1
|
Central auditory processing in adults with chronic stroke without hearing loss: A magnetoencephalography study. Clin Neurophysiol 2020; 131:1102-1118. [PMID: 32200092 DOI: 10.1016/j.clinph.2020.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/05/2020] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Stroke lesions in non-auditory areas may affect higher-order central auditory processing. We sought to characterize auditory functions in chronic stroke survivors with unilateral arm/hand impairment using auditory evoked responses (AERs) with lesion and perception metrics. METHODS The AERs in 29 stroke survivors and 14 controls were recorded with single tones, active and passive frequency-oddballs, and a dual-oddball with pitch-contour and time-interval deviants. Performance in speech-in-noise, mistuning detection, and moving-sound detection was assessed. Relationships between AERs, behaviour, and lesion overlap with functional networks, were examined. RESULTS Despite their normal hearing, eight patients showed unilateral AER in the hemisphere ipsilateral to the affected hand with reduced amplitude compared to those with bilateral AERs. Both groups showed increasing attenuation of later components. Hemispheric asymmetry of AER sources was reduced in bilateral-AER patients. The N1 wave (100 ms latency) and P2 (200 ms) were delayed in individuals with lesions in the basal-ganglia and white-matter, while lesions in the attention network reduced the frequency-MMN (mismatch negativity) responses and increased the pitch-contour P3a response. Patients' impaired speech-in-noise perception was explained by AER measures and frequency-deviant detection performance with multiple regression. CONCLUSION AERs reflect disruption of auditory functions due to damage outside of temporal lobe, and further explain complexity of neural mechanisms underlying higher-order auditory perception. SIGNIFICANCE Stroke survivors without obvious hearing problems may benefit from rehabilitation for central auditory processing.
Collapse
|
2
|
Maddox WT, Koslov S, Yi HG, Chandrasekaran B. Performance Pressure Enhances Speech Learning. APPLIED PSYCHOLINGUISTICS 2016; 37:1369-1396. [PMID: 28077883 PMCID: PMC5222599 DOI: 10.1017/s0142716415000600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Real-world speech learning often occurs in high pressure situations such as trying to communicate in a foreign country. However, the impact of pressure on speech learning success is largely unexplored. In this study, adult, native speakers of English learned non-native speech categories under pressure or no-pressure conditions. In the pressure conditions, participants were informed that they were paired with a (fictitious) partner, and that each had to independently exceed a performance criterion for both to receive a monetary bonus. They were then informed that their partner had exceeded the bonus and the fate of both bonuses depended upon the participant's performance. Our results demonstrate that pressure significantly enhanced speech learning success. In addition, neurobiologically-inspired computational modeling revealed that the performance advantage was due to faster and more frequent use of procedural learning strategies. These results integrate two well-studied research domains and suggest a facilitatory role of motivational factors in speech learning performance that may not be captured in traditional training paradigms.
Collapse
Affiliation(s)
- W Todd Maddox
- Department of Psychology, 1 University Station A8000, Austin, TX, USA, 78712
| | - Seth Koslov
- Department of Psychology, 1 University Station A8000, Austin, TX, USA, 78712
| | - Han-Gyol Yi
- Department of Communication Sciences and Disorders, 1 University Station A1100, Austin, TX, USA, 78712
| | - Bharath Chandrasekaran
- Department of Psychology, 1 University Station A8000, Austin, TX, USA, 78712; Department of Communication Sciences and Disorders, 1 University Station A1100, Austin, TX, USA, 78712
| |
Collapse
|
3
|
Reichenbach N, Herrmann U, Kähne T, Schicknick H, Pielot R, Naumann M, Dieterich DC, Gundelfinger ED, Smalla KH, Tischmeyer W. Differential effects of dopamine signalling on long-term memory formation and consolidation in rodent brain. Proteome Sci 2015; 13:13. [PMID: 25852303 PMCID: PMC4387680 DOI: 10.1186/s12953-015-0069-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/25/2015] [Indexed: 12/01/2022] Open
Abstract
Background Using auditory discrimination learning in gerbils, we have previously shown that activation of auditory-cortical D1/D5 dopamine receptors facilitates mTOR-mediated, protein synthesis-dependent mechanisms of memory consolidation and anterograde memory formation. To understand molecular mechanisms of this facilitatory effect, we tested the impact of local pharmacological activation of different D1/D5 dopamine receptor signalling modes in the auditory cortex. To this end, protein patterns in soluble and synaptic protein-enriched fractions from cortical, hippocampal and striatal brain regions of ligand- and vehicle-treated gerbils were analysed by 2D gel electrophoresis and mass spectrometry 24 h after intervention. Results After auditory-cortical injection of SKF38393 – a D1/D5 dopamine receptor-selective agonist reported to activate the downstream effectors adenylyl cyclase and phospholipase C – prominent proteomic alterations compared to vehicle-treated controls appeared in the auditory cortex, striatum, and hippocampus, whereas only minor changes were detectable in the frontal cortex. In contrast, auditory-cortical injection of SKF83959 – a D1/D5 agonist reported to preferentially stimulate phospholipase C – induced pronounced changes in the frontal cortex. At the molecular level, we detected altered regulation of cytoskeletal and scaffolding proteins, changes in proteins with functions in energy metabolism, local protein synthesis, and synaptic signalling. Interestingly, abundance and/or subcellular localisation of the predominantly presynaptic protein α-synuclein displayed dopaminergic regulation. To assess the role of α-synuclein for dopaminergic mechanisms of memory modulation, we tested the impact of post-conditioning systemic pharmacological activation of different D1/D5 dopamine receptor signalling modes on auditory discrimination learning in α-synuclein-mutant mice. In C57BL/6JOlaHsd mice, bearing a spontaneous deletion of the α-synuclein-encoding gene, but not in the related substrains C57BL/6JCrl and C57BL/6JRccHsd, adenylyl cyclase-mediated signalling affected acquisition rates over future learning episodes, whereas phospholipase C-mediated signalling affected final memory performance. Conclusions Dopamine signalling modes via D1/D5 receptors in the auditory cortex differentially impact protein profiles related to rearrangement of cytomatrices, energy metabolism, and synaptic neurotransmission in cortical, hippocampal, and basal brain structures. Altered dopamine neurotransmission in α-synuclein-deficient mice revealed that distinct D1/D5 receptor signalling modes may control different aspects of memory consolidation. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0069-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Reichenbach
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Present address: Research Group Neurovascular Diseases, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, Bonn, 53175 Germany
| | - Ulrike Herrmann
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Present address: Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, 38106 Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, 39120 Germany
| | - Horst Schicknick
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany
| | - Rainer Pielot
- Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, 39120 Germany
| | - Daniela C Dieterich
- Research Group Neuralomics, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, 39120 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany
| | - Eckart D Gundelfinger
- Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany ; Molecular Neurobiology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, 39120 Germany
| | - Karl-Heinz Smalla
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany
| | - Wolfgang Tischmeyer
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany
| |
Collapse
|
4
|
Yi HG, Maddox WT, Mumford JA, Chandrasekaran B. The Role of Corticostriatal Systems in Speech Category Learning. Cereb Cortex 2014; 26:1409-1420. [PMID: 25331600 DOI: 10.1093/cercor/bhu236] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the most difficult category learning problems for humans is learning nonnative speech categories. While feedback-based category training can enhance speech learning, the mechanisms underlying these benefits are unclear. In this functional magnetic resonance imaging study, we investigated neural and computational mechanisms underlying feedback-dependent speech category learning in adults. Positive feedback activated a large corticostriatal network including the dorsolateral prefrontal cortex, inferior parietal lobule, middle temporal gyrus, caudate, putamen, and the ventral striatum. Successful learning was contingent upon the activity of domain-general category learning systems: the fast-learning reflective system, involving the dorsolateral prefrontal cortex that develops and tests explicit rules based on the feedback content, and the slow-learning reflexive system, involving the putamen in which the stimuli are implicitly associated with category responses based on the reward value in feedback. Computational modeling of response strategies revealed significant use of reflective strategies early in training and greater use of reflexive strategies later in training. Reflexive strategy use was associated with increased activation in the putamen. Our results demonstrate a critical role for the reflexive corticostriatal learning system as a function of response strategy and proficiency during speech category learning.
Collapse
Affiliation(s)
- Han-Gyol Yi
- Department of Communication Sciences & Disorders, Moody College of Communication, The University of Texas at Austin, Austin, TX, USA
| | - W Todd Maddox
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, Austin, TX, USA.,Institute for Mental Health Research, College of Liberal Arts, The University of Texas at Austin, Austin, TX, USA.,The Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.,Center for Perceptual Systems, College of Liberal Arts, The University of Texas at Austin, Austin, TX, USA
| | - Jeanette A Mumford
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, Austin, TX, USA
| | - Bharath Chandrasekaran
- Department of Communication Sciences & Disorders, Moody College of Communication, The University of Texas at Austin, Austin, TX, USA.,Institute for Mental Health Research, College of Liberal Arts, The University of Texas at Austin, Austin, TX, USA.,The Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Maddox WT, Chandrasekaran B. Tests of a Dual-systems Model of Speech Category Learning. BILINGUALISM (CAMBRIDGE, ENGLAND) 2014; 17:709-728. [PMID: 25264426 PMCID: PMC4171735 DOI: 10.1017/s1366728913000783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In the visual domain, more than two decades of work posits the existence of dual category learning systems. The reflective system uses working memory to develop and test rules for classifying in an explicit fashion. The reflexive system operates by implicitly associating perception with actions that lead to reinforcement. Dual-systems models posit that in learning natural categories, learners initially use the reflective system and with practice, transfer control to the reflexive system. The role of reflective and reflexive systems in second language (L2) speech learning has not been systematically examined. Here monolingual, native speakers of American English were trained to categorize Mandarin tones produced by multiple talkers. Our computational modeling approach demonstrates that learners use reflective and reflexive strategies during tone category learning. Successful learners use talker-dependent, reflective analysis early in training and reflexive strategies by the end of training. Our results demonstrate that dual-learning systems are operative in L2 speech learning. Critically, learner strategies directly relate to individual differences in category learning success.
Collapse
|
6
|
Lim SJ, Fiez JA, Holt LL. How may the basal ganglia contribute to auditory categorization and speech perception? Front Neurosci 2014; 8:230. [PMID: 25136291 PMCID: PMC4117994 DOI: 10.3389/fnins.2014.00230] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/13/2014] [Indexed: 02/01/2023] Open
Abstract
Listeners must accomplish two complementary perceptual feats in extracting a message from speech. They must discriminate linguistically-relevant acoustic variability and generalize across irrelevant variability. Said another way, they must categorize speech. Since the mapping of acoustic variability is language-specific, these categories must be learned from experience. Thus, understanding how, in general, the auditory system acquires and represents categories can inform us about the toolbox of mechanisms available to speech perception. This perspective invites consideration of findings from cognitive neuroscience literatures outside of the speech domain as a means of constraining models of speech perception. Although neurobiological models of speech perception have mainly focused on cerebral cortex, research outside the speech domain is consistent with the possibility of significant subcortical contributions in category learning. Here, we review the functional role of one such structure, the basal ganglia. We examine research from animal electrophysiology, human neuroimaging, and behavior to consider characteristics of basal ganglia processing that may be advantageous for speech category learning. We also present emerging evidence for a direct role for basal ganglia in learning auditory categories in a complex, naturalistic task intended to model the incidental manner in which speech categories are acquired. To conclude, we highlight new research questions that arise in incorporating the broader neuroscience research literature in modeling speech perception, and suggest how understanding contributions of the basal ganglia can inform attempts to optimize training protocols for learning non-native speech categories in adulthood.
Collapse
Affiliation(s)
- Sung-Joo Lim
- Department of Psychology, Carnegie Mellon University Pittsburgh, PA, USA ; Department of Neuroscience, Center for the Neural Basis of Cognition, University of Pittsburgh Pittsburgh, PA, USA
| | - Julie A Fiez
- Department of Neuroscience, Center for the Neural Basis of Cognition, University of Pittsburgh Pittsburgh, PA, USA ; Department of Neuroscience, Center for Neuroscience, University of Pittsburgh Pittsburgh, PA, USA ; Department of Psychology, University of Pittsburgh Pittsburgh, PA, USA
| | - Lori L Holt
- Department of Psychology, Carnegie Mellon University Pittsburgh, PA, USA ; Department of Neuroscience, Center for the Neural Basis of Cognition, University of Pittsburgh Pittsburgh, PA, USA ; Department of Neuroscience, Center for Neuroscience, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
7
|
Chandrasekaran B, Koslov SR, Maddox WT. Toward a dual-learning systems model of speech category learning. Front Psychol 2014; 5:825. [PMID: 25132827 PMCID: PMC4116788 DOI: 10.3389/fpsyg.2014.00825] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 07/10/2014] [Indexed: 11/15/2022] Open
Abstract
More than two decades of work in vision posits the existence of dual-learning systems of category learning. The reflective system uses working memory to develop and test rules for classifying in an explicit fashion, while the reflexive system operates by implicitly associating perception with actions that lead to reinforcement. Dual-learning systems models hypothesize that in learning natural categories, learners initially use the reflective system and, with practice, transfer control to the reflexive system. The role of reflective and reflexive systems in auditory category learning and more specifically in speech category learning has not been systematically examined. In this article, we describe a neurobiologically constrained dual-learning systems theoretical framework that is currently being developed in speech category learning and review recent applications of this framework. Using behavioral and computational modeling approaches, we provide evidence that speech category learning is predominantly mediated by the reflexive learning system. In one application, we explore the effects of normal aging on non-speech and speech category learning. Prominently, we find a large age-related deficit in speech learning. The computational modeling suggests that older adults are less likely to transition from simple, reflective, unidimensional rules to more complex, reflexive, multi-dimensional rules. In a second application, we summarize a recent study examining auditory category learning in individuals with elevated depressive symptoms. We find a deficit in reflective-optimal and an enhancement in reflexive-optimal auditory category learning. Interestingly, individuals with elevated depressive symptoms also show an advantage in learning speech categories. We end with a brief summary and description of a number of future directions.
Collapse
Affiliation(s)
- Bharath Chandrasekaran
- SoundBrain Lab, Department of Communication Sciences and Disorders, The University of Texas at AustinAustin, TX, USA
- Institute for Mental Health Research, The University of Texas at AustinAustin, TX, USA
- Institute for Neuroscience, The University of Texas at AustinAustin, TX, USA
- Department of Psychology, The University of Texas at AustinAustin, TX, USA
| | - Seth R. Koslov
- Department of Psychology, The University of Texas at AustinAustin, TX, USA
| | - W. T. Maddox
- Institute for Mental Health Research, The University of Texas at AustinAustin, TX, USA
- Institute for Neuroscience, The University of Texas at AustinAustin, TX, USA
- Department of Psychology, The University of Texas at AustinAustin, TX, USA
| |
Collapse
|
8
|
Smith JD, Johnston JJR, Musgrave RD, Zakrzewski AC, Boomer J, Church BA, Ashby FG. Cross-modal information integration in category learning. Atten Percept Psychophys 2014; 76:1473-84. [PMID: 24671743 PMCID: PMC4096072 DOI: 10.3758/s13414-014-0659-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An influential theoretical perspective describes an implicit category-learning system that associates regions of perceptual space with response outputs by integrating information preattentionally and predecisionally across multiple stimulus dimensions. In this study, we tested whether this kind of implicit, information-integration category learning is possible across stimulus dimensions lying in different sensory modalities. Humans learned categories composed of conjoint visual-auditory category exemplars comprising a visual component (rectangles varying in the density of contained lit pixels) and an auditory component (in Exp. 1, auditory sequences varying in duration; in Exp. 2, pure tones varying in pitch). The categories had either a one-dimensional, rule-based solution or a two-dimensional, information-integration solution. Humans could solve the information-integration category tasks by integrating information across two stimulus modalities. The results demonstrated an important cross-modal form of sensory integration in the service of category learning, and they advance the field's knowledge about the sensory organization of systems for categorization.
Collapse
Affiliation(s)
- J. David Smith
- Department of Psychology, The University at Buffalo, State University of New York, Buffalo, New York 14260 USA
| | - Jennifer J. R. Johnston
- Department of Psychology, The University at Buffalo, State University of New York, Buffalo, New York 14260 USA
| | - Robert D. Musgrave
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
| | - Alexandria C. Zakrzewski
- Department of Psychology, The University at Buffalo, State University of New York, Buffalo, New York 14260 USA
| | - Joseph Boomer
- Department of Psychology, The University at Buffalo, State University of New York, Buffalo, New York 14260 USA
| | - Barbara A. Church
- Department of Psychology, The University at Buffalo, State University of New York, Buffalo, New York 14260 USA
| | - F. Gregory Ashby
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
9
|
Zwanzger P, Zavorotnyy M, Diemer J, Ruland T, Domschke K, Christ M, Michael N, Pfleiderer B. Auditory processing in remitted major depression: a long-term follow-up investigation using 3T-fMRI. J Neural Transm (Vienna) 2012; 119:1565-73. [DOI: 10.1007/s00702-012-0871-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 07/20/2012] [Indexed: 11/24/2022]
|
10
|
Gangarossa G, Perroy J, Valjent E. Combinatorial topography and cell-type specific regulation of the ERK pathway by dopaminergic agonists in the mouse striatum. Brain Struct Funct 2012; 218:405-19. [PMID: 22453353 DOI: 10.1007/s00429-012-0405-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/12/2012] [Indexed: 12/11/2022]
Abstract
Therapeutic agents and drugs of abuse regulate the extracellular signal-regulated kinase (ERK) cascade signaling in the medium-sized spiny neurons (MSNs) of the striatum. However, whether this regulation is associated with specific cortical and thalamic inputs has never been studied. We used Drd2-EGFP BAC-transgenic mice to undertake a topographical and cell-type specific analysis of ERK phosphorylation and two of its downstream targets histone H3 and ribosomal protein S6 (rS6) in the dorsal striatum following injection of SKF81297 (D1R-like agonist), quinpirole (D2R-like agonist) or apomorphine (non selective DA receptor agonist). In striatal areas receiving inputs from the cingulate/prelimbic, visual and auditory cortex, SKF81297 treatment increased phosphorylation of ERK, histone H3 and rS6 selectively in EGFP-negative MSNs of Drd2-EGFP mice. In contrast, no regulation was found in striatal region predominantly targeted by the sensorimotor and motor cortex. Apomorphine slightly enhanced ERK and rS6, but not histone H3 phosphorylation. This regulation occurred exclusively in EGFP-negative neurons mostly in striatal sectors receiving connections from the insular, visual and auditory cortex. Quinpirole administration inhibited basal ERK activation but did not change histone H3 and rS6 phosphorylation throughout the rostrocaudal axis of the dorsal striatum. This anatomo-functional study indicates that D1R and D2R agonists produce a unique topography and cell-type specific regulation of the ERK cascade signaling in the mouse striatum, and that those patterns are closely associated with particular cortical and thalamic inputs. This work evidences the need of a precise identification of the striatal areas under study to further understand striatal plasticity.
Collapse
|
11
|
Schicknick H, Reichenbach N, Smalla KH, Scheich H, Gundelfinger ED, Tischmeyer W. Dopamine modulates memory consolidation of discrimination learning in the auditory cortex. Eur J Neurosci 2012; 35:763-74. [DOI: 10.1111/j.1460-9568.2012.07994.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Auditory processing of sine tones before, during and after ECT in depressed patients by fMRI. J Neural Transm (Vienna) 2008; 115:1199-211. [DOI: 10.1007/s00702-008-0036-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
|
13
|
Beste C, Schüttke A, Konrad C, Saft C, Andrich J, Pfleiderer B. Functional Connectivity During Auditory Processing in Huntington’s Disease. J PSYCHOPHYSIOL 2008. [DOI: 10.1027/0269-8803.22.4.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Huntington’s disease (HD) is a neurogenetic disorder accompanied by structural alterations of the basal ganglia. In a recent study we investigated auditory processing in symptomatic and presymptomatic HD. Increased activation intensities were found for the symptomatic-HD group compared to controls, which were assumed to reflect an ability to maintain functioning. However, altered functional connectivities may also give this appearance. In this study we evaluated (1) if functional connections and, hence, the organization between brain areas is also altered and (2) how intensity of activation in a brain region relates to functional connectivities of that brain region. Functional connectivity analysis was applied to the data, including the Heschl gyrus, mediodorsal thalamic nucleus, caudate nucleus, putamen, and, as a control, a region of interest (ROI) in the occipital cortex. The symptomatic group presented higher functional connectivity than the pre-HD and control groups between thalamic nuclei bilaterally, and between the left caudate and left thalamic nucleus, respectively. The pre-HD group showed no altered patterns of functional connectivity compared to controls. Moreover, functional connectivity was inversely related to activation intensity of the corresponding brain region. The results suggest that alterations in functional connectivity in HD possibly relate to the degree of neuropathology and are sensitive to hemisphere-dependent differences in neuropathology. The inverse relation of functional connectivity and activation intensity suggests that they may alternative strategies that can be used to maintain brain function in the neurodegenerative advanced stage in HD patients. Since functional connectivity was not altered until the symptomatic stage, the results indicate that functional connectivity is a robust measure, since it does not alter until late stages of disease, when neuropathology becomes more severe.
Collapse
Affiliation(s)
- Christian Beste
- Department of Clinical Radiology, University of Münster, Germany
- Leibniz Research Center for Working Environment and Human Factors, WHO Collaborating Research Center, Germany
| | - Anne Schüttke
- Department of Clinical Radiology, University of Münster, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| | - Carsten Saft
- Department of Neurology, Huntington Center NRW, St. Josef Hospital, Ruhr University Bochum, Germany
| | - Jürgen Andrich
- Department of Neurology, Huntington Center NRW, St. Josef Hospital, Ruhr University Bochum, Germany
| | | |
Collapse
|
14
|
Maddox WT, Ing AD, Lauritzen JS. Stimulus modality interacts with category structure in perceptual category learning. ACTA ACUST UNITED AC 2006; 68:1176-90. [PMID: 17355041 DOI: 10.3758/bf03193719] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two experiments were conducted that examined information integration and rule-based category learning, using stimuli that contained auditory and visual information. The results suggest that it is easier to perceptually integrate information within these sensory modalities than across modalities. Conversely, it is easier to perform a disjunctive rule-based task when information comes from different sensory modalities, rather than from the same modality. Quantitative model-based analyses suggested that the information integration deficit for across-modality stimulus dimensions was due to an increase in the use of hypothesis-testing strategies to solve the task and to an increase in random responding. The modeling also suggested that the across-modality advantage for disjunctive, rule-based category learning was due to a greater reliance on disjunctive hypothesis-testing strategies, as opposed to unidimensional hypothesis-testing strategies and random responding.
Collapse
Affiliation(s)
- W Todd Maddox
- Department of Psychology, University of Texas, 1 University Station A8000, Austin, TX 78712, USA.
| | | | | |
Collapse
|
15
|
Basselin M, Chang L, Rapoport SI. Chronic lithium chloride administration to rats elevates glucose metabolism in wide areas of brain, while potentiating negative effects on metabolism of dopamine D2-like receptor stimulation. Psychopharmacology (Berl) 2006; 187:303-11. [PMID: 16786332 DOI: 10.1007/s00213-006-0425-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 04/17/2006] [Indexed: 12/23/2022]
Abstract
RATIONALE AND OBJECTIVES The regional cerebral metabolic rate for glucose (rCMRglc) can be imaged in vivo as a marker of brain functional activity. The effects of chronic lithium administration on baseline values of rCMRglc and values in response to administration of dopamine D2-like receptor agonists have not been examined in humans or rats. Knowing these effects may elucidate and localize the therapeutic action of lithium in bipolar disorder. METHODS In unanesthetized rats, we used the 2-deoxy-D-glucose (2-DG) technique to image the effects of a 6-week control diet or LiCl diet sufficient to produce a plasma lithium concentration therapeutically relevant to bipolar disorder, on rCMRglc at baseline and in response to the dopaminergic D2-like receptor agonist, quinpirole (1 mg/kg i.v.), or to i.v. saline. RESULTS Baseline rCMRglc was significantly elevated in 30 of 81 brain regions examined, in LiCl diet compared with control diet rats. Affected were visual and auditory structures, frontal cortex, amygdala, hippocampus, nucleus accumbens, caudate-putamen, interpeduncular nucleus, and substantia nigra. Acute quinpirole significantly decreased rCMRglc in four areas of the caudate-putamen in control diet rats, and in these and 19 additional brain areas in LiCl-fed rats. CONCLUSIONS In unanesthetized rats, chronic lithium administration widely upregulates baseline rCMRglc and potentiates the negative effects on rCMRglc of D2-like receptor stimulation. The baseline elevation may relate to lithium's reported ability to increase auditory and visual evoked responses in humans, whereas lithium's potentiation of quinpirole's negative effects on rCMRglc may be related to its therapeutic efficacy in bipolar disorder.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg 9, Room 1S126, 9 Memorial Drive, Bethesda, MD 20892-0947, USA.
| | | | | |
Collapse
|
16
|
Koya E, Spijker S, Voorn P, Binnekade R, Schmidt ED, Schoffelmeer ANM, De Vries TJ, Smit AB. Enhanced cortical and accumbal molecular reactivity associated with conditioned heroin, but not sucrose-seeking behaviour. J Neurochem 2006; 98:905-15. [PMID: 16787418 DOI: 10.1111/j.1471-4159.2006.03917.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Re-exposure to drug-related cues elicits drug-seeking behaviour and relapse in both humans and laboratory animals even after months of abstinence. Identifying neural and molecular substrates underlying conditioned heroin-seeking behaviour will be helpful in understanding mechanisms behind opiate relapse. In humans and animals, brain areas activated by natural reward-related stimuli (e.g. food, sex) do not show a complete overlap with those activated by stimuli associated with drugs of abuse, suggesting the involvement of different circuitry. To that end, we investigated neural reactivity by measuring immediate early gene (IEG) expression patterns in mesocorticolimbic system target areas following cue-induced reinstatement of heroin seeking and compared those IEG expression patterns to what was measured during natural reward (sucrose)-seeking behaviour. Animals were trained to administer heroin associated with a compound audio-visual cue. Re-exposure to the cue after 3 weeks of withdrawal reinstated heroin-seeking behaviour, which resulted in IEG expression of ania-3, MKP-1, c-fos and Nr4a3 in the medial prefrontal cortex (mPFC), and of ania-3 in the orbital frontal cortex (OFC) and nucleus accumbens core (NAC). The expression patterns for heroin-seeking behaviours did not generalize to sucrose-seeking behaviours, indicating that the two behaviours involve different connectivity pathways of neuronal signalling.
Collapse
Affiliation(s)
- E Koya
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Free University, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ashby FG, Ennis JM. The Role of the Basal Ganglia in Category Learning. PSYCHOLOGY OF LEARNING AND MOTIVATION 2006. [DOI: 10.1016/s0079-7421(06)46001-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
18
|
Uslaner JM, Norton CS, Watson SJ, Akil H, Robinson TE. Amphetamine-induced c-fos mRNA expression in the caudate-putamen and subthalamic nucleus: interactions between dose, environment, and neuronal phenotype. J Neurochem 2003; 85:105-14. [PMID: 12641732 DOI: 10.1046/j.1471-4159.2003.01646.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When administered in a novel environment relatively low doses of amphetamine induce c-fos mRNA in the subthalamic nucleus (STN) and in preproenkephalin mRNA-containing (ENK+) neurons in the caudate-putamen (CPu). When administered at home, however, low doses of amphetamine do not produce these effects. Environmental novelty also facilitates the behavioral effects of acute and repeated amphetamine, but this is dose-dependent. The purpose of the present experiment therefore was to determine if the effect of context on amphetamine-induced c-fos expression is also dose-dependent. It was found that: (i) No dose of amphetamine tested (1-10 mg/kg) induced c-fos in many ENK+ cells when given at home. (ii) When given in a novel environment low to moderate doses of amphetamine (1-5 mg/kg) induced c-fos in substantial numbers of ENK+ cells, but the highest dose examined (10 mg/kg) did not. (iii) Environmental novelty enhanced the ability of low to moderate doses of amphetamine to induce c-fos in the STN, but the highest dose of amphetamine induced robust c-fos mRNA expression in the STN regardless of context. The results do not support the idea that engaging ENK+ cells, at least as indicated by c-fos mRNA expression, is critical to produce robust behavioral sensitization, but do suggest a possible role for the STN. Furthermore, the results highlight the importance of drug-environment interactions on the neurobiological effects of drugs, and have implications for thinking about the circuits by which context modulates the acute and long-lasting consequences of amphetamine treatment.
Collapse
Affiliation(s)
- Jason M Uslaner
- Biopsychology and Neuroscience Programs, Department of Psychology, The University of Michigan, Ann Arbor, Michigan 48019, USA
| | | | | | | | | |
Collapse
|
19
|
Maddox WT, Molis MR, Diehl RL. Generalizing a neuropsychological model of visual categorization to auditory categorization of vowels. PERCEPTION & PSYCHOPHYSICS 2002; 64:584-97. [PMID: 12132760 DOI: 10.3758/bf03194728] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Twelve male listeners categorized 54 synthetic vowel stimuli that varied in second and third formant frequency on a Bark scale into the American English vowel categories [see text]. A neuropsychologically plausible model of categorization in the visual domain, the Striatal Pattern Classifier (SPC; Ashby & Waldron, 1999), is generalized to the auditory domain and applied separately to the data from each observer. Performance of the SPC is compared with that of the successful Normal A Posteriori Probability model (NAPP; Nearey, 1990; Nearey & Hogan, 1986) of auditory categorization. A version of the SPC that assumed piece-wise linear response region partitions provided a better account of the data than the SPC that assumed linear partitions, and was indistinguishable from a version that assumed quadratic response region partitions. A version of the NAPP model that assumed nonlinear response regions was superior to the NAPP model with linear partitions. The best fitting SPC provided a good account of each observer's data but was outperformed by the best fitting NAPP model. Implications for bridging the gap between the domains of visual and auditory categorization are discussed.
Collapse
Affiliation(s)
- W Todd Maddox
- Department of Psychology, University of Texas, Austin 78712, USA.
| | | | | |
Collapse
|
20
|
Maneuf YP, McKnight AT. Calcitonin gene-related peptide-mediated increase in K(+)-induced [(3)H]-dopamine release from rat caudal striatal slices. Neurosci Lett 2001; 310:73-6. [PMID: 11585570 DOI: 10.1016/s0304-3940(01)02056-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcitonin-gene receptor peptide (alphaCGRP) receptor is present in high levels in the caudal striatum of the rat. Previous behavioural experiments have highlighted a possible correlation between alphaCGRP-mediated effects and the dopaminergic system. In this study, we examined the effect of alphaCGRP on K(+)-evoked [(3)H]-dopamine release in a slice preparation of the rat caudal striatum. The unstimulated release of [(3)H]-dopamine was not affected by alphaCGRP. However, alphaCGRP increased the release of [(3)H]-dopamine evoked by K(+) (30 mM) in a concentration-dependent manner. The stimulatory effect of alphaCGRP was blocked by the CGRP1 antagonist hCGRP(8-37) (without effect on its own). The stimulatory effect of 1 microM alphaCGRP was blocked by dizocilpine (MK-801), suggesting that excitatory transmission is involved in mediating the facilitated release. This study suggests that the peptide alphaCGRP, modulates dopamine release in the rat caudal striatum probably indirectly via glutamatergic transmission.
Collapse
Affiliation(s)
- Y P Maneuf
- Pfizer Global Research & Development, Cambridge Laboratories, University of Cambridge Forvie site, Robinson Way, Cambridge CB2 2QB, UK.
| | | |
Collapse
|
21
|
Uslaner J, Badiani A, Norton CS, Day HE, Watson SJ, Akil H, Robinson TE. Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur J Neurosci 2001; 13:1977-83. [PMID: 11403691 DOI: 10.1046/j.0953-816x.2001.01574.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the dorsal striatum, there are two major populations of medium spiny projection neurons. One population is positive for dynorphin mRNA (DYN+), and these cells project preferentially to the substantia nigra, forming the so-called 'direct pathway'. A second population is positive for enkephalin mRNA (ENK+), and these cells influence the substantia nigra indirectly, via the globus pallidus and subthalamic nucleus. Psychostimulant drugs, such as amphetamine and cocaine, are reported to induce immediate early genes (IEGs) in only one subpopulation of dorsal striatal projection neurons, DYN+ cells. However, this apparent selectivity appears to be a function of environmental context. We found that when given in the animal's home cage, amphetamine and cocaine increased expression of the IEG, c-fos, almost exclusively in DYN+ cells. However, when given in a novel environment, amphetamine and cocaine increased c-fos mRNA in both DYN+ and ENK+ cells. Furthermore, amphetamine and cocaine increased c-fos mRNA expression in the subthalamic nucleus when administered in the novel environment, but not when given at home. We conclude that the neural circuitry engaged by psychostimulant drugs, and their ability to induce specific patterns of gene expression, are determined by the environmental context in which they are experienced. This may be related to the ability of environmental novelty to facilitate psychostimulant drug-induced neuroplasticity.
Collapse
Affiliation(s)
- J Uslaner
- Biopsychology and Neuroscience Programs, Department of Psychology, The University of Michigan, East Hall, 525 E. University St, Ann Arbor, MI 48019-1109, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- J D Berke
- Secton on Molecular Plasticity, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
23
|
Richter K, Hess A, Scheich H. Functional mapping of transsynaptic effects of local manipulation of inhibition in gerbil auditory cortex. Brain Res 1999; 831:184-99. [PMID: 10411998 DOI: 10.1016/s0006-8993(99)01440-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cortical networks are under the tonic influence of inhibition which is mainly mediated by GABA. The state of inhibition of small neuronal populations in the auditory cortex (AC) field AI of gerbils was altered by local microinjection of GABA, of the GABA(A)-receptor agonist 4-piperidine-sulfonic acid (P4S) and the GABA(A)-receptor antagonists bicuculline methiodide (BMI) and SR-95531. In order to elucidate direct and transsynaptic effects of the alterations of inhibition produced by these substances we used the 2-fluoro-2-deoxy-D-[(14)C(U)] glucose (FDG) mapping method. The injection of GABA (10 mM) caused no significant changes in FDG labeling but P4S caused a marked decrease of local FDG uptake in a small region surrounding the injection site but in no other region. The injection of the GABA(A)-receptor antagonists caused massive increases of FDG uptake within the entire ipsilateral AC, whereas the contralateral AC was not significantly affected in spite of prominent callosal connections. However, disinhibited excitatory output from the ipsilateral AC is suggested by a strong increase in FDG labeling of the corticothalamic fiber tract and ipsilateral structures like medial geniculate nucleus, caudal striatum, and lateral amygdaloid nucleus and a structure at the caudoventral margin of the thalamic reticular nucleus, presumably the subgeniculate nucleus, a structure with hitherto unknown connections and function. No alteration of FDG uptake could be detected in the inferior colliculus, another main descending target structure of the AC. In summary, the effects resulting from microinjection of GABA(A)-receptor antagonists reflect a differential influence of the AC on its anatomically connected target regions. The findings demonstrate the potential of the method of focal application of neuroactive substances in combination with the FDG technique for mapping their transsynaptic influences which are hard to derive from anatomical tracing studies alone.
Collapse
Affiliation(s)
- K Richter
- Leibniz Institute for Neurobiology, Brenneckestrasse 6, P.O. Box 1860, D-39008, Magdeburg, Germany
| | | | | |
Collapse
|
24
|
Arnauld E, Arsaut J, Demotes-Mainard J. Conditional coupling of striatal dopamine D1 receptor to transcription factors: ontogenic and regional differences in CREB activation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 60:127-32. [PMID: 9748539 DOI: 10.1016/s0169-328x(98)00192-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The coupling of striatal dopamine D1 receptors to c-fos transcription exhibit all-or-none regional and ontogenic differences: the D1 agonist SKF 38393 fails to induce c-fos expression in the striatum, except during the early postnatal period in the striosomes, or in the caudal extremity of the striatum in adult animals. In an attempt to better delineate the mechanism responsible for interrupting or enabling this conditional coupling of D1 receptors to c-fos transcription we have examined, through immunocytochemistry and gel shift assay, the activation of the cyclic AMP-response element binding protein (CREB) transcription factor in response to the D1 agonist in the murine striatum. Phosphorylated-CREB (P-CREB) immunoreactivity in response to the dopamine D1 agonist (+/-)SKF 38393 (15 mg/kg, i.p.) was prominent in the caudal extremity of the striatum in adult animals (P90). In neonatal (P5) mice, P-CREB immunoreactive neurons were observed both in the caudal and in the rostral parts of the striatum, without obvious patchy distribution. Gel shift assays performed on nuclear protein extracts from either the rostral or the caudal part of striatal tissue of neonatal (P5) or adult (P90) mice provided quantitative assessment, showing differences both in the amplitude and in the time course of the response, since P-CREB binding in adults culminated 45 min after (+/-)SKF 38393 (15 mg/kg, i.p.) injection, wheareas the peak value appeared as soon as 10 min after injection in P5 mouse pups, suggesting the involvement of partly distinct transduction pathways.
Collapse
Affiliation(s)
- E Arnauld
- INSERM U-394, Neurobiologie Intégrative, Institut François Magendie, 1, rue Camille Saint-Saëns, F-33077, Bordeaux Cedex, France
| | | | | |
Collapse
|
25
|
Abstract
Recent studies have found that the basal ganglia are involved in diverse behavioral activities and suggest that they have executive functions. Highlights from the past year include anatomical and clinical studies that have used sophisticated, novel methods to confirm a role for the basal ganglia in somatosensory discrimination, visual perception, spatial working memory and habit learning.
Collapse
Affiliation(s)
- L L Brown
- Albert Einstein College of Medicine, Department of Neurology, K-601, Bronx, New York, 10461, USA.
| | | | | |
Collapse
|