1
|
Jorgensen C, Linville RM, Galea I, Lambden E, Vögele M, Chen C, Troendle EP, Ruggiu F, Ulmschneider MB, Schiøtt B, Lorenz CD. Permeability Benchmarking: Guidelines for Comparing in Silico, in Vitro, and in Vivo Measurements. J Chem Inf Model 2025; 65:1067-1084. [PMID: 39823383 PMCID: PMC11815851 DOI: 10.1021/acs.jcim.4c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Permeability is a measure of the degree to which cells can transport molecules across biological barriers. Units of permeability are distance per unit time (typically cm/s), where accurate measurements are needed to define drug delivery in homeostasis and to model dysfunction occurring during disease. This perspective offers a set of community-led guidelines to benchmark permeability data across multidisciplinary approaches and different biological contexts. First, we lay out the analytical framework for three methodologies to calculate permeability: in silico assays using either transition-based counting or the inhomogeneous-solubility diffusion approaches, in vitro permeability assays using cells cultured in 2D or 3D geometries, and in vivo assays utilizing in situ brain perfusion or multiple time-point regression analysis. Then, we demonstrate a systematic benchmarking of in silico to both in vitro and in vivo, depicting the ways in which each benchmarking is sensitive to the choices of assay design. Finally, we outline seven recommendations for best practices in permeability benchmarking and underscore the significance of tailored permeability assays in driving advancements in drug delivery research and development. Our exploration encompasses a discussion of "generic" and tissue-specific biological barriers, including the blood-brain barrier (BBB), which is a major hurdle for the delivery of therapeutic agents into the brain. By addressing challenges in reconciling simulated data with experimental assays, we aim to provide insights essential for optimizing accuracy and reliability in permeability modeling.
Collapse
Affiliation(s)
- Christian Jorgensen
- School
of Medicine, Pharmacy and Biomedical Sciences, Faculty of Science
& Health, University of Portsmouth, Portsmouth PO1 2DT, Hampshire, U.K.
- Dept.
of Chemistry, Aarhus University, Langelandsgade, 140 8000 Aarhus C, Denmark
| | - Raleigh M. Linville
- The
Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Ian Galea
- Clinical
Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, U.K.
| | - Edward Lambden
- Dept.
of Chemistry, King’s College London, London WC2R 2LS, U.K.
| | - Martin Vögele
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
- Department
of Molecular and Cellular Physiology, Stanford
University, Stanford, California 94305, United States
- Institute
for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| | - Charles Chen
- Synthetic
Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Evan P. Troendle
- Wellcome−Wolfson
Institute for Experimental Medicine, School of Medicine, Dentistry
and Biomedical Sciences, Queen’s
University Belfast, Belfast, County
Antrim, BT9 7BL, Northern Ireland, U.K.
| | - Fiorella Ruggiu
- Kimia
Therapeutics, 740 Heinz
Avenue, Berkeley, California 94710, United States
| | | | - Birgit Schiøtt
- Dept.
of Chemistry, Aarhus University, Langelandsgade, 140 8000 Aarhus C, Denmark
| | | |
Collapse
|
2
|
Bell L, Simonneau C, Zanini C, Kassianidou E, Zundel C, Neff R, Steinhuber B, Tecilla M, Odermatt A, Villaseñor R, Stokar-Regenscheit N. Advanced tissue technologies of blood-brain barrier organoids as high throughput toxicity readouts in drug development. Heliyon 2025; 11:e40813. [PMID: 39811336 PMCID: PMC11732442 DOI: 10.1016/j.heliyon.2024.e40813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Recent advancements in engineering Complex in vitro models (CIVMs) such as Blood-brain barrier (BBB) organoids offer promising platforms for preclinical drug testing. However, their application in drug development, and especially for the regulatory purposes of toxicity assessment, requires robust and reproducible techniques. Here, we developed an adapted set of orthogonal image-based tissue methods including hematoxylin and eosin staining (HE), immunohistochemistry (IHC), multiplex immunofluorescence (mIF), and Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) to validate CIVMs for drug toxicity assessments. We developed an artificial intelligence (AI) algorithm to increase the throughput and the reliability of histomorphologic evaluations of apoptosis for in vitro toxicity studies. Our data highlight the potential to integrate advanced morphology-based readouts such as histological techniques and digital pathology algorithms for use on CIVMs, as part of a standard preclinical drug development assessment.
Collapse
Affiliation(s)
- Luisa Bell
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Claire Simonneau
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Chiara Zanini
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Elena Kassianidou
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christelle Zundel
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Rachel Neff
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Bernd Steinhuber
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Marco Tecilla
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roberto Villaseñor
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Nadine Stokar-Regenscheit
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
3
|
Spencer KD, Bline H, Chen HJ, Verosky BG, Hilt ME, Jaggers RM, Gur TL, Mathé EA, Bailey MT. Modulation of anxiety-like behavior in galactooligosaccharide-fed mice: A potential role for bacterial tryptophan metabolites and reduced microglial reactivity. Brain Behav Immun 2024; 121:229-243. [PMID: 39067620 DOI: 10.1016/j.bbi.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/02/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
Prebiotic galactooligosaccharides (GOS) reduce anxiety-like behaviors in mice and humans. However, the biological pathways behind these behavioral changes are not well understood. To begin to study these pathways, we utilized C57BL/6 mice that were fed a standard diet with or without GOS supplementation for 3 weeks prior to testing on the open field. After behavioral testing, colonic contents and serum were collected for bacteriome (16S rRNA gene sequencing, colonic contents only) and metabolome (UPLC-MS, colonic contents and serum data) analyses. As expected, GOS significantly reduced anxiety-like behavior (i.e., increased time in the center) and decreased cytokine gene expression (Tnfa and Ccl2) in the prefrontal cortex. Notably, time in the center of the open field was significantly correlated with serum methyl-indole-3-acetic acid (methyl-IAA). This metabolite is a methylated form of indole-3-acetic acid (IAA) that is derived from bacterial metabolism of tryptophan. Sequencing analyses showed that GOS significantly increased Lachnospiraceae UCG006 and Akkermansia; these taxa are known to metabolize both GOS and tryptophan. To determine the extent to which methyl-IAA can affect anxiety-like behavior, mice were intraperitoneally injected with methyl-IAA. Mice given methyl-IAA had a reduction in anxiety-like behavior in the open field, along with lower Tnfa in the prefrontal cortex. Methyl-IAA was also found to reduce TNF-α (as well as CCL2) production by LPS-stimulated BV2 microglia. Together, these data support a novel pathway through which GOS reduces anxiety-like behaviors in mice and suggests that the bacterial metabolite methyl-IAA reduces microglial cytokine and chemokine production, which in turn reduces anxiety-like behavior.
Collapse
Affiliation(s)
- Kyle D Spencer
- Graduate Partnership Program, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA; Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA; Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Heather Bline
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Helen J Chen
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Branden G Verosky
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Miranda E Hilt
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Robert M Jaggers
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tamar L Gur
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ewy A Mathé
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Oral and GI Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
4
|
Tesla R, Guhl C, Werthmann GC, Dixon D, Cenik B, Addepalli Y, Liang J, Fass DM, Rosenthal Z, Haggarty SJ, Williams NS, Posner BA, Ready JM, Herz J. Benzoxazole-derivatives enhance progranulin expression and reverse the aberrant lysosomal proteome caused by GRN haploinsufficiency. Nat Commun 2024; 15:6125. [PMID: 39033178 PMCID: PMC11271458 DOI: 10.1038/s41467-024-50076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous loss-of-function mutations in the GRN gene are a major cause of hereditary frontotemporal dementia. The mechanisms linking frontotemporal dementia pathogenesis to progranulin deficiency are not well understood, and there is currently no treatment. Our strategy to prevent the onset and progression of frontotemporal dementia in patients with GRN mutations is to utilize small molecule positive regulators of GRN expression to boost progranulin levels from the remaining functional GRN allele, thus restoring progranulin levels back to normal within the brain. This work describes a series of blood-brain-barrier-penetrant small molecules which significantly increase progranulin protein levels in human cellular models, correct progranulin protein deficiency in Grn+/- mouse brains, and reverse lysosomal proteome aberrations, a phenotypic hallmark of frontotemporal dementia, more efficiently than the previously described small molecule suberoylanilide hydroxamic acid. These molecules will allow further elucidation of the cellular functions of progranulin and its role in frontotemporal dementia and will also serve as lead structures for further drug development.
Collapse
Affiliation(s)
- Rachel Tesla
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gordon C Werthmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Danielle Dixon
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Basar Cenik
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Yesu Addepalli
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jue Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary Rosenthal
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Center for Translational Neurodegeneration Research, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev 2024; 44:1267-1325. [PMID: 38226452 DOI: 10.1002/med.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
6
|
Li Z, Dang Q, Wang P, Zhao F, Huang J, Wang C, Liu X, Min W. Food-Derived Peptides: Beneficial CNS Effects and Cross-BBB Transmission Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20453-20478. [PMID: 38085598 DOI: 10.1021/acs.jafc.3c06518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Food-derived peptides, as dietary supplements, have significant effects on promoting brain health and relieving central nervous system (CNS) diseases. However, the blood-brain barrier (BBB) greatly limits their in-brain bioavailability. Thus, overcoming the BBB to target the CNS is a major challenge for bioactive peptides in the prevention and treatment of CNS diseases. This review discusses improvement in the neuroprotective function of food-derived active peptides in CNS diseases, as well as the source of BBB penetrating peptides (BBB-shuttles) and the mechanism of transmembrane transport. Notably, this review also discusses various peptide modification methods to overcome the low permeability and stability of the BBB. Lipification, glycosylation, introduction of disulfide bonds, and cyclization are effective strategies for improving the penetration efficiency of peptides through the BBB. This review provides a new prospective for improving their neuroprotective function and developing treatments to delay or even prevent CNS diseases.
Collapse
Affiliation(s)
- Zehui Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Peng Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Fanrui Zhao
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Chongchong Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Xingquan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| |
Collapse
|
7
|
Jorgensen C, Troendle EP, Ulmschneider JP, Searson PC, Ulmschneider MB. A least-squares-fitting procedure for an efficient preclinical ranking of passive transport across the blood-brain barrier endothelium. J Comput Aided Mol Des 2023; 37:537-549. [PMID: 37573260 PMCID: PMC10505096 DOI: 10.1007/s10822-023-00525-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
The treatment of various disorders of the central nervous system (CNS) is often impeded by the limited brain exposure of drugs, which is regulated by the human blood-brain barrier (BBB). The screening of lead compounds for CNS penetration is challenging due to the biochemical complexity of the BBB, while experimental determination of permeability is not feasible for all types of compounds. Here we present a novel method for rapid preclinical screening of libraries of compounds by utilizing advancements in computing hardware, with its foundation in transition-based counting of the flux. This method has been experimentally validated for in vitro permeabilities and provides atomic-level insights into transport mechanisms. Our approach only requires a single high-temperature simulation to rank a compound relative to a library, with a typical simulation time converging within 24 to 72 h. The method offers unbiased thermodynamic and kinetic information to interpret the passive transport of small-molecule drugs across the BBB.
Collapse
Affiliation(s)
- Christian Jorgensen
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.
| | | | | | - Peter C Searson
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
8
|
Caminero Gomes Soares A, Marques Sousa GH, Calil RL, Goulart Trossini GH. Absorption matters: A closer look at popular oral bioavailability rules for drug approvals. Mol Inform 2023; 42:e202300115. [PMID: 37550251 DOI: 10.1002/minf.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
This study examines how two popular drug-likeness concepts used in early development, Lipinski Rule of Five (Ro5) and Veber's Rules, possibly affected drug profiles of FDA approved drugs since 1997. Our findings suggest that when all criteria are applied, relevant compounds may be excluded, addressing the harmfulness of blindly employing these rules. Of all oral drugs in the period used for this analysis, around 66 % conform to the RO5 and 85 % to Veber's Rules. Molecular Weight and calculated LogP showed low consistent values over time, apart from being the two least followed rules, challenging their relevance. On the other hand, hydrogen bond related rules and the number of rotatable bonds are amongst the most followed criteria and show exceptional consistency over time. Furthermore, our analysis indicates that topological polar surface area and total count of hydrogen bonds cannot be used as interchangeable parameters, contrary to the original proposal. This research enhances the comprehension of drug profiles that were FDA approved in the post-Lipinski period. Medicinal chemists could utilize these heuristics as a limited guide to direct their exploration of the oral bioavailability chemical space, but they must also steer the wheel to break these rules and explore different regions when necessary.
Collapse
Affiliation(s)
- Artur Caminero Gomes Soares
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| | - Gustavo Henrique Marques Sousa
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| | - Raisa Ludmila Calil
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| | - Gustavo Henrique Goulart Trossini
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Babu SR, Shekara HH, Sahoo AK, Harsha Vardhan PV, Thiruppathi N, Venkatesh MP. Intranasal nanoparticulate delivery systems for neurodegenerative disorders: a review. Ther Deliv 2023; 14:571-594. [PMID: 37691577 DOI: 10.4155/tde-2023-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Neurodegenerative diseases are a significant cause of mortality worldwide, and the blood-brain barrier (BBB) poses a significant challenge for drug delivery. An intranasal route is a prominent approach among the various methods to bypass the BBB. There are different pathways involved in intranasal drug delivery. The drawbacks of this method include mucociliary clearance, enzymatic degradation and poor drug permeation. Novel nanoformulations and intranasal drug-delivery devices offer promising solutions to overcome these challenges. Nanoformulations include polymeric nanoparticles, lipid-based nanoparticles, microspheres, liposomes and noisomes. Additionally, intranasal devices could be utilized to enhance drug-delivery efficacy. Therefore, intranasal drug-delivery systems show potential for treating neurodegenerative diseases through trigeminal or olfactory pathways, which can significantly improve patient outcomes.
Collapse
Affiliation(s)
- Someshbabu Ramesh Babu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Harshith Hosahalli Shekara
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Ashish Kumar Sahoo
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Pyda Venkata Harsha Vardhan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Nitheesh Thiruppathi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Madhugiri Prakash Venkatesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Faculty of Pharmaceutical Sciences, UCSI University, Kaula Lampur, Malaysia
| |
Collapse
|
10
|
Mohammadi AH, Ghazvinian Z, Bagheri F, Harada M, Baghaei K. Modification of Extracellular Vesicle Surfaces: An Approach for Targeted Drug Delivery. BioDrugs 2023; 37:353-374. [PMID: 37093521 DOI: 10.1007/s40259-023-00595-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
Extracellular vesicles (EVs) are a promising drug delivery vehicle candidate because of their natural origin and intrinsic function of transporting various molecules between different cells. Several advantages of the EV delivery platform include enhanced permeability and retention effect, efficient interaction with recipient cells, the ability to traverse biological barriers, high biocompatibility, high biodegradability, and low immunogenicity. Furthermore, EV membranes share approximately similar structures and contents to the cell membrane, which allows surface modification of EVs, an approach to enable specific targeting. Enhanced drug accumulation in intended sites and reduced adverse effects of chemotherapeutic drugs are the most prominent effects of targeted drug delivery. In order to improve the targeting ability of EVs, chemical modification and genetic engineering are the most adopted methods to date. Diverse chemical methods are employed to decorate EV surfaces with various ligands such as aptamers, carbohydrates, peptides, vitamins, and antibodies. In this review, we introduce the biogenesis, content, and cellular pathway of natural EVs and further discuss the genetic modification of EVs, and its challenges. Furthermore, we provide a comprehensive deliberation on the various chemical modification methods for improved drug delivery, which are directly related to increasing the therapeutic index.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Ghazvinian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Jiang Z, Liang Z, Cui Y, Zhang C, Wang J, Wang H, Wang T, Chen Y, He W, Liu Z, Guo Z. Blood-Brain Barrier Permeable Photoacoustic Probe for High-Resolution Imaging of Nitric Oxide in the Living Mouse Brain. J Am Chem Soc 2023; 145:7952-7961. [PMID: 37000012 DOI: 10.1021/jacs.2c13315] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Alternations in the brain nitric oxide (NO) homeostasis are associated with a variety of neurodegeneration diseases; therefore, high-resolution imaging of NO in the brain is essential for understanding pathophysiological processes. However, currently available NO probes are unsuitable for this purpose due to their poor ability to cross the blood-brain barrier (BBB) or to image in deep tissues with spatial resolution. Herein, we developed a photoacoustic (PA) probe with BBB crossing ability to overcome this obstacle. The probe shows a highly selective ratiometric response toward NO, which enables the probe to image NO with micron resolution in the whole brain of living mice. Using three-dimensional PA imaging, we demonstrated that the probe could be used to visualize the detailed NO distribution in varying depth cross-sections (0-8 mm) of the living Parkinson's disease (PD) mouse brain. We also investigated the therapeutic properties of natural polyphenols in the PD mouse brain using the probe as an imaging agent and suggested the potential of the probe for screening therapeutic agents. This study provides a promising imaging agent for imaging of NO in the mouse brain with high resolution. We anticipate that these findings may open up new possibilities for understanding the biological functions of NO in the brain and the development of new imaging agents for the diagnosis and treatment of brain diseases.
Collapse
Affiliation(s)
- Zhiyong Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaolun Liang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yijing Cui
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Jing Wang
- TomoWave Laboratories, Inc., Houston, Texas 77054, United States
| | - Hong Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Tianzhu Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| |
Collapse
|
12
|
Cui Y, Wang X, Jiang Z, Zhang C, Liang Z, Chen Y, Liu Z, Guo Z. A Photoacoustic Probe with Blood-Brain Barrier Crossing Ability for Imaging Oxidative Stress Dynamics in the Mouse Brain. Angew Chem Int Ed Engl 2023; 62:e202214505. [PMID: 36597890 DOI: 10.1002/anie.202214505] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Spatiotemporal assessment of the oxidative stress dynamics in the brain is crucial for understanding the molecular mechanism underlying neurodegenerative diseases. However, existing oxidative stress probes have poor blood-brain barrier permeability or poor penetration depth, making them unsuitable for brain imaging. Herein, we developed a photoacoustic probe that enables real-time imaging of oxidative stress dynamics in the mouse brain. The probe not only responds to oxidative stress in a reversible and ratiometric manner, but it can also cross the blood-brain barrier of the mouse brain. Notably, the probe displayed excellent photoacoustic imaging of oxidative stress dynamics in the brains of Parkinson's disease mouse models. In addition, we investigated the antioxidant properties of natural polyphenols in the brain of a Parkinson's disease mouse model using the probe as an imaging agent and suggested the potential of the probe for screening anti-oxidative stress agents.
Collapse
Affiliation(s)
- Yijing Cui
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Xiaoqing Wang
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Zhiyong Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, 3601 Hongjing Road, Nanjing, 211171, China
| | - Zhaolun Liang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
| |
Collapse
|
13
|
Rehman MU, Sehar N, Dar NJ, Khan A, Arafah A, Rashid S, Rashid SM, Ganaie MA. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neurosci Biobehav Rev 2023; 144:104961. [PMID: 36395982 DOI: 10.1016/j.neubiorev.2022.104961] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer disease (AD), Parkinson disease (PD), and Huntington disease (HD) represent a major socio-economic challenge in view of their high prevalence yet poor treatment outcomes affecting quality of life. The major challenge in drug development for these NDs is insufficient clarity about the mechanisms involved in pathogenesis and pathophysiology. Mitochondrial dysfunction, oxidative stress and inflammation are common pathways that are linked to neuronal abnormalities and initiation of these diseases. Thus, elucidating the shared initial molecular and cellular mechanisms is crucial for recognizing novel remedial targets, and developing therapeutics to impede or stop disease progression. In this context, use of multifunctional compounds at early stages of disease development unclogs new avenues as it acts on act on multiple targets in comparison to single target concept. In this review, we summarize overview of the major findings and advancements in recent years focusing on shared mechanisms for better understanding might become beneficial in searching more potent pharmacological interventions thereby reducing the onset or severity of various NDs.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78992 USA
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
14
|
Mehta A, Desai A, Rudd D, Siddiqui G, Nowell CJ, Tong Z, Creek DJ, Tayalia P, Gandhi PS, Voelcker NH. Bio-Mimicking Brain Vasculature to Investigate the Role of Heterogeneous Shear Stress in Regulating Barrier Integrity. Adv Biol (Weinh) 2022; 6:e2200152. [PMID: 35999436 DOI: 10.1002/adbi.202200152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Indexed: 01/28/2023]
Abstract
A continuous, sealed endothelial membrane is essential for the blood-brain barrier (BBB) to protect neurons from toxins present in systemic circulation. Endothelial cells are critical sensors of the capillary environment, where factors like fluid shear stress (FSS) and systemic signaling molecules activate intracellular pathways that either promote or disrupt the BBB. The brain vasculature exhibits complex heterogeneity across the bed, which is challenging to recapitulate in BBB microfluidic models with fixed dimensions and rectangular cross-section microchannels. Here, a Cayley-tree pattern, fabricated using lithography-less, fluid shaping technique in a modified Hele-Shaw cell is used to emulate the brain vasculature in a microfluidic chip. This geometry generates an inherent distribution of heterogeneous FSS, due to smooth variations in branch height and width. hCMEC/D3 endothelial cells cultured in the Cayley-tree designed chip generate a 3D monolayer of brain endothelium with branching hierarchy, enabling the study of the effect of heterogeneous FSS on the brain endothelium. The model is employed to study neuroinflammatory conditions by stimulating the brain endothelium with tumor necrosis factor-α under heterogeneous FSS conditions. The model has immense potential for studies involving drug transport across the BBB, which can be misrepresented in fixed dimension models.
Collapse
Affiliation(s)
- Ami Mehta
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.,IITB-Monash Research Academy, Mumbai, 400076, India
| | - Anal Desai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Cameron J Nowell
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prasanna S Gandhi
- Suman Mashruwala Advanced Microengineering Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia.,Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
15
|
Rayevsky AV, Poturai AS, Kravets IO, Pashenko AE, Borisova TA, Tolstanova GM, Volochnyuk DM, Borysko PO, Vadzyuk OB, Alieksieieva DO, Zabolotna Y, Klimchuk O, Horvath D, Marcou G, Ryabukhin SV, Varnek A. In Vitro Evaluation of In Silico Screening Approaches in Search for Selective ACE2 Binding Chemical Probes. Molecules 2022; 27:molecules27175400. [PMID: 36080168 PMCID: PMC9458095 DOI: 10.3390/molecules27175400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
New models for ACE2 receptor binding, based on QSAR and docking algorithms were developed, using XRD structural data and ChEMBL 26 database hits as training sets. The selectivity of the potential ACE2-binding ligands towards Neprilysin (NEP) and ACE was evaluated. The Enamine screening collection (3.2 million compounds) was virtually screened according to the above models, in order to find possible ACE2-chemical probes, useful for the study of SARS-CoV2-induced neurological disorders. An enzymology inhibition assay for ACE2 was optimized, and the combined diversified set of predicted selective ACE2-binding molecules from QSAR modeling, docking, and ultrafast docking was screened in vitro. The in vitro hits included two novel chemotypes suitable for further optimization.
Collapse
Affiliation(s)
- Alexey V. Rayevsky
- Enamine Ltd., 78 Chervonotkatska Street, 02660 Kyiv, Ukraine
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 2a Osipovskogo Street, 04123 Kyiv, Ukraine
| | | | - Iryna O. Kravets
- Enamine Ltd., 78 Chervonotkatska Street, 02660 Kyiv, Ukraine
- Chemspace LLC, 85 Chervonotkatska Street, 02094 Kyiv, Ukraine
| | - Alexander E. Pashenko
- Enamine Ltd., 78 Chervonotkatska Street, 02660 Kyiv, Ukraine
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01033 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, 03028 Kyiv, Ukraine
| | - Tatiana A. Borisova
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovitcha Street, 01054 Kyiv, Ukraine
| | - Ganna M. Tolstanova
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01033 Kyiv, Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd., 78 Chervonotkatska Street, 02660 Kyiv, Ukraine
- Chemspace LLC, 85 Chervonotkatska Street, 02094 Kyiv, Ukraine
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01033 Kyiv, Ukraine
| | | | - Olga B. Vadzyuk
- Enamine Ltd., 78 Chervonotkatska Street, 02660 Kyiv, Ukraine
| | | | - Yuliana Zabolotna
- Laboratory of Chemoinformatics, University of Strasbourg, 4, rue B. Pascal, 67081 Strasbourg, France
| | - Olga Klimchuk
- Laboratory of Chemoinformatics, University of Strasbourg, 4, rue B. Pascal, 67081 Strasbourg, France
| | - Dragos Horvath
- Laboratory of Chemoinformatics, University of Strasbourg, 4, rue B. Pascal, 67081 Strasbourg, France
| | - Gilles Marcou
- Laboratory of Chemoinformatics, University of Strasbourg, 4, rue B. Pascal, 67081 Strasbourg, France
| | - Sergey V. Ryabukhin
- Enamine Ltd., 78 Chervonotkatska Street, 02660 Kyiv, Ukraine
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01033 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, 03028 Kyiv, Ukraine
- Correspondence: (S.V.R.); (A.V.)
| | - Alexandre Varnek
- Laboratory of Chemoinformatics, University of Strasbourg, 4, rue B. Pascal, 67081 Strasbourg, France
- Correspondence: (S.V.R.); (A.V.)
| |
Collapse
|
16
|
Hsing MT, Hsu HT, Chang CH, Chang KB, Cheng CY, Lee JH, Huang CL, Yang MY, Yang YC, Liu SY, Yen CM, Yang SF, Hung HS. Improved Delivery Performance of n-Butylidenephthalide-Polyethylene Glycol-Gold Nanoparticles Efficient for Enhanced Anti-Cancer Activity in Brain Tumor. Cells 2022; 11:cells11142172. [PMID: 35883615 PMCID: PMC9325228 DOI: 10.3390/cells11142172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
n-butylidenephthalide (BP) has been verified as having the superior characteristic of cancer cell toxicity. Furthermore, gold (Au) nanoparticles are biocompatible materials, as well as effective carriers for delivering bio-active molecules for cancer therapeutics. In the present research, Au nanoparticles were first conjugated with polyethylene glycol (PEG), and then cross-linked with BP to obtain PEG-Au-BP nanodrugs. The physicochemical properties were characterized through ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) to confirm the combination of PEG, Au, and BP. In addition, both the size and structure of Au nanoparticles were observed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), where the size of Au corresponded to the results of DLS assay. Through in vitro assessments, non-transformed BAEC and DBTRG human glioma cells were treated with PEG-Au-BP drugs to investigate the tumor-cell selective cytotoxicity, cell uptake efficiency, and mechanism of endocytic routes. According to the results of MTT assay, PEG-Au-BP was able to significantly inhibit DBTRG brain cancer cell proliferation. Additionally, cell uptake efficiency and potential cellular transportation in both BAEC and DBTRG cell lines were observed to be significantly higher at 2 and 24 h. Moreover, the mechanisms of endocytosis, clathrin-mediated endocytosis, and cell autophagy were explored and determined to be favorable routes for BAEC and DBTRG cells to absorb PEG-Au-BP nanodrugs. Next, the cell progression and apoptosis of DBTRG cells after PEG-Au-BP treatment was investigated by flow cytometry. The results show that PEG-Au-BP could remarkably regulate the DBTRG cell cycle at the Sub-G1 phase, as well as induce more apoptotic cells. The expression of apoptotic-related proteins in DBTRG cells was determined through Western blotting assay. After treatment with PEG-Au-BP, the apoptotic cascade proteins p21, Bax, and Act-caspase-3 were all significantly expressed in DBTRG brain cancer cells. Through in vivo assessments, the tissue morphology and particle distribution in a mouse model were examined after a retro-orbital sinus injection containing PEG-Au-BP nanodrugs. The results demonstrate tissue integrity in the brain (forebrain, cerebellum, and midbrain), heart, liver, spleen, lung, and kidney, as they did not show significant destruction due to PEG-Au-BP treatment. Simultaneously, the extended retention period for PEG-Au-BP nanodrugs was discovered, particularly in brain tissue. The above findings identify PEG-Au-BP as a potential nanodrug for brain cancer therapies.
Collapse
Affiliation(s)
- Ming-Tai Hsing
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (M.-T.H.); (H.-T.H.)
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (C.-Y.C.); (J.-H.L.); (C.-L.H.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Hui-Ting Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (M.-T.H.); (H.-T.H.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Pathology, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Chih-Hsuan Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (C.-H.C.); (K.-B.C.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (C.-H.C.); (K.-B.C.)
| | - Chun-Yuan Cheng
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (C.-Y.C.); (J.-H.L.); (C.-L.H.)
| | - Jae-Hwan Lee
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (C.-Y.C.); (J.-H.L.); (C.-L.H.)
| | - Chien-Li Huang
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (C.-Y.C.); (J.-H.L.); (C.-L.H.)
| | - Meng-Yin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (S.-Y.L.); (C.-M.Y.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- College of Nursing, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (S.-Y.L.); (C.-M.Y.)
| | - Szu-Yuan Liu
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (S.-Y.L.); (C.-M.Y.)
| | - Chun-Ming Yen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (S.-Y.L.); (C.-M.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (M.-T.H.); (H.-T.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (S.-F.Y.); (H.-S.H.); Tel.: +886-4-24739595 (ext. 34253) (S.-F.Y.); +886-4-22052121 (ext. 7827) (H.-S.H.); Fax: +886-4-22333641 (H.-S.H.)
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (C.-H.C.); (K.-B.C.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: (S.-F.Y.); (H.-S.H.); Tel.: +886-4-24739595 (ext. 34253) (S.-F.Y.); +886-4-22052121 (ext. 7827) (H.-S.H.); Fax: +886-4-22333641 (H.-S.H.)
| |
Collapse
|
17
|
Li B, Qin X, Mi LZ. Nanobodies: from structure to applications in non-injectable and bispecific biotherapeutic development. NANOSCALE 2022; 14:7110-7122. [PMID: 35535618 DOI: 10.1039/d2nr00306f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing demand for convenient, miniaturized and multifunctional antibodies necessitates the development of novel antigen-recognition molecules for biological and medical studies. Nanobodies, the functional variable regions of camelid heavy-chain-only antibodies, as a new tool, complement the conventional antibodies and are in the stage of rapid development. The outstanding advantages of nanobodies include a stable structure, easy production, excellent water solubility, high affinity toward antigens and low immunogenicity. With promising application potential, nanobodies are now increasingly applied to various studies, including protein structure analysis, microscopic imaging, medical diagnosis, and drug development. The approval of the first nanobody drug Caplacizumab by the FDA disclosed the therapeutic potential of nanobodies. The outbreak of COVID-19 accelerated the development of nanobody drugs in non-injectable and bispecific biotherapeutic applications. Herein, we reviewed recent studies on the nanobody structure, screening and their applications in protein structure analysis and nanobody drugs, especially on non-injectable nanobody and bispecific nanobody development.
Collapse
Affiliation(s)
- Bingxuan Li
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xiaohong Qin
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Li-Zhi Mi
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
18
|
Current Strategies to Enhance Delivery of Drugs across the Blood–Brain Barrier. Pharmaceutics 2022; 14:pharmaceutics14050987. [PMID: 35631573 PMCID: PMC9145636 DOI: 10.3390/pharmaceutics14050987] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) has shown to be a significant obstacle to brain medication delivery. The BBB in a healthy brain is a diffusion barrier that prevents most substances from passing from the blood to the brain; only tiny molecules can pass across the BBB. The BBB is disturbed in specific pathological illnesses such as stroke, diabetes, seizures, multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. The goal of this study is to offer a general overview of current brain medication delivery techniques and associated topics from the last five years. It is anticipated that this review will stimulate readers to look into new ways to deliver medications to the brain. Following an introduction of the construction and function of the BBB in both healthy and pathological conditions, this review revisits certain contested questions, such as whether nanoparticles may cross the BBB on their own and if medications are selectively delivered to the brain by deliberately targeted nanoparticles. Current non-nanoparticle options are also discussed, including drug delivery via the permeable BBB under pathological circumstances and the use of non-invasive approaches to improve brain medication absorption.
Collapse
|
19
|
Khan RA, AlFawaz A, Farshori NN, Paul A, Jaafar MH, Alsalme A. Aminobenzimidazoles based (η
6
‐p‐cymene)Ruthenium (II) complexes as Nascent Anticancer Chemotherapeutics: Synthesis, Crystal Structure, DFT Studies, HSA Interactions, Molecular Docking, and Cytotoxicity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rais Ahmad Khan
- Department of Chemistry College of Science, King Saud University Riyadh KSA
| | - Amal AlFawaz
- Department of Chemistry College of Science, King Saud University Riyadh KSA
| | - Nida N. Farshori
- Department of Pharmacognosy College of Pharmacy, King Saud University Riyadh KSA
| | - Anup Paul
- Centro de Quimica Estrutural, Instituto Superior Tecnio, Unversidade de Lisboa Lisboa Portugal
| | - Mohammed H. Jaafar
- Department of Chemistry College of Science, King Saud University Riyadh KSA
| | - Ali Alsalme
- Department of Chemistry College of Science, King Saud University Riyadh KSA
| |
Collapse
|
20
|
Kassick AJ, Treat A, Tomycz N, Feasel MG, Kolber BJ, Averick S. Design, synthesis, and biological evaluation of C 6-difluoromethylenated epoxymorphinan Mu opioid receptor antagonists. RSC Med Chem 2022; 13:175-182. [PMID: 35308026 PMCID: PMC8864491 DOI: 10.1039/d1md00285f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2021] [Indexed: 03/12/2024] Open
Abstract
The recent widespread abuse of high potency synthetic opioids, such as fentanyl, presents a serious threat to individuals affected by substance use disorder. Synthetic opioids generally exhibit prolonged in vivo circulatory half-lives that can outlast the reversal effects of conventional naloxone-based overdose antidotes leading to a life-threatening relapse of opioid toxicity known as renarcotization. In this manuscript, we present our efforts to combat the threat of renarcotization by attempting to extend the half-life of traditional MOR antagonists through the design of novel, fluorinated 4,5-epoxymorphinans possessing increased lipophilicity. Analogues were prepared via a concise synthetic strategy highlighted by decarboxylative Wittig olefination of the C6 ketone to install a bioisosteric 1,1-difluoromethylene unit. C6-difluoromethylenated compounds successfully maintained in vitro potency against an EC90 challenge of fentanyl and were predicted to have enhanced circulatory half-life compared to the current standard of care, naloxone. Subsequent in vivo studies demonstrated the effective blockade of fentanyl-induced anti-nociception in mice.
Collapse
Affiliation(s)
- Andrew J Kassick
- Neuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Allegheny General Hospital Pittsburgh PA 15212 USA
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital Pittsburgh PA 15212 USA
| | - Anny Treat
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas Richardson TX 75080 USA
| | - Nestor Tomycz
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital Pittsburgh PA 15212 USA
| | - Michael G Feasel
- Research and Technology Division, DEVCOM Chemical Biological Center Aberdeen Proving Ground MD 21010-5424 USA
| | - Benedict J Kolber
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas Richardson TX 75080 USA
| | - Saadyah Averick
- Neuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Allegheny General Hospital Pittsburgh PA 15212 USA
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital Pittsburgh PA 15212 USA
| |
Collapse
|
21
|
Król SK, Bębenek E, Dmoszyńska-Graniczka M, Sławińska-Brych A, Boryczka S, Stepulak A. Acetylenic Synthetic Betulin Derivatives Inhibit Akt and Erk Kinases Activity, Trigger Apoptosis and Suppress Proliferation of Neuroblastoma and Rhabdomyosarcoma Cell Lines. Int J Mol Sci 2021; 22:12299. [PMID: 34830180 PMCID: PMC8624615 DOI: 10.3390/ijms222212299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) and rhabdomyosarcoma (RMS), the most common pediatric extracranial solid tumors, still represent an important clinical challenge since no effective treatment is available for metastatic and recurrent disease. Hence, there is an urgent need for the development of new chemotherapeutics to improve the outcome of patients. Betulin (Bet), a triterpenoid from the bark of birches, demonstrated interesting anti-cancer potential. The modification of natural phytochemicals with evidenced anti-tumor activity, including Bet, is one of the methods of receiving new compounds for potential implementation in oncological treatment. Here, we showed that two acetylenic synthetic Bet derivatives (ASBDs), EB5 and EB25/1, reduced the viability and proliferation of SK-N-AS and TE671 cells, as measured by MTT and BrdU tests, respectively. Moreover, ASBDs were also more cytotoxic than temozolomide (TMZ) and cisplatin (cis-diaminedichloroplatinum [II], CDDP) in vitro, and the combination of EB5 with CDDP enhanced anti-cancer effects. We also showed the slowdown of cell cycle progression at S/G2 phases mediated by EB5 using FACS flow cytometry. The decreased viability and proliferation of pediatric cancers cells after treatment with ASBDs was linked to the reduced activity of kinases Akt, Erk1/2 and p38 and the induction of apoptosis, as investigated using Western blotting and FACS. In addition, in silico analyses of the ADMET profile found EB5 to be a promising anti-cancer drug candidate that would benefit from further investigation.
Collapse
Affiliation(s)
- Sylwia K. Król
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (M.D.-G.); (A.S.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (E.B.); (S.B.)
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (M.D.-G.); (A.S.)
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (E.B.); (S.B.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (M.D.-G.); (A.S.)
| |
Collapse
|
22
|
Hu Y, Yang D, Tu Y, Chai K, Chu L, Shi S, Yao T. Dynamic-Inspired Perspective on the Molecular Inhibitor of Tau Aggregation by Glucose Gallates Based on Human Neurons. ACS Chem Neurosci 2021; 12:4162-4174. [PMID: 34649422 DOI: 10.1021/acschemneuro.1c00554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A molecular inhibitor of tau protein aggregation offers an attractive therapeutic possibility as disease-modifying treatment of Alzheimer's disease. However, the ineffectiveness as well as adjoint toxicity due to superficial understanding of the inhibition mechanism has hindered drug development. Conventional approaches for screening drug ligands rely on compatible docking with the well-defined structure of a protein receptor. Therefore, the design of tau aggregation inhibitors has been inevitably hindered by the unstructured, highly dynamic nature of the tau protein. This paper suggested a new strategy for reducing tau aggregation through a dynamic process of conformational isomerization. A group of glucose gallate derivatives were selected as tau aggregation inhibitors. These star-shaped molecules have a biocompatible glucose core surrounded by several gallic acid polyphenol arms, which can bind to peptide chains at different sites, probably through hydrogen bonds and π-π stacking. Theoretically, by elevating the saddle point on the potential energy surfaces (PES) of proteins, the barrier in the dynamic pathway of peptide isomerization, glucose gallates effectively inhibit tau aggregation through a dynamic mechanism. A tau cell model based on human neurons was constructed. For the first time, we confirmed that the moderate thermodynamic binding of the molecular ligand to the tau peptide chain can not only prevent the isomerization of the peptide chain leading to aggregation but also avoid toxicity resulting from the dissociation of tau from microtubules.
Collapse
Affiliation(s)
- Yuan Hu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Danjing Yang
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ying Tu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Keke Chai
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lei Chu
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuo Shi
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tianming Yao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
23
|
Yuan S, Li H, Wu J, Sun X. Classification of Mild Cognitive Impairment With Multimodal Data Using Both Labeled and Unlabeled Samples. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2281-2290. [PMID: 33471765 DOI: 10.1109/tcbb.2021.3053061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mild Cognitive Impairment (MCI) is a preclinical stage of Alzheimer's Disease (AD) and is clinical heterogeneity. The classification of MCI is crucial for the early diagnosis and treatment of AD. In this study, we investigated the potential of using both labeled and unlabeled samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort to classify MCI through the multimodal co-training method. We utilized both structural magnetic resonance imaging (sMRI) data and genotype data of 364 MCI samples including 228 labeled and 136 unlabeled MCI samples from the ADNI-1 cohort. First, the selected quantitative trait (QT) features from sMRI data and SNP features from genotype data were used to build two initial classifiers on 228 labeled MCI samples. Then, the co-training method was implemented to obtain new labeled samples from 136 unlabeled MCI samples. Finally, the random forest algorithm was used to obtain a combined classifier to classify MCI patients in the independent ADNI-2 dataset. The experimental results showed that our proposed framework obtains an accuracy of 85.50 percent and an AUC of 0.825 for MCI classification, respectively, which showed that the combined utilization of sMRI and SNP data through the co-training method could significantly improve the performances of MCI classification.
Collapse
|
24
|
Juhairiyah F, de Lange ECM. Understanding Drug Delivery to the Brain Using Liposome-Based Strategies: Studies that Provide Mechanistic Insights Are Essential. AAPS J 2021; 23:114. [PMID: 34713363 PMCID: PMC8553706 DOI: 10.1208/s12248-021-00648-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Brain drug delivery may be restricted by the blood-brain barrier (BBB), and enhancement by liposome-based drug delivery strategies has been investigated. As access to the human brain is limited, many studies have been performed in experimental animals. Whereas providing interesting data, such studies have room for improvement to provide mechanistic insight into the rate and extent of specifically BBB transport and intrabrain distribution processes that all together govern CNS target delivery of the free drug. This review shortly summarizes BBB transport and current liposome-based strategies to overcome BBB transport restrictions, with the emphasis on how to determine the individual mechanisms that all together determine the time course of free drug brain concentrations, following their administration as such, and in liposomes. Animal studies using microdialysis providing time course information on unbound drug in plasma and brain are highlighted, as these provide the mechanistic information needed to understand BBB drug transport of the drug, and the impact of a liposomal formulations of that drug on BBB transport. Overall, these studies show that brain distribution of a drug administered as liposomal formulation depends on both drug properties and liposomal formulation characteristics. In general, evidence suggests that active transporters at the BBB, either being influx or efflux transporters, are circumvented by liposomes. It is concluded that liposomal formulations may provide interesting changes in BBB transport. More mechanistic studies are needed to understand relevant mechanisms in liposomal drug delivery to the brain, providing an improved basis for its prediction in human using animal data.
Collapse
Affiliation(s)
- Firda Juhairiyah
- Research Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Research Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
25
|
Song J, Lu C, Leszek J, Zhang J. Design and Development of Nanomaterial-Based Drug Carriers to Overcome the Blood-Brain Barrier by Using Different Transport Mechanisms. Int J Mol Sci 2021; 22:10118. [PMID: 34576281 PMCID: PMC8465340 DOI: 10.3390/ijms221810118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Central nervous system (CNS) diseases are the leading causes of death and disabilities in the world. It is quite challenging to treat CNS diseases efficiently because of the blood-brain barrier (BBB). It is a physical barrier with tight junction proteins and high selectivity to limit the substance transportation between the blood and neural tissues. Thus, it is important to understand BBB transport mechanisms for developing novel drug carriers to overcome the BBB. This paper introduces the structure of the BBB and its physiological transport mechanisms. Meanwhile, different strategies for crossing the BBB by using nanomaterial-based drug carriers are reviewed, including carrier-mediated, adsorptive-mediated, and receptor-mediated transcytosis. Since the viral-induced CNS diseases are associated with BBB breakdown, various neurotropic viruses and their mechanisms on BBB disruption are reviewed and discussed, which are considered as an alternative solution to overcome the BBB. Therefore, most recent studies on virus-mimicking nanocarriers for drug delivery to cross the BBB are also reviewed and discussed. On the other hand, the routes of administration of drug-loaded nanocarriers to the CNS have been reviewed. In sum, this paper reviews and discusses various strategies and routes of nano-formulated drug delivery systems across the BBB to the brain, which will contribute to the advanced diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Jisu Song
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland;
| | - Jin Zhang
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| |
Collapse
|
26
|
Brenner DM, Slatkin NE, Stambler N, Israel RJ, Coluzzi PH. The influence of brain metastases on the central nervous system effects of methylnaltrexone: a post hoc analysis of 3 randomized, double-blind studies. Support Care Cancer 2021; 29:5209-5218. [PMID: 33629189 PMCID: PMC8295095 DOI: 10.1007/s00520-021-06070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/09/2021] [Indexed: 10/31/2022]
Abstract
PURPOSE Peripherally acting μ-opioid receptor antagonists such as methylnaltrexone (MNTX, Relistor®) are indicated for the treatment of opioid-induced constipation (OIC). The structural properties unique to MNTX restrict it from traversing the blood-brain barrier (BBB); however, the BBB may become more permeable in patients with brain metastases. We investigated whether the presence of brain metastases in cancer patients compromises the central effects of opioids among patients receiving MNTX for OIC. METHODS This post hoc analysis of pooled data from 3 randomized, placebo-controlled trials included cancer patients with OIC who received MNTX or placebo. Endpoints included changes from baseline in pain scores, rescue-free laxation (RFL) within 4 or 24 h of the first dose, and treatment-emergent adverse events (TEAEs), including those potentially related to opioid withdrawal symptoms. RESULTS Among 356 cancer patients in the pooled population, 47 (MNTX n = 27; placebo n = 20) had brain metastases and 309 (MNTX n = 172; placebo n = 137) did not have brain metastases. No significant differences in current pain, worst pain, or change in pain scores from baseline were observed between patients treated with MNTX or placebo. Among patients with brain metastases, a significantly greater proportion of patients who received MNTX versus placebo achieved an RFL within 4 h after the first dose (70.4% vs 15.0%, respectively, p = 0.0002). TEAEs were similar between treatment groups and were generally gastrointestinal in nature and not related to opioid withdrawal. CONCLUSION Focal disruptions of the BBB caused by brain metastases did not appear to alter central nervous system penetrance of MNTX.
Collapse
Affiliation(s)
- Darren M Brenner
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Neal E Slatkin
- University of California, Riverside, School of Medicine, Riverside, CA, USA
- Salix Pharmaceuticals, Bridgewater, NJ, USA
| | - Nancy Stambler
- Progenics Pharmaceuticals, Inc., a subsidiary of Lantheus Holdings, Inc., New York, NY, USA
| | | | | |
Collapse
|
27
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
28
|
Huda MN, Nafiujjaman M, Deaguero IG, Okonkwo J, Hill ML, Kim T, Nurunnabi M. Potential Use of Exosomes as Diagnostic Biomarkers and in Targeted Drug Delivery: Progress in Clinical and Preclinical Applications. ACS Biomater Sci Eng 2021; 7:2106-2149. [PMID: 33988964 PMCID: PMC8147457 DOI: 10.1021/acsbiomaterials.1c00217] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Exosomes are cell-derived vesicles containing heterogeneous active biomolecules such as proteins, lipids, mRNAs, receptors, immune regulatory molecules, and nucleic acids. They typically range in size from 30 to 150 nm in diameter. An exosome's surfaces can be bioengineered with antibodies, fluorescent dye, peptides, and tailored for small molecule and large active biologics. Exosomes have enormous potential as a drug delivery vehicle due to enhanced biocompatibility, excellent payload capability, and reduced immunogenicity compared to alternative polymeric-based carriers. Because of active targeting and specificity, exosomes are capable of delivering their cargo to exosome-recipient cells. Additionally, exosomes can potentially act as early stage disease diagnostic tools as the exosome carries various protein biomarkers associated with a specific disease. In this review, we summarize recent progress on exosome composition, biological characterization, and isolation techniques. Finally, we outline the exosome's clinical applications and preclinical advancement to provide an outlook on the importance of exosomes for use in targeted drug delivery, biomarker study, and vaccine development.
Collapse
Affiliation(s)
- Md Nurul Huda
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Isaac G Deaguero
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Jude Okonkwo
- John A Paulson School of Engineering, Harvard University, Cambridge, MA 02138
| | - Meghan L. Hill
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
29
|
Promotion effect of the propolis from Jeju Island, Korea, on NGF secretion in human glioblastoma cells. J Nat Med 2021; 75:1030-1036. [PMID: 34110568 DOI: 10.1007/s11418-021-01535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Propolis is a resinous mixture of substances collected and processed from various botanical sources by honeybees (Apis mellifera). We previously found that propolis collected on Jeju Island, located off the southern coast of Korea, originates from a single plant, Angelica keiskei KOIDZUMI (Ashitaba). A. keiskei has been well-studied as a health food and has been reported to promote nerve growth factor (NGF) production. Propolis formed from the resin of A. keiskei is expected to have a similar promotional effect on NGF production. NGF is a potential pharmacological agent for Alzheimer's disease. In this study, the effects of an ethanolic extract of propolis from Jeju Island (EEPJ) on NGF secretion and cell viability in T98G human glioblastoma cells were evaluated. Ethanolic extracts of propolis from Brazil (Baccharis type) and from Uruguay (Populus type) were also studied for comparison. We found that EEPJ significantly increased NGF secretion in the cells in a concentration-dependent manner. Furthermore, the effects of 27 compounds previously isolated from EEPJ were also evaluated. Several compounds were found to have a promotion effect on NGF secretion, and the structure-activity relationships of the compounds were considered relative to their promotional effect on NGF biosynthesis. The promotional effect of EEPJ is a characteristic biological activity that is not present with other propolis types, so the propolis from Jeju Island may have potential applications as a therapeutic candidate for Alzheimer's disease.
Collapse
|
30
|
Liu L, Zhou X, Li B, Cheng F, Cui H, Li J, Zhang J. In Vitro and In Vivo Activities, Absorption, Tissue Distribution, and Excretion of OBP-4, a Potential Anti-Clostridioides difficile Agent. Antimicrob Agents Chemother 2021; 65:e00581-21. [PMID: 33820771 PMCID: PMC8315982 DOI: 10.1128/aac.00581-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile infection (CDI) is considered a major concern of the health care system globally, with an increasing need for alternative therapies. OBP-4, a new oxazolidinone-fluoroquinolone hybrid with excellent in vitro activities and good safety, shows promising features as an antibacterial agent. Here, we further evaluated the in vitro and in vivo activities of OBP-4 against C. difficile and its absorption (A), distribution (D), and excretion (E) profiles in rats. In vitro assays indicated that OBP-4 was active against all tested C. difficile strains, with MICs ranging from 0.25 to 1 mg/liter. In addition, OBP-4 showed complete inhibition of spore formation at 0.5× MIC. In the mouse model of CDI, 5-day oral treatment with OBP-4 provided complete protection from death and CDI recurrence in infected mice. However, cadazolid (CZD) and vancomycin (VAN) showed less protection of infected mice than did OBP-4 in terms of diarrhea and weight loss, especially VAN. Subsequently, ADE investigations of OBP-4 with a reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method showed extremely low systemic exposure and predominantly fecal excretion, resulting in a high local concentration of OBP-4 in the intestinal tract-the site of CDI. These results demonstrated that OBP-4 possesses good activity against C. difficile and favorable ADE characteristics for oral treatment of CDI, which support further development of OBP-4 as a potential anti-CDI agent.
Collapse
Affiliation(s)
- Lili Liu
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, People's Republic of China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, People's Republic of China
| | - Xuzheng Zhou
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, People's Republic of China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, People's Republic of China
| | - Bing Li
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, People's Republic of China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, People's Republic of China
| | - Fusheng Cheng
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, People's Republic of China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, People's Republic of China
| | - Haifeng Cui
- R & D Center, Beijing Orbiepharm Co., Ltd., Beijing, People's Republic of China
| | - Jing Li
- R & D Center, Beijing Orbiepharm Co., Ltd., Beijing, People's Republic of China
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, People's Republic of China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, People's Republic of China
| |
Collapse
|
31
|
Puxeddu M, Shen H, Bai R, Coluccia A, Bufano M, Nalli M, Sebastiani J, Brancaccio D, Da Pozzo E, Tremolanti C, Martini C, Orlando V, Biagioni S, Sinicropi MS, Ceramella J, Iacopetta D, Coluccia AML, Hamel E, Liu T, Silvestri R, La Regina G. Discovery of pyrrole derivatives for the treatment of glioblastoma and chronic myeloid leukemia. Eur J Med Chem 2021; 221:113532. [PMID: 34052717 DOI: 10.1016/j.ejmech.2021.113532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022]
Abstract
Long-term survivors of glioblastoma multiforme (GBM) are at high risk of developing second primary neoplasms, including leukemia. For these patients, the use of classic tyrosine kinase inhibitors (TKIs), such as imatinib mesylate, is strongly discouraged, since this treatment causes a tremendous increase of tumor and stem cell migration and invasion. We aimed to develop agents useful for the treatment of patients with GBM and chronic myeloid leukemia (CML) using an alternative mechanism of action from the TKIs, specifically based on the inhibition of tubulin polymerization. Compounds 7 and 25, as planned, not only inhibited tubulin polymerization, but also inhibited the proliferation of both GMB and CML cells, including those expressing the T315I mutation, at nanomolar concentrations. In in vivo experiments in BALB/cnu/nu mice injected subcutaneously with U87MG cells, in vivo, 7 significantly inhibited GBM cancer cell proliferation, in vivo tumorigenesis, and tumor growth, tumorigenesis and angiogenesis. Compound 7 was found to block human topoisomerase II (hTopoII) selectively and completely, at a concentration of 100 μM.
Collapse
Affiliation(s)
- Michela Puxeddu
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Hongliang Shen
- Department of Urology, Capital Medical University Beijing Friendship Hospital, Beijing, 100050, China
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Jessica Sebastiani
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples"Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Viviana Orlando
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036, Rende, Cosenza, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036, Rende, Cosenza, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036, Rende, Cosenza, Italy
| | | | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Te Liu
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100, Lecce, Italy; Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China.
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
| |
Collapse
|
32
|
Sharifian Gh M. Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Mol Pharm 2021; 18:2122-2141. [PMID: 33914545 DOI: 10.1021/acs.molpharmaceut.1c00009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to measure the passive membrane permeation of drug-like molecules is of fundamental biological and pharmaceutical importance. Of significance, passive diffusion across the cellular membranes plays an effective role in the delivery of many pharmaceutical agents to intracellular targets. Hence, approaches for quantitative measurement of membrane permeability have been the topics of research for decades, resulting in sophisticated biomimetic systems coupled with advanced techniques. In this review, recent developments in experimental approaches along with theoretical models for quantitative and real-time analysis of membrane transport of drug-like molecules through mimetic and living cell membranes are discussed. The focus is on time-resolved fluorescence-based, surface plasmon resonance, and second-harmonic light scattering approaches. The current understanding of how properties of the membrane and permeant affect the permeation process is discussed.
Collapse
Affiliation(s)
- Mohammad Sharifian Gh
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
33
|
Pardridge WM. Treatment of Alzheimer's Disease and Blood-Brain Barrier Drug Delivery. Pharmaceuticals (Basel) 2020; 13:E394. [PMID: 33207605 PMCID: PMC7697739 DOI: 10.3390/ph13110394] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the enormity of the societal and health burdens caused by Alzheimer's disease (AD), there have been no FDA approvals for new therapeutics for AD since 2003. This profound lack of progress in treatment of AD is due to dual problems, both related to the blood-brain barrier (BBB). First, 98% of small molecule drugs do not cross the BBB, and ~100% of biologic drugs do not cross the BBB, so BBB drug delivery technology is needed in AD drug development. Second, the pharmaceutical industry has not developed BBB drug delivery technology, which would enable industry to invent new therapeutics for AD that actually penetrate into brain parenchyma from blood. In 2020, less than 1% of all AD drug development projects use a BBB drug delivery technology. The pathogenesis of AD involves chronic neuro-inflammation, the progressive deposition of insoluble amyloid-beta or tau aggregates, and neural degeneration. New drugs that both attack these multiple sites in AD, and that have been coupled with BBB drug delivery technology, can lead to new and effective treatments of this serious disorder.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
34
|
Hanes J, Dobakova E, Majerova P. Brain Drug Delivery: Overcoming the Blood-brain Barrier to Treat Tauopathies. Curr Pharm Des 2020; 26:1448-1465. [PMID: 32178609 DOI: 10.2174/1381612826666200316130128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics' delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.
Collapse
Affiliation(s)
- Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | - Eva Dobakova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| |
Collapse
|
35
|
Umezu T, Sano T, Hayashi J, Shibata Y. Simultaneous blood and brain microdialysis in a free-moving mouse to test blood-brain barrier permeability of chemicals. Toxicol Rep 2020; 7:1542-1550. [PMID: 33294385 PMCID: PMC7689036 DOI: 10.1016/j.toxrep.2020.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 01/27/2023] Open
Abstract
Neurotoxic chemicals that pass through the blood-brain barrier (BBB) can influence brain function. Efficient methods to test the permeability of the BBB to specific chemicals would facilitate identification of potentially neurotoxic agents. We report here a simultaneous blood and brain microdialysis in a free-moving mouse to test BBB permeability of different chemicals. Microdialysis sampling was conducted in mice at 3-5 days after implantation of a brain microdialysis probe and 1 day after implantation of a blood microdialysis probe. Therefore, mice were under almost physiological conditions. Results of an intravenous injection of lucifer yellow or uranine showed that the BBB was functioning in the mice under the experimental conditions. Mice were given phenyl arsenic compounds orally, and concentration-time profiles for phenyl arsenic compounds such as diphenylarsinic acid, phenylarsonic acid, and phenylmethylarsinic acid in the blood and brain dialysate samples were obtained using simultaneous blood and brain microdialysis coupled with liquid chromatography-tandem mass spectrometry. Peak area-time profiles for linalool and 2-phenethyl alcohol (fragrance compounds or plant-derived volatile organic chemicals) were obtained using simultaneous blood and brain microdialysis coupled with gas chromatography-mass spectrometry in mice given lavender or rose essential oils intraperitoneally. BBB function was confirmed using lucifer yellow in these mice, and results indicated that the phenyl arsenic compounds, linalool and 2-phenethyl alcohol, passed through the BBB. The present study demonstrates that simultaneous blood and brain microdialysis in a free-moving mouse makes it possible to test the BBB permeability of chemicals when coupled with appropriate chemical analysis methods.
Collapse
Affiliation(s)
- Toyoshi Umezu
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Junko Hayashi
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Yasuyuki Shibata
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
36
|
Hu Y, Hu X, Lu Y, Shi S, Yang D, Yao T. New Strategy for Reducing Tau Aggregation Cytologically by A Hairpinlike Molecular Inhibitor, Tannic Acid Encapsulated in Liposome. ACS Chem Neurosci 2020; 11:3623-3634. [PMID: 33048528 DOI: 10.1021/acschemneuro.0c00508] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inhibition of Tau protein aggregation is an attractive therapeutic target for Alzheimer's disease. However, most of the inhibitors have failed in clinical trials due to the superficial understanding of inhibition mechanism and drug-transfer pharmacokinetics. Innovation of design strategy has become a top priority. To afford a hairpinlike molecular inhibitor, we introduced tannic acid, a multibranched polyphenol molecule, and its moiety, gallic acid. We showed that tannic acid could effectively inhibit Tau aggregation through a multidentate chelation mode. We then encapsulated tannic acid in a non-neurotoxic liposome by lecithin/β-sitosterol, overcoating with Tween 80. Using transwell devices, we cytologically demonstrated that tannic acid liposome can successfully be transferred across the model of a blood-brain barrier made up of mouse brain microvascular endothelial cell bEnd.3 and effectively reduce Tau aggregation induced by fibrils of Tau peptide R3 in human neuroblastoma cell SK-N-SH. This result indicates the potential therapeutic effect of tannic acid liposome on Alzheimer's disease.
Collapse
Affiliation(s)
- Yuan Hu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaochun Hu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yonglin Lu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuo Shi
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Danjing Yang
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Tianming Yao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
37
|
Apostolov S, Mijin D, Petrović S, Vastag G. In silico approach in the assessment of chromatographic parameters as descriptors of diphenylacetamides’ biological/pharmacological profile. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1835672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Suzana Apostolov
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Dušan Mijin
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Slobodan Petrović
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Gyöngyi Vastag
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
38
|
Fisher D, Thomas KA, Abdul‐Rasool S. The Synergistic and Neuroprotective Effects of Alcohol–Antioxidant Treatment on Blood–Brain Barrier Endothelial Cells. Alcohol Clin Exp Res 2020; 44:1997-2007. [DOI: 10.1111/acer.14433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022]
Affiliation(s)
- David Fisher
- From the Department of Medical Biosciences (DF, KAT, SA‐R) University of the Western Cape Cape Town South Africa
- School of Health Professions (DF) University of Missouri Columbia Missouri
| | - Kelly Angelique Thomas
- From the Department of Medical Biosciences (DF, KAT, SA‐R) University of the Western Cape Cape Town South Africa
| | - Sahar Abdul‐Rasool
- From the Department of Medical Biosciences (DF, KAT, SA‐R) University of the Western Cape Cape Town South Africa
| |
Collapse
|
39
|
Chia YC, Anjum CE, Yee HR, Kenisi Y, Chan MKS, Wong MBF, Pan SY. Stem Cell Therapy for Neurodegenerative Diseases: How Do Stem Cells Bypass the Blood-Brain Barrier and Home to the Brain? Stem Cells Int 2020; 2020:8889061. [PMID: 32952573 PMCID: PMC7487096 DOI: 10.1155/2020/8889061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 01/14/2023] Open
Abstract
Blood-brain barrier (BBB) is a term describing the highly selective barrier formed by the endothelial cells (ECs) of the central nervous system (CNS) homeostasis by restricting movement across the BBB. An intact BBB is critical for normal brain functions as it maintains brain homeostasis, modulates immune cell transport, and provides protection against pathogens and other foreign substances. However, it also prevents drugs from entering the CNS to treat neurodegenerative diseases. Stem cells, on the other hand, have been reported to bypass the BBB and successfully home to their target in the brain and initiate repair, making them a promising approach in cellular therapy, especially those related to neurodegenerative disease. This review article discusses the mechanism behind the successful homing of stem cells to the brain, their potential role as a drug delivery vehicle, and their applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yvonne Cashinn Chia
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Clarice Evey Anjum
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Hui Rong Yee
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Yenny Kenisi
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Mike K. S. Chan
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Michelle B. F. Wong
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Shing Yi Pan
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| |
Collapse
|
40
|
Viscusi ER, Viscusi AR. Blood-brain barrier: mechanisms governing permeability and interaction with peripherally acting μ-opioid receptor antagonists. Reg Anesth Pain Med 2020; 45:688-695. [PMID: 32723840 PMCID: PMC7476292 DOI: 10.1136/rapm-2020-101403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) describes the unique properties of endothelial cells (ECs) that line the central nervous system (CNS) microvasculature. The BBB supports CNS homeostasis via EC-associated transport of ions, nutrients, proteins and waste products between the brain and blood. These transport mechanisms also serve as physiological barriers to pathogens, toxins and xenobiotics to prevent them from contacting neural tissue. The mechanisms that govern BBB permeability pose a challenge to drug design for CNS disorders, including pain, but can be exploited to limit the effects of a drug to the periphery, as in the design of the peripherally acting μ-opioid receptor antagonists (PAMORAs) used to treat opioid-induced constipation. Here, we describe BBB physiology, drug properties that affect BBB penetrance and how data from randomized clinical trials of PAMORAs improve our understanding of BBB permeability.
Collapse
Affiliation(s)
- Eugene R Viscusi
- Department of Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew R Viscusi
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Prante M, Segal E, Scheper T, Bahnemann J, Walter J. Aptasensors for Point-of-Care Detection of Small Molecules. BIOSENSORS 2020; 10:E108. [PMID: 32859075 PMCID: PMC7559136 DOI: 10.3390/bios10090108] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Aptamers, a group of nucleic acids which can specifically bind to a target molecule, have drawn extensive interest over the past few decades. For analytics, aptamers represent a viable alternative to gold-standard antibodies due to their oligonucleic nature combined with advantageous properties, including higher stability in harsh environments and longer shelf-life. Indeed, over the last decade, aptamers have been used in numerous bioanalytical assays and in various point-of-care testing (POCT) platforms. The latter allows for rapid on-site testing and can be performed outside a laboratory by unskilled labor. Aptamer technology for POCT is not limited just to medical diagnostics; it can be used for a range of applications, including environmental monitoring and quality control. In this review, we critically examine the use of aptamers in POCT with an emphasis on their advantages and limitations. We also examine the recent success of aptasensor technology and how these findings pave the way for the analysis of small molecules in POCT and other health-related applications. Finally, the current major limitations of aptamers are discussed, and possible approaches for overcoming these challenges are presented.
Collapse
Affiliation(s)
- Marc Prante
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstr. 5, 30167 Hannover, Germany; (M.P.); (T.S.); (J.B.)
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Technion City, Haifa 3200003, Israel;
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstr. 5, 30167 Hannover, Germany; (M.P.); (T.S.); (J.B.)
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstr. 5, 30167 Hannover, Germany; (M.P.); (T.S.); (J.B.)
| | - Johanna Walter
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstr. 5, 30167 Hannover, Germany; (M.P.); (T.S.); (J.B.)
| |
Collapse
|
42
|
Neuroprotection by curcumin: A review on brain delivery strategies. Int J Pharm 2020; 585:119476. [DOI: 10.1016/j.ijpharm.2020.119476] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/05/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022]
|
43
|
Chang YC, Kim JY. Therapeutic implications of circadian clocks in neurodegenerative diseases. J Neurosci Res 2020; 98:1095-1113. [PMID: 31833091 DOI: 10.1002/jnr.24572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Circadian clocks, endogenous oscillators generating daily biological rhythms, have important roles in the nervous system to control diverse cellular processes-not only in the suprachiasmatic nucleus (SCN), where the master clocks reside to synchronize all circadian clocks in the body but also in other non-SCN areas. Accumulating evidence has shown relationships between circadian abnormalities (e.g., sleep disturbances and abnormal rest-activity rhythms) and disease progressions in various neurodegenerative diseases, including Alzheimer's (AD) and Parkinson's (PD) disease. Although circadian abnormalities were frequently considered as consequences of disease onsets, recent studies suggest altered circadian clocks as risk factors to develop neurodegenerative diseases via altered production or clearance rates of toxic metabolites like amyloid β. In this review, we will summarize circadian clock-related pathologies in the most common neurodegenerative diseases in the central nervous system, AD and PD. Then, we will introduce the current clinical trials to rescue circadian abnormalities in AD and PD patients. Finally, a discussion about how to improve targeting circadian clocks to increase treatment efficiencies and specificities will be followed. This discussion will provide insight into circadian clocks as potential therapeutic targets to attenuate onsets and progressions of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Chen Chang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
44
|
Tsurubuchi T, Shirakawa M, Kurosawa W, Matsumoto K, Ubagai R, Umishio H, Suga Y, Yamazaki J, Arakawa A, Maruyama Y, Seki T, Shibui Y, Yoshida F, Zaboronok A, Suzuki M, Sakurai Y, Tanaka H, Nakai K, Ishikawa E, Matsumura A. Evaluation of a Novel Boron-Containing α-D-Mannopyranoside for BNCT. Cells 2020; 9:E1277. [PMID: 32455737 PMCID: PMC7290312 DOI: 10.3390/cells9051277] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a unique anticancer technology that has demonstrated its efficacy in numerous phase I/II clinical trials with boronophenylalanine (BPA) and sodium borocaptate (BSH) used as 10B delivery agents. However, continuous drug administration at high concentrations is needed to maintain sufficient 10B concentration within tumors. To address the issue of 10B accumulation and retention in tumor tissue, we developed MMT1242, a novel boron-containing α-d-mannopyranoside. We evaluated the uptake, intracellular distribution, and retention of MMT1242 in cultured cells and analyzed biodistribution, tumor-to-normal tissue ratio and toxicity in vivo. Fluorescence imaging using nitrobenzoxadiazole (NBD)-labeled MMT1242 and inductively coupled mass spectrometry (ICP-MS) were performed. The effectiveness of BNCT using MMT1242 was assessed in animal irradiation studies at the Kyoto University Research Reactor. MMT1242 showed a high uptake and broad intracellular distribution in vitro, longer tumor retention compared to BSH and BPA, and adequate tumor-to-normal tissue accumulation ratio and low toxicity in vivo. A neutron irradiation study with MMT1242 in a subcutaneous murine tumor model revealed a significant tumor inhibiting effect if injected 24 h before irradiation. We therefore report that 10B-MMT1242 is a candidate for further clinical BNCT studies.
Collapse
Affiliation(s)
- Takao Tsurubuchi
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (M.S.); (F.Y.); (K.N.); (E.I.); (A.M.)
| | - Makoto Shirakawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (M.S.); (F.Y.); (K.N.); (E.I.); (A.M.)
- Department of Pharmaceutical Sciences, University of Fukuyama, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Wataru Kurosawa
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzukichō, Kawasaki-ku, Kawasaki 210-8681, Japan; (W.K.); (K.M.); (R.U.); (H.U.); (Y.S.); (J.Y.); (A.A.); (Y.M.); (T.S.); (Y.S.)
| | - Kayo Matsumoto
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzukichō, Kawasaki-ku, Kawasaki 210-8681, Japan; (W.K.); (K.M.); (R.U.); (H.U.); (Y.S.); (J.Y.); (A.A.); (Y.M.); (T.S.); (Y.S.)
| | - Risa Ubagai
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzukichō, Kawasaki-ku, Kawasaki 210-8681, Japan; (W.K.); (K.M.); (R.U.); (H.U.); (Y.S.); (J.Y.); (A.A.); (Y.M.); (T.S.); (Y.S.)
| | - Hiroshi Umishio
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzukichō, Kawasaki-ku, Kawasaki 210-8681, Japan; (W.K.); (K.M.); (R.U.); (H.U.); (Y.S.); (J.Y.); (A.A.); (Y.M.); (T.S.); (Y.S.)
| | - Yasuyo Suga
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzukichō, Kawasaki-ku, Kawasaki 210-8681, Japan; (W.K.); (K.M.); (R.U.); (H.U.); (Y.S.); (J.Y.); (A.A.); (Y.M.); (T.S.); (Y.S.)
| | - Junko Yamazaki
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzukichō, Kawasaki-ku, Kawasaki 210-8681, Japan; (W.K.); (K.M.); (R.U.); (H.U.); (Y.S.); (J.Y.); (A.A.); (Y.M.); (T.S.); (Y.S.)
| | - Akihiro Arakawa
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzukichō, Kawasaki-ku, Kawasaki 210-8681, Japan; (W.K.); (K.M.); (R.U.); (H.U.); (Y.S.); (J.Y.); (A.A.); (Y.M.); (T.S.); (Y.S.)
| | - Yutaka Maruyama
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzukichō, Kawasaki-ku, Kawasaki 210-8681, Japan; (W.K.); (K.M.); (R.U.); (H.U.); (Y.S.); (J.Y.); (A.A.); (Y.M.); (T.S.); (Y.S.)
| | - Takuya Seki
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzukichō, Kawasaki-ku, Kawasaki 210-8681, Japan; (W.K.); (K.M.); (R.U.); (H.U.); (Y.S.); (J.Y.); (A.A.); (Y.M.); (T.S.); (Y.S.)
| | - Yusuke Shibui
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzukichō, Kawasaki-ku, Kawasaki 210-8681, Japan; (W.K.); (K.M.); (R.U.); (H.U.); (Y.S.); (J.Y.); (A.A.); (Y.M.); (T.S.); (Y.S.)
| | - Fumiyo Yoshida
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (M.S.); (F.Y.); (K.N.); (E.I.); (A.M.)
| | - Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (M.S.); (F.Y.); (K.N.); (E.I.); (A.M.)
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan; (M.S.); (Y.S.); (H.T.)
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan; (M.S.); (Y.S.); (H.T.)
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan; (M.S.); (Y.S.); (H.T.)
| | - Kei Nakai
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (M.S.); (F.Y.); (K.N.); (E.I.); (A.M.)
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (M.S.); (F.Y.); (K.N.); (E.I.); (A.M.)
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (M.S.); (F.Y.); (K.N.); (E.I.); (A.M.)
| |
Collapse
|
45
|
Beccaria K, Sabbagh A, de Groot J, Canney M, Carpentier A, Heimberger AB. Blood-brain barrier opening with low intensity pulsed ultrasound for immune modulation and immune therapeutic delivery to CNS tumors. J Neurooncol 2020; 151:65-73. [PMID: 32112296 DOI: 10.1007/s11060-020-03425-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/05/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Opening of the blood-brain barrier (BBB) by pulsed low intensity ultrasound has been developed during the last decade and is now recognized as a safe technique to transiently and repeatedly open the BBB. This non- or minimally invasive technique allows for a targeted and uniform dispersal of a wide range of therapeutic substances throughout the brain, including immune cells and antibodies. METHODS In this review article, we summarize pre-clinical studies that have used BBB-opening by pulsed low intensity ultrasound to enhance the delivery of immune therapeutics and effector cell populations, as well as several recent clinical studies that have been initiated. Based on this analysis, we propose immune therapeutic strategies that are most likely to benefit from this strategy. The literature review and trial data research were performed using Medline/Pubmed databases and clinical trial registry www.clinicaltrials.gov . The reference lists of all included articles were searched for additional studies. RESULTS A wide range of immune therapeutic agents, including small molecular weight drugs, antibodies or NK cells, have been safely and efficiently delivered to the brain with pulsed low intensity ultrasound in preclinical models, and both tumor control and increased survival have been demonstrated in different types of brain tumor models in rodents. Ultrasound-induced BBB disruption may also stimulate innate and cellular immune responses. CONCLUSIONS Ultrasound BBB opening has just recently entered clinical trials with encouraging results, and the association of this strategy with immune therapeutics creates a new field of brain tumor treatment.
Collapse
Affiliation(s)
- Kevin Beccaria
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aria Sabbagh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John de Groot
- Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael Canney
- CarThera, Institut du Cerveau Et de La Moelle épinière (ICM), 75013, Paris, France
| | - Alexandre Carpentier
- Department of Neurosurgery, Sorbonne Université, UPMC Univ Paris 06, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires La Pitié-Salpêtrière, Paris, France
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Unit 422, P.O. Box 301402, Houston, TX, 77230-1402, USA.
| |
Collapse
|
46
|
Gudin J, Fudin J. Peripheral Opioid Receptor Antagonists for Opioid-Induced Constipation: A Primer on Pharmacokinetic Variabilities with a Focus on Drug Interactions. J Pain Res 2020; 13:447-456. [PMID: 32158255 PMCID: PMC7049282 DOI: 10.2147/jpr.s220859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022] Open
Abstract
Opioid analgesics remain a treatment option for refractory acute and chronic pain, despite their potential risk for abuse and adverse events (AEs). Opioids are associated with several common AEs, but the most bothersome is opioid-induced constipation (OIC). OIC is often overlooked but has the potential to affect patient quality of life, increase associated symptom burden, and impede long-term opioid compliance. The peripherally acting µ-receptor antagonists (PAMORAs) are a class of drugs that include methylnaltrexone, naloxegol, and naldemedine. Collectively, each is approved for the treatment of OIC. PAMORAs work peripherally in the gastrointestinal tract, without impacting the central analgesic effects of opioids. However, each has unique pharmacokinetic properties that may be impacted by coadministered drugs or food. This review focuses on important metabolic and pharmacokinetic principals that are pertinent to drug interactions involving µ-opioid receptor antagonists prescribed for OIC. It highlights subtle differences among the PAMORAs that may have clinical significance. For example, unlike naloxegol or naldemedine, methylnaltrexone is not a substrate for CYP3A4 or p-glycoprotein; therefore, its plasma concentration is not altered when coadministered with concomitant medications that are CYP3A4 or p-glycoprotein inducers or inhibitors. With a better understanding of pharmacokinetic nuances of each PAMORA, clinicians will be better equipped to identify potential safety and efficacy considerations that may arise when PAMORAs are coadministered with other medications.
Collapse
Affiliation(s)
- Jeffrey Gudin
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Anesthesiology, Englewood Hospital and Medical Center, Englewood, NJ, USA
| | - Jeffrey Fudin
- Albany College of Pharmacy and Health Sciences, Albany, NY, USA
- Western New England University College of Pharmacy, Springfield, MA, USA
- Remitigate, LLC, Delmar, NY, USA
- Stratton Veterans Affairs Medical Center, Albany, NY, USA
| |
Collapse
|
47
|
Bell AH, Miller SL, Castillo-Melendez M, Malhotra A. The Neurovascular Unit: Effects of Brain Insults During the Perinatal Period. Front Neurosci 2020; 13:1452. [PMID: 32038147 PMCID: PMC6987380 DOI: 10.3389/fnins.2019.01452] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
The neurovascular unit (NVU) is a relatively recent concept in neuroscience that broadly describes the relationship between brain cells and their blood vessels. The NVU incorporates cellular and extracellular components involved in regulating cerebral blood flow and blood-brain barrier function. The NVU within the adult brain has attracted strong research interest and its structure and function is well described, however, the NVU in the developing brain over the fetal and neonatal period remains much less well known. One area of particular interest in perinatal brain development is the impact of known neuropathological insults on the NVU. The aim of this review is to synthesize existing literature to describe structure and function of the NVU in the developing brain, with a particular emphasis on exploring the effects of perinatal insults. Accordingly, a brief overview of NVU components and function is provided, before discussion of NVU development and how this may be affected by perinatal pathologies. We have focused this discussion around three common perinatal insults: prematurity, acute hypoxia, and chronic hypoxia. A greater understanding of processes affecting the NVU in the perinatal period may enable application of targeted therapies, as well as providing a useful basis for research as it expands further into this area.
Collapse
Affiliation(s)
- Alexander H. Bell
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Han J, Ji Y, Youn K, Lim G, Lee J, Kim DH, Jun M. Baicalein as a Potential Inhibitor against BACE1 and AChE: Mechanistic Comprehension through In Vitro and Computational Approaches. Nutrients 2019; 11:E2694. [PMID: 31703329 PMCID: PMC6893645 DOI: 10.3390/nu11112694] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
One of the major neurodegenerative features of Alzheimer's disease (AD) is the presence of neurotoxic amyloid plaques composed of amyloid beta peptide (Aβ). β-Secretase (BACE1) and acetylcholinesterase (AChE), which promote Aβ fibril formation, have become attractive therapeutic targets for AD. P-glycoprotein (P-gp), the major efflux pump of the blood-brain barrier (BBB), plays a critical role in limiting therapeutic molecules. In pursuit of discovering a natural anti-AD candidate, the bioactivity, physicochemical, drug-likeness, and molecular docking properties of baicalein, a major compound from Scutellaria baicalensis, was investigated. Baicalein exhibited strong BACE1 and AChE inhibitory properties (IC50 23.71 ± 1.91 µM and 45.95 ± 3.44 µM, respectively) and reacted in non-competitive and competitive manners with substrates, respectively. in Silico docking analysis was in full agreement with the in vitro results, demonstrating that the compound exhibited powerful binding interaction with target enzymes. Particularly, three continuous hydroxyl groups on the A ring demonstrated strong H-bond binding properties. It is also noteworthy that baicalein complied with all requirements of Lipinski's rule of five by its optimal physicochemical properties for both oral bioavailability and blood-brain barrier permeability. Overall, the present study strongly demonstrated the possibility of baicalein having in vivo pharmacological efficacy for specific targets in the prevention and/or treatment of AD.
Collapse
Affiliation(s)
- Jin Han
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.H.); (Y.J.); (K.Y.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Busan 49315, Korea
| | - Yeongseon Ji
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.H.); (Y.J.); (K.Y.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Busan 49315, Korea
| | - Kumju Youn
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.H.); (Y.J.); (K.Y.)
| | - GyuTae Lim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (G.L.); (J.L.)
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Sciences and Technology, Daejeon 34113, Korea
| | - Jinhyuk Lee
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (G.L.); (J.L.)
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Sciences and Technology, Daejeon 34113, Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea;
- Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Korea
| | - Mira Jun
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.H.); (Y.J.); (K.Y.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Busan 49315, Korea
- Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Korea
| |
Collapse
|
49
|
Brown TD, Nowak M, Bayles AV, Prabhakarpandian B, Karande P, Lahann J, Helgeson ME, Mitragotri S. A microfluidic model of human brain (μHuB) for assessment of blood brain barrier. Bioeng Transl Med 2019; 4:e10126. [PMID: 31249876 PMCID: PMC6584314 DOI: 10.1002/btm2.10126] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023] Open
Abstract
Microfluidic cellular models, commonly referred to as "organs-on-chips," continue to advance the field of bioengineering via the development of accurate and higher throughput models, captivating the essence of living human organs. This class of models can mimic key in vivo features, including shear stresses and cellular architectures, in ways that cannot be realized by traditional two-dimensional in vitro models. Despite such progress, current organ-on-a-chip models are often overly complex, require highly specialized setups and equipment, and lack the ability to easily ascertain temporal and spatial differences in the transport kinetics of compounds translocating across cellular barriers. To address this challenge, we report the development of a three-dimensional human blood brain barrier (BBB) microfluidic model (μHuB) using human cerebral microvascular endothelial cells (hCMEC/D3) and primary human astrocytes within a commercially available microfluidic platform. Within μHuB, hCMEC/D3 monolayers withstood physiologically relevant shear stresses (2.73 dyn/cm2) over a period of 24 hr and formed a complete inner lumen, resembling in vivo blood capillaries. Monolayers within μHuB expressed phenotypical tight junction markers (Claudin-5 and ZO-1), which increased expression after the presence of hemodynamic-like shear stress. Negligible cell injury was observed when the monolayers were cultured statically, conditioned to shear stress, and subjected to nonfluorescent dextran (70 kDa) transport studies. μHuB experienced size-selective permeability of 10 and 70 kDa dextrans similar to other BBB models. However, with the ability to probe temporal and spatial evolution of solute distribution, μHuBs possess the ability to capture the true variability in permeability across a cellular monolayer over time and allow for evaluation of the full breadth of permeabilities that would otherwise be lost using traditional end-point sampling techniques. Overall, the μHuB platform provides a simplified, easy-to-use model to further investigate the complexities of the human BBB in real-time and can be readily adapted to incorporate additional cell types of the neurovascular unit and beyond.
Collapse
Affiliation(s)
- Tyler D Brown
- John A. Paulson School of Engineering and Applied Sciences Harvard University, 29 Oxford St. Cambridge MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University 3 Blackfan Circle, Boston MA 02115
| | - Maksymilian Nowak
- John A. Paulson School of Engineering and Applied Sciences Harvard University, 29 Oxford St. Cambridge MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University 3 Blackfan Circle, Boston MA 02115
| | - Alexandra V Bayles
- Dept. of Chemical Engineering University of California Santa Barbara CA 93106
| | | | - Pankaj Karande
- Dept. of Chemical and Biological Engineering Rensselaer Polytechnic Institute 110 8th Street, Troy NY 12180
| | - Joerg Lahann
- Dept. of Chemical Engineering University of Michigan Ann Arbor MI 48109
- Dept. of Material Science & Engineering University of Michigan Ann Arbor MI 48109
- Dept. of Macromolecular Science & Engineering University of Michigan Ann Arbor MI 48109
- Dept. of Biomedical Engineering, and Biointerfaces Institute University of Michigan Ann Arbor MI 48109
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109
| | - Matthew E Helgeson
- Dept. of Chemical Engineering University of California Santa Barbara CA 93106
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University, 29 Oxford St. Cambridge MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University 3 Blackfan Circle, Boston MA 02115
| |
Collapse
|
50
|
Menichetti R, Kanekal KH, Bereau T. Drug-Membrane Permeability across Chemical Space. ACS CENTRAL SCIENCE 2019; 5:290-298. [PMID: 30834317 PMCID: PMC6396385 DOI: 10.1021/acscentsci.8b00718] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 05/05/2023]
Abstract
Unraveling the relation between the chemical structure of small druglike compounds and their rate of passive permeation across lipid membranes is of fundamental importance for pharmaceutical applications. The elucidation of a comprehensive structure-permeability relationship expressed in terms of a few molecular descriptors is unfortunately hampered by the overwhelming number of possible compounds. In this work, we reduce a priori the size and diversity of chemical space to solve an analogous-but smoothed out-structure-property relationship problem. This is achieved by relying on a physics-based coarse-grained model that reduces the size of chemical space, enabling a comprehensive exploration of this space with greatly reduced computational cost. We perform high-throughput coarse-grained (HTCG) simulations to derive a permeability surface in terms of two simple molecular descriptors-bulk partitioning free energy and pK a. The surface is constructed by exhaustively simulating all coarse-grained compounds that are representative of small organic molecules (ranging from 30 to 160 Da) in a high-throughput scheme. We provide results for acidic, basic, and zwitterionic compounds. Connecting back to the atomic resolution, the HTCG predictions for more than 500 000 compounds allow us to establish a clear connection between specific chemical groups and the resulting permeability coefficient, enabling for the first time an inverse design procedure. Our results have profound implications for drug synthesis: the predominance of commonly employed chemical moieties narrows down the range of permeabilities.
Collapse
Affiliation(s)
| | | | - Tristan Bereau
- Max Planck Institute for
Polymer Research, 55128 Mainz, Germany
| |
Collapse
|