahmood
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan 48202, USA.
| | | | | | | |
Collapse
|
12
|
Agrawal AK, Roy A, Seth K, Raghubir R, Seth PK. Restorative potential of cholinergic rich transplants in cholchicine induced lesioned rats: a comparative study of single and multiple micro-transplantation approach. Int J Dev Neurosci 2003; 21:191-8. [PMID: 12781786 DOI: 10.1016/s0736-5748(03)00039-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Restorative potential of fetal neural transplantation in colchicine induced neurodegeneration was studied in rats; where colchicine (2.5mg per site) was administered bilaterally into the hippocampus followed by bilateral infusions of fetal neural cell suspension rich in cholinergic neurons as single macro- or multiple micro-transplants in the hippocampal region 3 weeks post-colchicine (2.5mg per site) lesion. Animals were studied for neuro behavioural and neurochemical recovery at 4 and 24 weeks post-transplantation and electrophysiological (single cell recording) and immunohistochemical parameters, choline acetyl transferase (ChAT) expression was studied in hippocampus at 24 weeks post-transplantation. Colchicine lesioned rats receiving single macro- or multiple micro-transplants exhibited significant restoration in cognitive dysfunction caused by colchicine after 4 weeks of transplantation which remain persistent in multiple micro-transplanted group upto 24 weeks post-transplantation, whereas, single macro-transplanted animals did not exhibit any significant recovery. Neurochemical studies revealed significant restoration in acetylcholine esterase activity and cholinergic (muscarinic) receptor binding after 24 weeks post-transplantation as compared to 4 weeks post-transplantation in multiple micro-transplanted group. Single cell recording studied at 24 weeks post-transplantation exhibited significant restoration in firing rates when compared with lesioned group. The viability of cholinergic fibre at transplanted sites has further been confirmed by increase in ChAT immuno positivity in hippocampal region using monoclonal antibody and quantified using image analyser Leica Qwin 500 software. The results suggest that intra-hippocampal multiple site cholinergic rich transplants provide better and long term restoration in the cholinergic deficits induced by colchicine lesion as compared to single site macro-transplantation.
Collapse
Affiliation(s)
- A K Agrawal
- Developmental Toxicology Division, Industrial Toxicology Research Centre, P.O. Box 80, M.G. Marg, Lucknow 226001, India.
| | | | | | | | | |
Collapse
|
13
|
Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 2002; 174:11-20. [PMID: 11869029 DOI: 10.1006/exnr.2001.7853] [Citation(s) in RCA: 556] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is now evidence to suggest that bone marrow mesenchymal stem cells (MSCs) not only differentiate into mesodermal cells, but can also adopt the fate of endodermal and ectodermal cell types. In this study, we addressed the hypotheses that human MSCs can differentiate into neural cells when implanted in the brain and restore sensorimotor function after experimental stroke. Purified human MSCs were grafted into the cortex surrounding the area of infarction 1 week after cortical brain ischemia in rats. Two and 6 weeks after transplantation animals were assessed for sensorimotor function and then sacrificed for histological examination. Ischemic rats that received human MSCs exhibited significantly improved functional performance in limb placement test. Histological analyses revealed that transplanted human MSCs expressed markers for astrocytes (GFAP(+)), oligodendroglia (GalC(+)), and neurons (beta III(+), NF160(+), NF200(+), hNSE(+), and hNF70(+)). The morphological features of the grafted cells, however, were spherical in nature with few processes. Therefore, it is unlikely that the functional recovery observed by the ischemic rats with human MSC grafts was mediated by the integration of new "neuronal" cells into the circuitry of the host brain. The observed functional improvement might have been mediated by proteins secreted by transplanted hMSCs, which could have upregulated host brain plasticity in response to experimental stroke.
Collapse
Affiliation(s)
- Li-Ru Zhao
- Department of Neurosurgery, University of Minnesota, 55455, USA
| | | | | | | | | | | |
Collapse
|
14
|
Freeman TB, Hauser RA, Sanberg PR, Saporta S. Neural transplantation for the treatment of Huntington's disease. PROGRESS IN BRAIN RESEARCH 2001; 127:405-11. [PMID: 11142038 DOI: 10.1016/s0079-6123(00)27019-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- T B Freeman
- Department of Neurosurgery, University of South Florida, Tampa, FL 33606, USA.
| | | | | | | |
Collapse
|
15
|
Low WC, Duan WM, Keene CD, Ni HT, Westerman MA. Immunobiology of Neural Xenotransplantation. NEUROMETHODS 2000. [DOI: 10.1007/978-1-59259-690-4_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Giordano M, Salado-Castillo R, Sánchez-Alvarez M, Prado-Alcalá RA. Striatal transplants prevent AF64A-induced retention deficits. Life Sci 1998; 63:1953-61. [PMID: 9839539 DOI: 10.1016/s0024-3205(98)00473-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The relevance of the cholinergic system in mnemonic processes has been repeatedly demonstrated. In addition to the cholinergic systems that project to the telencephalon, there are subcortical nuclei with intrinsic cholinergic cells which appear to be involved in memory consolidation; among these is the striatum. Intrastriatal administration of anticholinergic drugs, as well as excitotoxic and electrolytic lesions have been shown to disrupt the acquisition and retention of instrumentally conditioned behaviors. In the present study male Wistar rats were used to confirm the reported detrimental effects of striatal lesions produced by the cholinotoxin AF64A on long-term retention (LTR) of inhibitory avoidance and spontaneous locomotor activity, to determine its effects on short-term retention (STR) and to investigate whether intrastriatal homotopic transplants can reverse the AF64A-induced behavioral deficits. AF64A-striatal lesions did not interfere with STR but disrupted LTR of the inhibitory avoidance task, and striatal transplants prevented this deficit. Spontaneous locomotor activity increased after the lesion but promptly returned to baseline levels. These results support previous findings showing striatal involvement in long-term but not short-term retention and indicate that homotopic transplants induce behavioral recovery of a learning task in striatal lesioned rats.
Collapse
Affiliation(s)
- M Giordano
- Centro de Neurobiología, Campus UNAM-UAQ, México, D. F., México.
| | | | | | | |
Collapse
|
17
|
Lee MH, Rabe A. Protective effects of fetal neocortical transplants on cognitive function and neuron size in rats with congenital micrencephaly. Behav Brain Res 1998; 90:147-56. [PMID: 9521546 DOI: 10.1016/s0166-4328(97)00095-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rat with micrencephaly, produced by prenatal exposure to methylazoxymethanol, provides a useful model to study neurobehavioral abnormalities associated with congenital brain defects. The micrencephalic animals have a life-long learning impairment. As they age, their already impaired learning competence deteriorates further. To determine whether the aging-associated functional deterioration could be ameliorated by a neural transplant, micrencephalic rats bearing solid transplants of normal fetal neocortical tissue since infancy were evaluated on a visual pattern discrimination learning at 15 months and a spatial navigation test at 24 months of age. The transplant-bearing rats learned both tasks significantly better than the micrencephalic rats without transplants. Morphometric analyses revealed that cortical pyramidal neurons were larger in the transplant-bearing rats than in micrencephalic rats without transplants. The life-long presence of a transplant appeared to have protected the micrencephalic brain against aging-associated deterioration. This is the first demonstration that a neural transplant, placed in a congenitally defective infant brain, can ameliorate aging-associated cognitive deficits.
Collapse
Affiliation(s)
- M H Lee
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA.
| | | |
Collapse
|
18
|
Kopyov OV, Jacques S, Lieberman A, Duma CM, Eagle KS. Safety of intrastriatal neurotransplantation for Huntington's disease patients. Exp Neurol 1998; 149:97-108. [PMID: 9454619 DOI: 10.1006/exnr.1997.6685] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fetal neural transplantation has been shown to be a feasible, safe, and according to a number of recent reports, effective treatment for Parkinson's disease (PD). Fetal striatal transplantation may be as feasible, safe, and effective a treatment for Huntington's disease (HD), a disorder for which there is currently no effective treatment. This report describes our experience with fetal striatal transplantation to adult striatum in three HD patients. Three moderately advanced, nondemented HD patients received transplantation of fetal striatal tissue. The striatal precursor was selectively obtained from the lateral ganglionic eminence. Each patient received bilateral grafts from five to eight donors, placed into the caudate nucleus (one graft on each side) and the putamen (four grafts on each side). All three patients had HD as documented by family history, DNA heterozygosity (17-20 and 48-51 repeats), magnetic resonance imaging (MRI) revealing striatal atrophy, and 2-deoxyglucose positron emission tomography revealing striatal hypometabolism. All patients had been evaluated using the Unified Huntington's Disease Rating Scale and appropriate neuropsychological tests for at least 3 months prior to transplantation. One year following transplantation, MRI of all three patients revealed that the grafts survived and grew within the striatum without displacing the surrounding tissue. No patients demonstrated adverse effects of the surgery or the associated cyclosporin immunosuppression, nor did any patient exhibit deterioration following the procedure. The limited experience provided by these three patients indicates that fetal tissue transplantation can be performed in HD patients without unexpected complications.
Collapse
Affiliation(s)
- O V Kopyov
- Neurosciences Institute, Good Samaritan Hospital, Los Angeles, California 90017, USA
| | | | | | | | | |
Collapse
|
19
|
Svendsen CN, Caldwell MA, Shen J, ter Borg MG, Rosser AE, Tyers P, Karmiol S, Dunnett SB. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease. Exp Neurol 1997; 148:135-46. [PMID: 9398456 DOI: 10.1006/exnr.1997.6634] [Citation(s) in RCA: 321] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Progenitor cells were isolated from the developing human central nervous system (CNS), induced to divide using a combination of epidermal growth factor and fibroblast growth factor-2, and then transplanted into the striatum of adult rats with unilateral dopaminergic lesions. Large grafts were found at 2 weeks survival which contained many undifferentiated cells, some of which were migrating into the host striatum. However, by 20 weeks survival, only a thin strip of cells remained at the graft core while a large number of migrating astrocytes labeled with a human-specific antibody could be seen throughout the striatum. Fully differentiated graft-derived neurons, also labeled with a human-specific antibody, were seen close to the transplant site in some animals. A number of these neurons expressed tyrosine hydroxylase and were sufficient to partially ameliorate lesion-induced behavioral deficits in two animals. These results show that expanded populations of human CNS progenitor cells maintained in a proliferative state in culture can migrate and differentiate into both neurons and astrocytes following intracerebral grafting. As such these cells may have potential for development as an alternative source of tissue for neural transplantation in degenerative diseases.
Collapse
Affiliation(s)
- C N Svendsen
- MRC Cambridge Centre for Brain Repair, Cambridge University Forvie Site, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pundt LL, Narang N, Kondoh T, Low WC. Localization of dopamine receptors and associated mRNA in transplants of human fetal striatal tissue in rodents with experimental Huntington's disease. Neurosci Res 1997; 27:305-15. [PMID: 9152043 DOI: 10.1016/s0168-0102(96)01163-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Huntington's Disease (HD) is characterized by deficits in motor and cognitive functions. This neurodegenerative disease shows an extensive loss of medium-sized spiny projection neurons (GABAergic) within the neostriatum. With the loss of these neurons, there is a concomitant loss of associated receptors, such as those for GABA, glutamate, and dopamine. In the present study, we have addressed the question of whether dopamine receptors are re-established in the lesioned rodent striatum following the transplantation of human striatal cells. Human striatal cell suspension or saline (transplant controls) was injected into the striatum of rats previously lesioned with quinolinic acid (QA). Three nine months following transplantation, the animals were sacrificed and the brains were processed for receptor autoradiography and in situ hybridization of dopamine D1 and D2 receptor subtypes. Our results demonstrate that animals transplanted with human striatal cells show a significant increase in D1 receptors following transplantation when compared to the lesion area in control animals, while D1 receptor mRNA remains unchanged. In contrast to D1 receptor binding, D2 receptor levels are not increased in the lesioned and transplanted area of the striatum when compared to controls; however, D2 receptor mRNA levels are significantly increased. These results demonstrate that at the times the animals were examined, D1 and D2 receptors were differentially regulated. Our results further indicate that human striatal primordium will survive following transplantation and will express D1 receptors and D2 receptor mRNA that are depleted in the QA lesioned rodent striatum. This study compliments and extends previous findings on human striatal cell transplantation in rodent models of HD.
Collapse
Affiliation(s)
- L L Pundt
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | |
Collapse
|