1
|
Hoang KL, Salguero-Gómez R, Pike VL, King KC. The impacts of host association and perturbation on symbiont fitness. Symbiosis 2024; 92:439-451. [PMID: 38666134 PMCID: PMC11039428 DOI: 10.1007/s13199-024-00984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Symbiosis can benefit hosts in numerous ways, but less is known about whether interactions with hosts benefit symbionts-the smaller species in the relationship. To determine the fitness impact of host association on symbionts in likely mutualisms, we conducted a meta-analysis across 91 unique host-symbiont pairings under a range of spatial and temporal contexts. Specifically, we assess the consequences to symbiont fitness when in and out of symbiosis, as well as when the symbiosis is under suboptimal or varying environments and biological conditions (e.g., host age). We find that some intracellular symbionts associated with protists tend to have greater fitness when the symbiosis is under stressful conditions. Symbionts of plants and animals did not exhibit this trend, suggesting that symbionts of multicellular hosts are more robust to perturbations. Symbiont fitness also generally increased with host age. Lastly, we show that symbionts able to proliferate in- and outside host cells exhibit greater fitness than those found exclusively inside or outside cells. The ability to grow in multiple locations may thus help symbionts thrive. We discuss these fitness patterns in light of host-driven factors, whereby hosts exert influence over symbionts to suit their own needs. Supplementary Information The online version contains supplementary material available at 10.1007/s13199-024-00984-6.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of Biology, University of Oxford, Oxford, UK
- Emory University School of Medicine, Atlanta, GA USA
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Medina JM, Queller DC, Strassmann JE, Garcia JR. The social amoeba Dictyostelium discoideum rescues Paraburkholderia hayleyella, but not P. agricolaris, from interspecific competition. FEMS Microbiol Ecol 2023; 99:fiad055. [PMID: 37226596 PMCID: PMC10243984 DOI: 10.1093/femsec/fiad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023] Open
Abstract
Bacterial endosymbionts can provide benefits for their eukaryotic hosts, but it is often unclear if endosymbionts benefit from these relationships. The social amoeba Dictyostelium discoideum associates with three species of Paraburkholderia endosymbionts, including P. agricolaris and P. hayleyella. These endosymbionts can be costly to the host but are beneficial in certain contexts because they allow D. discoideum to carry prey bacteria through the dispersal stage. In experiments where no other species are present, P. hayleyella benefits from D. discoideum while P. agricolaris does not. However, the presence of other species may influence this symbiosis. We tested if P. agricolaris and P. hayleyella benefit from D. discoideum in the context of resource competition with Klebsiella pneumoniae, the typical laboratory prey of D. discoideum. Without D. discoideum, K. pneumoniae depressed the growth of both Paraburkholderia symbionts, consistent with competition. P. hayleyella was more harmed by interspecific competition than P. agricolaris. We found that P. hayleyella was rescued from competition by D. discoideum, while P. agricolaris was not. This may be because P. hayleyella is more specialized as an endosymbiont; it has a highly reduced genome compared to P. agricolaris and may have lost genes relevant for resource competition outside of its host.
Collapse
Affiliation(s)
- James M Medina
- Department of Biology, One Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David C Queller
- Department of Biology, One Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joan E Strassmann
- Department of Biology, One Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Justine R Garcia
- Department of Biology, New Mexico Highlands University, 1005 Diamond Ave, Las Vegas, NM 87701, USA
| |
Collapse
|
3
|
Raharinirina NA, Acevedo-Trejos E, Merico A. Modelling the acclimation capacity of coral reefs to a warming ocean. PLoS Comput Biol 2022; 18:e1010099. [PMID: 35533201 PMCID: PMC9119535 DOI: 10.1371/journal.pcbi.1010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 05/19/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
The symbiotic relationship between corals and photosynthetic algae is the foundation of coral reef ecosystems. This relationship breaks down, leading to coral death, when sea temperature exceeds the thermal tolerance of the coral-algae complex. While acclimation via phenotypic plasticity at the organismal level is an important mechanism for corals to cope with global warming, community-based shifts in response to acclimating capacities may give valuable indications about the future of corals at a regional scale. Reliable regional-scale predictions, however, are hampered by uncertainties on the speed with which coral communities will be able to acclimate. Here we present a trait-based, acclimation dynamics model, which we use in combination with observational data, to provide a first, crude estimate of the speed of coral acclimation at the community level and to investigate the effects of different global warming scenarios on three iconic reef ecosystems of the tropics: Great Barrier Reef, South East Asia, and Caribbean. The model predicts that coral acclimation may confer some level of protection by delaying the decline of some reefs such as the Great Barrier Reef. However, the current rates of acclimation will not be sufficient to rescue corals from global warming. Based on our estimates of coral acclimation capacities, the model results suggest substantial declines in coral abundances in all three regions, ranging from 12% to 55%, depending on the region and on the climate change scenario considered. Our results highlight the importance and urgency of precise assessments and quantitative estimates, for example through laboratory experiments, of the natural acclimation capacity of corals and of the speed with which corals may be able to acclimate to global warming. Tropical coral reefs are among the most productive and diverse ecosystems on Earth. The success of these ecosystems depends on a symbiotic relationship between corals and unicellular algae. This relationship breaks down when water temperature increases above certain levels causing massive coral deaths. Therefore, the future of coral reef ecosystems depends on the capacity of corals to acclimate to current warming rates. Despite many studies have tried to predict the future of coral reefs, these predictions are impaired by uncertainties related to the speed with which corals can acclimate. We developed a model in which corals can acclimate to changing temperature. By comparing model results with observations of coral cover, we estimated the speed of coral acclimation at the community level in different regions of the tropics. Using this information, we quantified the future changes in coral abundances under different warming scenarios. We found that corals of the Great Barrier Reef have higher acclimation capacities than those of other regions. Our results showed substantial coral declines in South East Asia and Caribbean, especially under the highest warming scenarios. Thus, we provide evidence that natural acclimation alone may not be sufficient to offset the decline of corals caused by the expected warming trends.
Collapse
Affiliation(s)
- Nomenjanahary Alexia Raharinirina
- Department of Integrated Modelling, Leibniz Centre for Tropical Marine Research, Bremen, Germany
- Department of Physics & Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | - Esteban Acevedo-Trejos
- Department of Integrated Modelling, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Agostino Merico
- Department of Integrated Modelling, Leibniz Centre for Tropical Marine Research, Bremen, Germany
- Department of Physics & Earth Sciences, Jacobs University Bremen, Bremen, Germany
- * E-mail:
| |
Collapse
|
4
|
Hoang KL, King KC. Symbiont-mediated immune priming in animals through an evolutionary lens. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35442184 DOI: 10.1099/mic.0.001181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protective symbionts can defend hosts from parasites through several mechanisms, from direct interference to modulating host immunity, with subsequent effects on host and parasite fitness. While research on symbiont-mediated immune priming (SMIP) has focused on ecological impacts and agriculturally important organisms, the evolutionary implications of SMIP are less clear. Here, we review recent advances made in elucidating the ecological and molecular mechanisms by which SMIP occurs. We draw on current works to discuss the potential for this phenomenon to drive host, parasite, and symbiont evolution. We also suggest approaches that can be used to address questions regarding the impact of immune priming on host-microbe dynamics and population structures. Finally, due to the transient nature of some symbionts involved in SMIP, we discuss what it means to be a protective symbiont from ecological and evolutionary perspectives and how such interactions can affect long-term persistence of the symbiosis.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
5
|
Barott KL, Thies AB, Tresguerres M. V-type H +-ATPase in the symbiosome membrane is a conserved mechanism for host control of photosynthesis in anthozoan photosymbioses. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211449. [PMID: 35116156 PMCID: PMC8790332 DOI: 10.1098/rsos.211449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
In reef-building corals (order Scleractinia) and giant clams (phylum Molluca), V-type H+-ATPase (VHA) in host cells is part of a carbon concentrating mechanism (CCM) that regulates photosynthetic rates of their symbiotic algae. Here, we show that VHA plays a similar role in the sea anemone Anemonia majano, a member of the order Actinaria and sister group to the Scleractinia, which in contrast to their colonial calcifying coral relatives is a solitary, soft-bodied taxa. Western blotting and immunofluorescence revealed that VHA was abundantly present in the host-derived symbiosome membrane surrounding the photosymbionts. Pharmacological inhibition of VHA activity in individual anemones resulted in an approximately 80% decrease of photosynthetic O2 production. These results extend the presence of a host-controlled VHA-dependent CCM to non-calcifying cnidarians of the order Actiniaria, suggesting it is widespread among photosymbiosis between aquatic invertebrates and Symbiodiniaceae algae.
Collapse
Affiliation(s)
- Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angus B. Thies
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Maire J, Blackall LL, van Oppen MJH. Intracellular Bacterial Symbionts in Corals: Challenges and Future Directions. Microorganisms 2021; 9:2209. [PMID: 34835335 PMCID: PMC8619543 DOI: 10.3390/microorganisms9112209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Corals are the main primary producers of coral reefs and build the three-dimensional reef structure that provides habitat to more than 25% of all marine eukaryotes. They harbor a complex consortium of microorganisms, including bacteria, archaea, fungi, viruses, and protists, which they rely on for their survival. The symbiosis between corals and bacteria is poorly studied, and their symbiotic relationships with intracellular bacteria are only just beginning to be acknowledged. In this review, we emphasize the importance of characterizing intracellular bacteria associated with corals and explore how successful approaches used to study such microorganisms in other systems could be adapted for research on corals. We propose a framework for the description, identification, and functional characterization of coral-associated intracellular bacterial symbionts. Finally, we highlight the possible value of intracellular bacteria in microbiome manipulation and mitigating coral bleaching.
Collapse
Affiliation(s)
- Justin Maire
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
| | - Linda L. Blackall
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
| | - Madeleine J. H. van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
7
|
Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic algae. Proc Natl Acad Sci U S A 2021; 118:2025252118. [PMID: 34215695 DOI: 10.1073/pnas.2025252118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Endosymbioses have shaped the evolutionary trajectory of life and remain ecologically important. Investigating oceanic photosymbioses can illuminate how algal endosymbionts are energetically exploited by their heterotrophic hosts and inform on putative initial steps of plastid acquisition in eukaryotes. By combining three-dimensional subcellular imaging with photophysiology, carbon flux imaging, and transcriptomics, we show that cell division of endosymbionts (Phaeocystis) is blocked within hosts (Acantharia) and that their cellular architecture and bioenergetic machinery are radically altered. Transcriptional evidence indicates that a nutrient-independent mechanism prevents symbiont cell division and decouples nuclear and plastid division. As endosymbiont plastids proliferate, the volume of the photosynthetic machinery volume increases 100-fold in correlation with the expansion of a reticular mitochondrial network in close proximity to plastids. Photosynthetic efficiency tends to increase with cell size, and photon propagation modeling indicates that the networked mitochondrial architecture enhances light capture. This is accompanied by 150-fold higher carbon uptake and up-regulation of genes involved in photosynthesis and carbon fixation, which, in conjunction with a ca.15-fold size increase of pyrenoids demonstrates enhanced primary production in symbiosis. Mass spectrometry imaging revealed major carbon allocation to plastids and transfer to the host cell. As in most photosymbioses, microalgae are contained within a host phagosome (symbiosome), but here, the phagosome invaginates into enlarged microalgal cells, perhaps to optimize metabolic exchange. This observation adds evidence that the algal metamorphosis is irreversible. Hosts, therefore, trigger and benefit from major bioenergetic remodeling of symbiotic microalgae with potential consequences for the oceanic carbon cycle. Unlike other photosymbioses, this interaction represents a so-called cytoklepty, which is a putative initial step toward plastid acquisition.
Collapse
|
8
|
Chomicki G, Kiers ET, Renner SS. The Evolution of Mutualistic Dependence. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024629] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While the importance of mutualisms across the tree of life is recognized, it is not understood why some organisms evolve high levels of dependence on mutualistic partnerships, while other species remain autonomous or retain or regain minimal dependence on partners. We identify four main pathways leading to the evolution of mutualistic dependence. Then, we evaluate current evidence for three predictions: ( a) Mutualisms with different levels of dependence have distinct stabilizing mechanisms against exploitation and cheating, ( b) less dependent mutualists will return to autonomy more often than those that are highly dependent, and ( c) obligate mutualisms should be less context dependent than facultative ones. Although we find evidence supporting all three predictions, we stress that mutualistic partners follow diverse paths toward—and away from—dependence. We also highlight the need to better examine asymmetry in partner dependence. Recognizing how variation in dependence influences the stability, breakdown, and context dependence of mutualisms generates new hypotheses regarding how and why the benefits of mutualistic partnerships differ over time and space.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Bioscience, Durham University, Durham DH1 3LE, United Kingdom
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Susanne S. Renner
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), 80638 Munich, Germany
| |
Collapse
|
9
|
Garcia JR, Larsen TJ, Queller DC, Strassmann JE. Fitness costs and benefits vary for two facultative Burkholderia symbionts of the social amoeba, Dictyostelium discoideum. Ecol Evol 2019; 9:9878-9890. [PMID: 31534701 PMCID: PMC6745654 DOI: 10.1002/ece3.5529] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Hosts and their associated microbes can enter into different relationships, which can range from mutualism, where both partners benefit, to exploitation, where one partner benefits at the expense of the other. Many host-microbe relationships have been presumed to be mutualistic, but frequently only benefits to the host, and not the microbial symbiont, have been considered. Here, we address this issue by looking at the effect of host association on the fitness of two facultative members of the Dictyostelium discoideum microbiome (Burkholderia agricolaris and Burkholderia hayleyella). Using two indicators of bacterial fitness, growth rate and abundance, we determined the effect of D. discoideum on Burkholderia fitness. In liquid culture, we found that D. discoideum amoebas lowered the growth rate of both Burkholderia species. In soil microcosms, we tracked the abundance of Burkholderia grown with and without D. discoideum over a month and found that B. hayleyella had larger populations when associating with D. discoideum while B. agricolaris was not significantly affected. Overall, we find that both B. agricolaris and B. hayleyella pay a cost to associate with D. discoideum, but B. hayleyella can also benefit under some conditions. Understanding how fitness varies in facultative symbionts will help us understand the persistence of host-symbiont relationships. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://openscholarship.wustl.edu/data/15/.
Collapse
Affiliation(s)
- Justine R. Garcia
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
- Present address:
Department of BiologyNew Mexico Highlands UniversityLas VegasNMUSA
| | - Tyler J. Larsen
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | - David C. Queller
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | | |
Collapse
|
10
|
Photosynthetic Endosymbionts Benefit from Host’s Phagotrophy, Including Predation on Potential Competitors. Curr Biol 2019; 29:3114-3119.e3. [DOI: 10.1016/j.cub.2019.07.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/26/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022]
|
11
|
Gerardo N, Hurst G. Q&A: Friends (but sometimes foes) within: the complex evolutionary ecology of symbioses between host and microbes. BMC Biol 2017; 15:126. [PMID: 29282064 PMCID: PMC5744397 DOI: 10.1186/s12915-017-0455-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Over the past decade, there has been a pronounced shift in the study of host-microbe associations, with recognition that many of these associations are beneficial, and often critical, for a diverse array of hosts. There may also be pronounced benefits for the microbes, though this is less well empirically understood. Significant progress has been made in understanding how ecology and evolution shape simple associations between hosts and one or a few microbial species, and this work can serve as a foundation to study the ecology and evolution of host associations with their often complex microbial communities (microbiomes).
Collapse
Affiliation(s)
- Nicole Gerardo
- Department of Biology, Emory University, 1510 Clifton RD, Atlanta, Georgia, 30322, USA.
| | - Gregory Hurst
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
12
|
Silveira CB, Cavalcanti GS, Walter JM, Silva-Lima AW, Dinsdale EA, Bourne DG, Thompson CC, Thompson FL. Microbial processes driving coral reef organic carbon flow. FEMS Microbiol Rev 2017; 41:575-595. [PMID: 28486655 DOI: 10.1093/femsre/fux018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 04/10/2017] [Indexed: 01/13/2023] Open
Abstract
Coral reefs are one of the most productive ecosystems on the planet, with primary production rates compared to that of rain forests. Benthic organisms release 10-50% of their gross organic production as mucus that stimulates heterotrophic microbial metabolism in the water column. As a result, coral reef microbes grow up to 50 times faster than open ocean communities. Anthropogenic disturbances cause once coral-dominated reefs to become dominated by fleshy organisms, with several outcomes for trophic relationships. Here we review microbial processes implicated in organic carbon flux in coral reefs displaying species phase shifts. The first section presents microbial players and interactions within the coral holobiont that contribute to reef carbon flow. In the second section, we identify four ecosystem-level microbial features that directly respond to benthic species phase shifts: community composition, biomass, metabolism and viral predation. The third section discusses the significance of microbial consumption of benthic organic matter to reef trophic relationships. In the fourth section, we propose that the 'microbial phase shifts' discussed here are conducive to lower resilience, facilitating the transition to new degradation states in coral reefs.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil.,Biology Department, San Diego State University, 5500 Campanille Dr, San Diego, CA 92182, USA
| | - Giselle S Cavalcanti
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil.,Biology Department, San Diego State University, 5500 Campanille Dr, San Diego, CA 92182, USA
| | - Juline M Walter
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil
| | - Arthur W Silva-Lima
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil
| | - Elizabeth A Dinsdale
- Biology Department, San Diego State University, 5500 Campanille Dr, San Diego, CA 92182, USA
| | - David G Bourne
- College of Science and Engineering, James Cook University and Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Cristiane C Thompson
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil
| | - Fabiano L Thompson
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil
| |
Collapse
|
13
|
Raharinirina NA, Brandt G, Merico A. A Trait-Based Model for Describing the Adaptive Dynamics of Coral-Algae Symbiosis. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Mushegian AA, Ebert D. Rethinking “mutualism” in diverse host-symbiont communities. Bioessays 2015; 38:100-8. [DOI: 10.1002/bies.201500074] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Dieter Ebert
- Zoological Institute; University of Basel; Switzerland
| |
Collapse
|
15
|
Pascual-García A, Tamames J, Bastolla U. Bacteria dialog with Santa Rosalia: Are aggregations of cosmopolitan bacteria mainly explained by habitat filtering or by ecological interactions? BMC Microbiol 2014; 14:284. [PMID: 25472003 PMCID: PMC4263022 DOI: 10.1186/s12866-014-0284-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/04/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Since the landmark Santa Rosalia paper by Hutchinson, niche theory addresses the determinants of biodiversity in terms of both environmental and biological aspects. Disentangling the role of habitat filtering and interactions with other species is critical for understanding microbial ecology. Macroscopic biogeography explores hypothetical ecological interactions through the analysis of species associations. These methods have started to be incorporated into microbial ecology relatively recently, due to the inherent experimental difficulties and the coarse grained nature of the data. RESULTS Here we investigate the influence of environmental preferences and ecological interactions in the tendency of bacterial taxa to either aggregate or segregate, using a comprehensive dataset of bacterial taxa observed in a wide variety of environments. We assess significance of taxa associations through a null model that takes into account habitat preferences and the global distribution of taxa across samples. The analysis of these associations reveals a surprisingly large number of significant aggregations between taxa, with a marked community structure and a strong propensity to aggregate for cosmopolitan taxa. Due to the coarse grained nature of our data we cannot conclusively reject the hypothesis that many of these aggregations are due to environmental preferences that the null model fails to reproduce. Nevertheless, some observations are better explained by ecological interactions than by habitat filtering. In particular, most pairs of aggregating taxa co-occur in very different environments, which makes it unlikely that these associations are due to habitat preferences, and many are formed by cosmopolitan taxa without well defined habitat preferences. Moreover, known cooperative interactions are retrieved as aggregating pairs of taxa. As observed in similar studies, we also found that phylogenetically related taxa are much more prone to aggregate than to segregate, an observation that may play a role in bacterial speciation. CONCLUSIONS We hope that these results stimulate experimental verification of the putative cooperative interactions between cosmopolitan bacteria, and we suggest several groups of aggregated cosmopolitan bacteria that are interesting candidates for such an investigation.
Collapse
Affiliation(s)
- Alberto Pascual-García
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), c. Nicolás Cabrera 1, campus UAM, Madrid, E-28049, Spain.
| | - Javier Tamames
- Centro Nacional de Biotecnologí a (CSIC) c. Darwin 3, campus UAM, Madrid, E-28049, Spain.
| | - Ugo Bastolla
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), c. Nicolás Cabrera 1, campus UAM, Madrid, E-28049, Spain.
| |
Collapse
|
16
|
Garcia JR, Gerardo NM. The symbiont side of symbiosis: do microbes really benefit? Front Microbiol 2014; 5:510. [PMID: 25309530 PMCID: PMC4176458 DOI: 10.3389/fmicb.2014.00510] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/10/2014] [Indexed: 11/24/2022] Open
Abstract
Microbial associations are integral to all eukaryotes. Mutualism, the interaction of two species for the benefit of both, is an important aspect of microbial associations, with evidence that multicellular organisms in particular benefit from microbes. However, the microbe’s perspective has largely been ignored, and it is unknown whether most microbial symbionts benefit from their associations with hosts. It has been presumed that microbial symbionts receive host-derived nutrients or a competition-free environment with reduced predation, but there have been few empirical tests, or even critical assessments, of these assumptions. We evaluate these hypotheses based on available evidence, which indicate reduced competition and predation are not universal benefits for symbionts. Some symbionts do receive nutrients from their host, but this has not always been linked to a corresponding increase in symbiont fitness. We recommend experiments to test symbiont fitness using current experimental systems of symbiosis and detail considerations for other systems. Incorporating symbiont fitness into symbiosis research will provide insight into the evolution of mutualistic interactions and cooperation in general.
Collapse
Affiliation(s)
- Justine R Garcia
- Gerardo Lab, Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA USA
| | - Nicole M Gerardo
- Gerardo Lab, Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA USA
| |
Collapse
|
17
|
Zug R, Hammerstein P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev Camb Philos Soc 2014; 90:89-111. [PMID: 24618033 DOI: 10.1111/brv.12098] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
Abstract
Wolbachia are the most abundant bacterial endosymbionts among arthropods. Although maternally inherited, they do not conform to the widespread view that vertical transmission inevitably selects for beneficial symbionts. Instead, Wolbachia are notorious for their reproductive parasitism which, although lowering host fitness, ensures their spread. However, even for reproductive parasites it can pay to enhance host fitness. Indeed, there is a recent upsurge of reports on Wolbachia-associated fitness benefits. Therefore, the question arises how such instances of mutualism are related to the phenotypes of reproductive parasitism. Here, we review the evidence of Wolbachia mutualisms in arthropods, including both facultative and obligate relationships, and critically assess their biological relevance. Although many studies report anti-pathogenic effects of Wolbachia, few actually prove these effects to be relevant to field conditions. We further show that Wolbachia frequently have beneficial and detrimental effects at the same time, and that reproductive manipulations and obligate mutualisms may share common mechanisms. These findings undermine the idea of a clear-cut distinction between Wolbachia mutualism and parasitism. In general, both facultative and obligate mutualisms can have a strong, and sometimes unforeseen, impact on the ecology and evolution of Wolbachia and their arthropod hosts. Acknowledging this mutualistic potential might be the key to a better understanding of some unresolved issues in the study of Wolbachia-host interactions.
Collapse
Affiliation(s)
- Roman Zug
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115, Berlin, Germany
| | | |
Collapse
|
18
|
Physiological changes of a green alga (Micractinium sp.) involved in an early-stage of association with Tetrahymena thermophila during 5-year microcosm culture. Biosystems 2013; 114:164-71. [DOI: 10.1016/j.biosystems.2013.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 11/18/2022]
|
19
|
Abstract
A great number and variety of interactions are widely assumed to be mutualistic because the species involved exchange goods or services from which they appear to derive benefit. A familiar example is pollination, in which animal vectors receive food in the form of nectar and/or pollen, while the ovules of plants are fertilized. Unfortunately, most studies fail to demonstrate that both participants benefit in any significant way and therefore lack the information necessary to determine whether a given interaction is mutualistic. While mutualism is thought to be a common type of species interaction, there is still little evidence for this belief.
Collapse
|
20
|
Decelle J. New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism? Commun Integr Biol 2013; 6:e24560. [PMID: 23986805 PMCID: PMC3742057 DOI: 10.4161/cib.24560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/04/2013] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
Photosymbiosis is common and widely distributed in plankton and is considered to be beneficial for both partners (mutualism). Such intimate associations involving heterotrophic hosts and microalgal symbionts have been extensively studied in coral reefs, but in the planktonic realm, the ecology and evolution of photosymbioses remain poorly understood. Acantharia (Radiolaria) are ubiquitous and abundant heterotrophic marine protists, many of which host endosymbiotic microalgae. Two types of photosymbiosis involving acantharians have recently been described using molecular techniques: one found in a single acantharian species involving multiple microalgal partners (dinoflagellates and haptophytes), and the other observed in more than 25 acantharian species exclusively living with the haptophyte Phaeocystis. Contrary to most benthic and terrestrial mutualistic symbioses, these symbiotic associations share the common feature of involving symbionts that are abundant in their free-living stage. We propose a hypothetical framework that may explain this original mode of symbiosis, and discuss the ecological and evolutionary implications. We suggest that photosymbiosis in Acantharia, and probably in other planktonic hosts, may not be a mutualistic relationship but rather an "inverted parasitism," from which only hosts seem to benefit by sequestrating and exploiting microalgal cells. The relatively small population size of microalgae in hospite would prevent reciprocal evolution that can select uncooperative symbionts, therefore making this horizontally-transmitted association stable over evolutionary time. The more we learn about the diversity of life and the structure of genomes, the more it appears that much of the evolution of biodiversity is about the manipulation of other species-to gain resources and, in turn, to avoid being manipulated (John Thompson, 1999).
Collapse
Affiliation(s)
- Johan Decelle
- Université Pierre et Marie Curie (Paris 6) and Centre National de la Recherche Scientifique; Unité Mixte de Recherche 7144; Equipe Evolution des Protistes et Ecosystèmes Pélagiques; Station Biologique; Roscoff, France
| |
Collapse
|
21
|
Ellers J, Kiers ET, Currie CR, McDonald BR, Visser B. Ecological interactions drive evolutionary loss of traits. Ecol Lett 2012; 15:1071-82. [PMID: 22747703 DOI: 10.1111/j.1461-0248.2012.01830.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/19/2012] [Accepted: 06/05/2012] [Indexed: 01/08/2023]
Abstract
Loss of traits can dramatically alter the fate of species. Evidence is rapidly accumulating that the prevalence of trait loss is grossly underestimated. New findings demonstrate that traits can be lost without affecting the external phenotype, provided the lost function is compensated for by species interactions. This is important because trait loss can tighten the ecological relationship between partners, affecting the maintenance of species interactions. Here, we develop a new perspective on so-called `compensated trait loss' and how this type of trait loss may affect the evolutionary dynamics between interacting organisms. We argue that: (1) the frequency of compensated trait loss is currently underestimated because it can go unnoticed as long as ecological interactions are maintained; (2) by analysing known cases of trait loss, specific factors promoting compensated trait loss can be identified and (3) genomic sequencing is a key way forwards in detecting compensated trait loss. We present a comprehensive literature survey showing that compensated trait loss is taxonomically widespread, can involve essential traits, and often occurs as replicated evolutionary events. Despite its hidden nature, compensated trait loss is important in directing evolutionary dynamics of ecological relationships and has the potential to change facultative ecological interactions into obligatory ones.
Collapse
Affiliation(s)
- Jacintha Ellers
- Animal Ecology, Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Mosquito/microbiota interactions: from complex relationships to biotechnological perspectives. Curr Opin Microbiol 2012; 15:278-84. [PMID: 22465193 DOI: 10.1016/j.mib.2012.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/24/2012] [Accepted: 03/08/2012] [Indexed: 11/20/2022]
Abstract
To date around 3500 different species of mosquito have been described, several tens of which are vectors of pathogens of remarkable interest in public health. Mosquitoes are present all around the world showing a great ability to adapt to very different types of habitats where they play relevant ecological roles. It is very likely that components of the mosquito microbiota have given the mosquito a great capacity to adapt to different environments. Current advances in understanding the mosquito-microbiota relationships may have a great impact in a better understanding of some traits of mosquito biology and in the development of innovative mosquito-borne disease-control strategies aimed to reduce mosquito vectorial capacity and/or inhibiting pathogen transmission.
Collapse
|
23
|
Müller JP, Hauzy C, Hulot FD. Ingredients for protist coexistence: competition, endosymbiosis and a pinch of biochemical interactions. J Anim Ecol 2011; 81:222-32. [PMID: 21831194 DOI: 10.1111/j.1365-2656.2011.01894.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The interaction between mutualism, facilitation or interference and exploitation competition is of major interest as it may govern species coexistence. However, the interplay of these mechanisms has received little attention. This issue dates back to Gause, who experimentally explored competition using protists as a model [Gause, G.F. (1935) Vérifications expérimentales de la théorie mathématique de la lutte pour la vie. Actualités Scientifiques et Industrielles, 277]. He showed the coexistence of Paramecium caudatum with a potentially allelopathic species, Paramecium bursaria. 2. Paramecium bursaria hosts the green algae Chlorella vulgaris. Therefore, P. bursaria may benefit from carbohydrates synthesised by the algae. Studying endosymbiosis with P. bursaria is possible as it can be freed of its endosymbiont. In addition, C. vulgaris is known to produce allelochemicals, and P. bursaria may benefit also from allelopathic compounds. 3. We designed an experiment to separate the effects of resource exploitation, endosymbiosis and allelopathy and to assess their relative importance for the coexistence of P. bursaria with a competitor that exploits the same resource, bacteria. The experiment was repeated with two competitors, Colpidium striatum or Tetrahymena pyriformis. 4. Results show that the presence of the endosymbiont enables the coexistence of competitors, while its loss leads to competitive exclusion. These results are in agreement with predictions based on resource equilibrium density of monocultures (R*) supporting the idea that P. bursaria's endosymbiont is a resource provider for its host. When P. bursaria and T. pyriformis coexist, the density of the latter shows large variation that match the effects of culture medium of P. bursaria. Our experiment suggests these effects are because of biochemicals produced in P. bursaria culture. 5. Our results expose the hidden diversity of mechanisms that underlie competitive interactions. They thus support Gauses's speculation (1935) that allelopathic effects might have been involved in his competition experiments. We discuss how a species engaged both in competition for a resource and in costly interference such as allelopathy may counterbalance these costs with a resource-provider endosymbiont.
Collapse
|
24
|
Wooldridge SA. Is the coral-algae symbiosis really ‘mutually beneficial’ for the partners? Bioessays 2010; 32:615-25. [DOI: 10.1002/bies.200900182] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Nowack ECM, Melkonian M. Endosymbiotic associations within protists. Philos Trans R Soc Lond B Biol Sci 2010; 365:699-712. [PMID: 20124339 DOI: 10.1098/rstb.2009.0188] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The establishment of an endosymbiotic relationship typically seems to be driven through complementation of the host's limited metabolic capabilities by the biochemical versatility of the endosymbiont. The most significant examples of endosymbiosis are represented by the endosymbiotic acquisition of plastids and mitochondria, introducing photosynthesis and respiration to eukaryotes. However, there are numerous other endosymbioses that evolved more recently and repeatedly across the tree of life. Recent advances in genome sequencing technology have led to a better understanding of the physiological basis of many endosymbiotic associations. This review focuses on endosymbionts in protists (unicellular eukaryotes). Selected examples illustrate the incorporation of various new biochemical functions, such as photosynthesis, nitrogen fixation and recycling, and methanogenesis, into protist hosts by prokaryotic endosymbionts. Furthermore, photosynthetic eukaryotic endosymbionts display a great diversity of modes of integration into different protist hosts. In conclusion, endosymbiosis seems to represent a general evolutionary strategy of protists to acquire novel biochemical functions and is thus an important source of genetic innovation.
Collapse
Affiliation(s)
- Eva C M Nowack
- Botany Department, University of Cologne, Cologne, Germany.
| | | |
Collapse
|
26
|
Infection by Wolbachia: from passengers to residents. C R Biol 2008; 332:284-97. [PMID: 19281959 DOI: 10.1016/j.crvi.2008.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 11/24/2022]
Abstract
Wolbachia are endosymbiotic alpha-proteobacteria harboured by terrestrial arthropods and filarial nematodes, where they are maternally transmitted through egg cytoplasm. According to the host group, Wolbachia have developed two contrasting symbiotic strategies. In arthropods, symbiosis is secondary (i.e. facultative), and Wolbachia insure their transmission as reproduction parasites. However, despite of the efficiency of the manipulation mechanisms used, Wolbachia are limited to the state of passenger because some factors can prevent the association between Wolbachia and their hosts to become permanent. On the contrary, symbiosis is primary (i.e. obligatory) in filarial nematodes where Wolbachia insure their transmission via a mutualistic relationship, leading them to become permanent residents of their hosts. However, a few examples show that in arthropods too some Wolbachia have started to present the first stages of a mutualistic behaviour, or are even truly indispensable to their host. Whatever its strategy, Wolbachia infection is a spectacular evolutionary success, this symbiotic bacterium representing one of the most important biomass of its kind.
Collapse
|
27
|
Yellowlees D, Rees TAV, Leggat W. Metabolic interactions between algal symbionts and invertebrate hosts. PLANT, CELL & ENVIRONMENT 2008; 31:679-94. [PMID: 18315536 DOI: 10.1111/j.1365-3040.2008.01802.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Some invertebrates have enlisted autotrophic unicellular algae to provide a competitive metabolic advantage in nutritionally demanding habitats. These symbioses exist primarily but not exclusively in shallow tropical oceanic waters where clear water and low nutrient levels provide maximal advantage to the association. Mostly, the endosymbiotic algae are localized in host cells surrounded by a host-derived membrane (symbiosome). This anatomy has required adaptation of the host biochemistry to allow transport of the normally excreted inorganic nutrients (CO2, NH3 and PO43-) to the alga. In return, the symbiont supplies photosynthetic products to the host to meet its energy demands. Most attention has focused on the metabolism of CO2 and nitrogen sources. Carbon-concentrating mechanisms are a feature of all algae, but the products exported to the host following photosynthetic CO2 fixation vary. Identification of the stimulus for release of algal photosynthate in hospite remains elusive. Nitrogen assimilation within the symbiosis is an essential element in the host's control over the alga. Recent studies have concentrated on cnidarians because of the impact of global climate change resulting in coral bleaching. The loss of the algal symbiont and its metabolic contribution to the host has the potential to result in the transition from a coral-dominated to an algal-dominated ecosystem.
Collapse
Affiliation(s)
- David Yellowlees
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy & Molecular Sciences, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | |
Collapse
|
28
|
Pannebakker BA, Loppin B, Elemans CPH, Humblot L, Vavre F. Parasitic inhibition of cell death facilitates symbiosis. Proc Natl Acad Sci U S A 2006; 104:213-5. [PMID: 17190825 PMCID: PMC1765438 DOI: 10.1073/pnas.0607845104] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symbiotic microorganisms have had a large impact on eukaryotic evolution, with effects ranging from parasitic to mutualistic. Mitochondria and chloroplasts are prime examples of symbiotic microorganisms that have become obligate for their hosts, allowing for a dramatic extension of suitable habitats for life. Out of the extraordinary diversity of bacterial endosymbionts in insects, most are facultative for their hosts, such as the ubiquitous Wolbachia, which manipulates host reproduction. Some endosymbionts, however, have become obligatory for host reproduction and/or survival. In the parasitoid wasp Asobara tabida the presence of Wolbachia is necessary for host oogenesis, but the mechanism involved is yet unknown. We show that Wolbachia influences programmed cell death processes (a host regulatory feature typically targeted by pathogens) in A. tabida, making its presence essential for the wasps' oocytes to mature. This suggests that parasite strategies, such as bacterial regulation of host apoptosis, can drive the evolution of host dependence, allowing for a swift transition from parasitism to mutualism.
Collapse
Affiliation(s)
- Bart A Pannebakker
- Laboratoire de Biométrie et Biologie Evolutive, Unité Mixte de Recherche 5558, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, IFR 41, 69622 Villeurbanne Cédex, France.
| | | | | | | | | |
Collapse
|
29
|
de Vries EJ, Jacobs G, Sabelis MW, Menken SBJ, Breeuwer JAJ. Diet-dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. Proc Biol Sci 2004; 271:2171-8. [PMID: 15475338 PMCID: PMC1691834 DOI: 10.1098/rspb.2004.2817] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies on bacteria in the gut of insect species are numerous, but their focus is hardly ever on the impact on host performance. We showed earlier that Erwinia bacteria occur in the gut of western flower thrips, most probably acquired during feeding. Here, we investigate whether thrips gain a net benefit or pay a net cost because of these gut bacteria. On a diet of cucumber leaves, the time to maturity is shorter and the oviposition rate is higher in thrips with bacteria than in thrips without (aposymbionts). When fed on cucumber leaves and pollen, aposymbionts develop faster and lay more eggs. So Erwinia bacteria benefit or parasitize their thrips hosts depending on the diet, which is in accordance with theoretical predictions for fitness of organisms engaged in symbiotic interactions. Possibly, the transmission of gut bacteria has not become strictly vertical because of this diet-dependent fitness variability.
Collapse
Affiliation(s)
- Egbert J de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Egger KN, Hibbett DS. The evolutionary implications of exploitation in mycorrhizas. ACTA ACUST UNITED AC 2004. [DOI: 10.1139/b04-056] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some views of mutualism, where the fitness of two symbiotic partners is higher in association than when apart, assume that they necessarily evolve towards greater benefit for the partners. Most mutualisms, however, seem prone to conflicts of interest that destabilize the partnership. These conflicts arise in part because mutualistic outcomes are conditional, depending upon complex interactions between environmental, developmental, and genotypic factors. Mutualisms are also subject to exploitation or cheating. Although various compensating mechanisms have been proposed to explain how mutualism can be maintained in the presence of exploiters, none of these mechanisms can eliminate exploitation. In this paper we explore various compensating mechanisms in mycorrhizas, examine the evidence for exploitation in mycorrhizas, and conclude that mycorrhizal mutualisms exhibit characteristics that are more consistent with a concept of reciprocal parasitism. We propose that researchers should not assume mycorrhizas are mutualistic based upon structural characteristics or limited functional studies showing bilateral exchange and should view mycorrhizas as occupying a wider range on the symbiotic continuum, including commensalism and antagonism. We recommend that comparative studies of mycorrhizas incorporate other types of root associations that have traditionally been considered antagonistic.Key words: mycorrhizas, mutualism, exploiters, compensating mechanisms, symbiotic continuum.
Collapse
|
31
|
Frean MR, Abraham ER. Adaptation and enslavement in endosymbiont-host associations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 69:051913. [PMID: 15244853 DOI: 10.1103/physreve.69.051913] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Indexed: 05/24/2023]
Abstract
The evolutionary persistence of symbiotic associations is a puzzle. Adaptation should eliminate cooperative traits if it is possible to enjoy the advantages of cooperation without reciprocating-a facet of cooperation known in game theory as the Prisoner's Dilemma. Despite this barrier, symbioses are widespread and may have been necessary for the evolution of complex life. The discovery of strategies such as tit-for-tat has been presented as a general solution to the problem of cooperation. However, this only holds for within-species cooperation, where a single strategy will come to dominate the population. In a symbiotic association each species may have a different strategy, and the theoretical analysis of the single-species problem is no guide to the outcome. We present basic analysis of two-species cooperation and show that a species with a fast adaptation rate is enslaved by a slowly evolving one. Paradoxically, the rapidly evolving species becomes highly cooperative, whereas the slowly evolving one gives little in return. This helps understand the occurrence of endosymbioses where the host benefits, but the symbionts appear to gain little from the association.
Collapse
Affiliation(s)
- Marcus R Frean
- School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand
| | | |
Collapse
|
32
|
Knowlton N, Rohwer F. Multispecies Microbial Mutualisms on Coral Reefs: The Host as a Habitat. Am Nat 2003; 162:S51-62. [PMID: 14583857 DOI: 10.1086/378684] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reef-building corals associate with a diverse array of eukaryotic and noneukaryotic microbes. Best known are dinoflagellates in the genus Symbiodinium ("zooxanthellae"), which are photosynthetic symbionts found in all reef-building corals. Once considered a single species, they are now recognized as several large, genetically diverse groups that often co-occur within a single host species or colony. Variation among Symbiodinium in host identities, tolerance to stress, and ability to colonize hosts has been documented, but there is little information on the ecology of zooxanthellar free-living stages and how different zooxanthellae perform as partners. Other microbial associates of reef corals are much less well known, but studies indicate that individual coral colonies host diverse assemblages of bacteria, some of which seem to have species-specific associations. This diversity of microbial associates has important evolutionary and ecological implications. Most mutualisms evolve as balanced reciprocations that allow partners to detect cheaters, particularly when partners are potentially diverse and can be transmitted horizontally. Thus, environmental stresses that incapacitate the ability of partners to reciprocate can destabilize associations by eliciting rejection by their hosts. Coral bleaching (the loss of zooxanthellae) and coral diseases, both increasing over the last several decades, may be examples of stress-related mutualistic instability.
Collapse
Affiliation(s)
- Nancy Knowlton
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
33
|
Chat J, Decroocq S, Petit RJ. A one-step organelle capture: gynogenetic kiwifruits with paternal chloroplasts. Proc Biol Sci 2003; 270:783-9. [PMID: 12737655 PMCID: PMC1691316 DOI: 10.1098/rspb.2002.2285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Androgenesis, the development of a haploid embryo from a male nucleus, has been shown to result in the instantaneous uncoupling of the transmission of the organelle and nuclear genomes (with the nuclear genome originating from the male parent only and the organelle genomes from the female parent). We report, for the first time, uncoupling resulting from gynogenesis, in Actinidia deliciosa (kiwifruit), a plant species known for its paternal mode of chloroplast inheritance. After pollen irradiation, transmission of nuclear genes from the pollen parent to the progeny was inhibited, but transmission of the chloroplast genome was not. This demonstrates that plastids can be discharged from the pollen tube into the egg with little or no concomitant transmission of paternal nuclear genes. Such events of opposite inheritance of the organelle and nuclear genomes must be very rare in nature and are unlikely to endanger the long-term stability of the association between the different genomes of the cell. However, they could lead to incongruences between organelle gene trees and species trees and may constitute an alternative to the hybridization/introgression scenario commonly invoked to account for such incongruences.
Collapse
Affiliation(s)
- Joëlle Chat
- Unité de Recherches sur les Espèces Fruitières et la Vigne, INRA, B.P. 81, F-33883 Villenave d'Ornon Cedex, France.
| | | | | |
Collapse
|
34
|
de Mazancourt C, Loreau M, Dieckmann U. Can the Evolution of Plant Defense Lead to Plant‐Herbivore Mutualism? Am Nat 2001; 158:109-23. [DOI: 10.1086/321306] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Denison RF. Legume Sanctions and the Evolution of Symbiotic Cooperation by Rhizobia. Am Nat 2000; 156:567-576. [DOI: 10.1086/316994] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
|
37
|
Affiliation(s)
- Rachel Wood
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| |
Collapse
|
38
|
Abstract
A model for the coevolution of two species in facultative symbiosis is used to investigate conditions under which species merge to form a single reproductive unit. Two traits evolve in each species, the first affecting loss of resources from an individual to its partner, and the second affecting vertical transmission of the symbiosis from one generation to the next. Initial conditions are set so that the symbiosis involves exploitation of one partner by the other and vertical transmission is very rare. It is shown that, even in the face of continuing exploitation, a stable symbiotic unit can evolve with maximum vertical transmission of the partners. Such evolution requires that eventually deaths should exceed births for both species in the free-living state, a condition which can be met if the victim, in the course of developing its defences, builds up sufficiently large costs in the free-living state. This result expands the set of initial conditions from which separate lineages can be expected to merge into symbiotic units.
Collapse
|
39
|
|
40
|
Anstett MC, Michaloud G, Kjellberg F. Critical population size for fig/wasp mutualism in a seasonal environment: effect and evolution of the duration of female receptivity. Oecologia 1995; 103:453-461. [DOI: 10.1007/bf00328683] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1994] [Accepted: 04/03/1995] [Indexed: 11/30/2022]
|
41
|
Kane MD, Pierce NE. Diversity within diversity: molecular approaches to studying microbial interactions with insects. EXS 1994; 69:509-24. [PMID: 7994122 DOI: 10.1007/978-3-0348-7527-1_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA sequence information has greatly augmented the number of characters available for analysis in phylogenetic research. Nowhere is this more evident than in studies of microbial evolution. Ribosomal DNA sequence data has simultaneously permitted the distinction between individual species and the inference of their phylogenetic relationships in many cases where both were formerly impossible. These have contributed to our understanding of the ecology of particular microbe-host interactions and the history of these relationships over evolutionary time. We describe examples from two ends of the ecological spectrum in insect/bacterial associations: one in which bacteria mediate host cytoplasmic incompatibility and parthenogenesis, and the other in which mycetocyte bacteria augment host nutrition. In the former, the pattern of bacterial interaction is general, with the same or closely related strains of the genus Wolbachia associating with a wide range of insect taxa. In the latter, concordance between host and microbe phylogenies suggests cospeciation between bacteria and host, although it is as yet unclear whether this process has involved step-wise, reciprocal coevolution. We conclude with a discussion of how developments in molecular techniques may aid in analyzing more complex interactions between insects and microbes.
Collapse
Affiliation(s)
- M D Kane
- MCZ Laboratories, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
42
|
Abstract
1. Non-pathogenic microorganisms, known as mycetocyte symbionts, are located in specialized 'mycetocyte' cells of many insects that feed on nutritionally unbalanced or poor diets. The insects include cockroaches, Cimicidae and Lygaeidae (Heteroptera), the Homoptera, Anoplura, the Diptera Pupiparia, some formicine ants and many beetles. 2. Most mycetocyte symbionts are prokaryotes and a great diversity of forms has been described. None has been cultured in vitro and their taxonomic position is obscure. Yeasts have been reported in Cerambycidae and Anobiidae (Coleoptera) and a few planthoppers. They are culturable and those in anobiids have been assigned to the genus Torulopsis. 3. The mycetocyte cells may be associated with the gut, lie free in the abdominal haemocoel or be embedded in the fat body of the insect. The mycetocytes are large polyploid cells which rarely divide and the symbionts are restricted to their cytoplasm. 4. The mycetocyte symbionts are transmitted maternally from one insect generation to the next. In many beetles (Anobiidae, Cerambycidae, Chrysomelidae and cleonine Curculionidae), the microoganisms are smeared onto the eggs and consumed by the hatching larvae. In other insects, they are transferred from mycetocytes to oocytes in the ovary, a process known as transovarial transmission. The details of transmission in the different insect groups vary with the age of the mother (adult, larva or embryo) at which symbiont transfer to the ovary is initiated; whether isolated symbionts or intact mycetocytes are transferred; and the site of entry of symbionts to the egg (anterior, posterior or apolar). 5. Within an individual insect, the biomass of symbionts varies in a regular fashion with age, weight and sex of the insect. Suppression of symbiont growth rate and lysis of 'excess' microorganisms may contribute to the regulation of symbionts (including freshly-isolated preparations of unculturable forms) are used to investigate interactions between the partners. However, some methods to obtain aposymbiotic insects (e.g. antibiotics and lysozyme) deleteriously affect certain insects and aposymbionts may differ from the symbiont-containing stocks from which they were derived. 7. The mycetocyte symbionts have been proposed to synthesize various nutrients required by the insect. The symbionts of beetles and haematophagous insects may provide B vitamins and those in cockroaches and the Homoptera essential amino acids. The role of symbionts in the sterol nutrition of insects is equivocal. 8. Mycetocyte symbionts may have evolved from gut symbionts or guest microorganisms. The association is monophyletic in cockroaches but polyphyletic in many groups, including the sucking lice, beetles and scale insects.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|