1
|
Koekkoek LL, van der Gun LL, Serlie MJ, la Fleur SE. The Clash of Two Epidemics: the Relationship Between Opioids and Glucose Metabolism. Curr Diab Rep 2022; 22:301-310. [PMID: 35593927 PMCID: PMC9188528 DOI: 10.1007/s11892-022-01473-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We are currently in the midst of a global opioid epidemic. Opioids affect many physiological processes, but one side effect that is not often taken into consideration is the opioid-induced alteration in blood glucose levels. RECENT FINDINGS This review shows that the vast majority of studies report that opioid stimulation increases blood glucose levels. In addition, plasma levels of the endogenous opioid β-endorphin rise in response to low blood glucose. In contrast, in hyperglycaemic baseline conditions such as in patients with type 2 diabetes mellitus (T2DM), opioid stimulation lowers blood glucose levels. Furthermore, obesity itself alters sensitivity to opioids, changes opioid receptor expression and increases plasma β-endorphin levels. Thus, opioid stimulation can have various side effects on glycaemia that should be taken into consideration upon prescribing opioid-based medication, and more research is needed to unravel the interaction between obesity, glycaemia and opioid use.
Collapse
Affiliation(s)
- Laura L Koekkoek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - Luna L van der Gun
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
| | - Susanne E la Fleur
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands.
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands.
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands.
| |
Collapse
|
2
|
Koekkoek LL, Kool T, Eggels L, van der Gun LL, Lamuadni K, Slomp M, Diepenbroek C, Serlie MJ, Kalsbeek A, la Fleur SE. Activation of nucleus accumbens μ-opioid receptors enhances the response to a glycaemic challenge. J Neuroendocrinol 2021; 33:e13036. [PMID: 34528311 PMCID: PMC9286654 DOI: 10.1111/jne.13036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022]
Abstract
Opioids are known to affect blood glucose levels but their exact role in the physiological control of glucose metabolism remains unclear. Although there are numerous studies investigating the peripheral effects of opioid stimulation, little is known about how central opioids control blood glucose and which brain areas are involved. One brain area possibly involved is the nucleus accumbens because, as well as being a key site for opioid effects on food intake, it has also been implicated in the control of blood glucose levels. Within the nucleus accumbens, μ-opioid receptors are most abundantly expressed. Therefore, in the present study, we investigated the role of μ-opioid receptors in the nucleus accumbens in the control of glucose metabolism. We show that infusion of the μ-opioid receptor agonist [d-Ala2 , N-MePhe4 , Gly-ol]-enkephalin (DAMGO) in the nucleus accumbens by itself does not affect blood glucose levels, but it enhances the glycaemic response after both an insulin tolerance test, as well as a glucose tolerance test. These findings indicate that the nucleus accumbens plays a role in the central effects of opioids on glucose metabolism, and highlight the possibility of nucleus accumbens μ-opioid receptors as a therapeutic target for enhancing the counter-regulatory response.
Collapse
Affiliation(s)
- Laura L. Koekkoek
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Tess Kool
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Leslie Eggels
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Luna L. van der Gun
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Khalid Lamuadni
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Margo Slomp
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Charlene Diepenbroek
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Mireillle J. Serlie
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Andries Kalsbeek
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Hypothalamic Integration MechanismsAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Susanne E. la Fleur
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| |
Collapse
|
3
|
Jaschke N, Pählig S, Pan YX, Hofbauer LC, Göbel A, Rachner TD. From Pharmacology to Physiology: Endocrine Functions of μ-Opioid Receptor Networks. Trends Endocrinol Metab 2021; 32:306-319. [PMID: 33676828 PMCID: PMC8035298 DOI: 10.1016/j.tem.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
The steady rise in opioid users and abusers has uncovered multiple detrimental health consequences of perturbed opioid receptor signaling, thereby creating the need to better understand the biology of these systems. Among endogenous opioid networks, μ-receptors have received special attention due to their unprecedented biological complexity and broad implications in homeostatic functions. Here, we review the origin, molecular biology, and physiology of endogenous opioids with a special focus on μ-opioid receptor networks within the endocrine system. Moreover, we summarize the current evidence supporting an involvement of the latter in regulating distinct endocrine functions. Finally, we combine these insights to present an integrated perspective on μ-opioid receptor biology and provide an outlook on future studies and unresolved questions in this field.
Collapse
Affiliation(s)
- Nikolai Jaschke
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| | - Sophie Pählig
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Andy Göbel
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Zhang K, Yang J, Ao N, Jin S, Qi R, Shan F, Du J. Methionine enkephalin (MENK) regulates the immune pathogenesis of type 2 diabetes mellitus via the IL-33/ST2 pathway. Int Immunopharmacol 2019; 73:23-40. [PMID: 31078923 DOI: 10.1016/j.intimp.2019.04.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022]
Abstract
The incidence and mortality of type 2 diabetes mellitus (T2DM) rank among the top ten worldwide. Emerging studies indicate pathological roles for the immune system in inflammation, insulin resistance and islet β-cell damage in subjects with T2DM. Methionine enkephalin (MENK) is present in endocrine cells of the pancreas and has been suggested to be an important mediator between the immune and neuroendocrine systems. Therefore, it may play a role in modulating insulin secretion from islet cells. Since little is known about the effect of MENK on T2DM, therefore it was the aim of this study to characterize the role and possible mechanism of action of MENK on plasma glucose and serum insulin levels in T2DM rats and INS-1 cells in vivo and in vitro. MENK significantly decreased the plasma glucose level and increased the serum insulin concentration in T2DM rats. It also increased the serum levels of the cytokines IL-5 and IL-10, while decreased TNF-α and IL-2 levels. We further confirmed that MENK regulated glucose metabolism by upregulating opioid receptor expression and modulating the IL-33/ST2 and MyD88-TRAF6-NF-κB p65 signaling pathways. Based on these results, an intraperitoneal injection of MENK represents a potentially new approach for T2DM.
Collapse
Affiliation(s)
- Keying Zhang
- Department of Endocrinology, No. 4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Jing Yang
- Department of Endocrinology, No. 4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Na Ao
- Department of Endocrinology, No. 4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Shi Jin
- Department of Endocrinology, No. 4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Ruiqun Qi
- Department of Dermatology, No. 1 Teaching Hospital, China Medical University, Shenyang 110001, China
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jian Du
- Department of Endocrinology, No. 4 Teaching Hospital, China Medical University, Shenyang 110032, China.
| |
Collapse
|
5
|
Tudurí E, Beiroa D, Stegbauer J, Fernø J, López M, Diéguez C, Nogueiras R. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation. Neuropharmacology 2016; 110:322-332. [DOI: 10.1016/j.neuropharm.2016.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/10/2016] [Accepted: 08/05/2016] [Indexed: 01/19/2023]
|
6
|
Cheng KC, Asakawa A, Li YX, Liu IM, Amitani H, Cheng JT, Inui A. Opioid μ-receptors as new target for insulin resistance. Pharmacol Ther 2013; 139:334-40. [PMID: 23688574 DOI: 10.1016/j.pharmthera.2013.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
Type-2 diabetes is one of the fastest growing public health problems worldwide resulting from both environmental and genetic factors. Activation of μ-opioid receptor (MOR) could result in reversal of the impairment of insulin-stimulated glucose disposal in genetically obese Zucker rats via exercise training. This improvement of insulin resistance was associated with an elevation of circulating β-endorphin to ameliorate the post-receptor insulin signaling cascade, including downstream effectors of the phosphatidylinositol 3-kinase (PI3-kinase) signaling pathway. In insulin resistant rats, Loperamide treatment effected on the insulin receptor substrate (IRS)-1/PI3-kinase/Akt signaling cascade and subsequent insulin-stimulated glucose transport trafficking on skeletal muscle, which were all suppressed by MOR antagonism. In addition, induction of insulin resistance by the intake of high fructose is more rapid in MOR knockout mice than in wild-type mice. Improvements in insulin sensitivity through the peripheral MOR activation overcoming defects related to the post-receptor in IRS-1-associated PI3-kinase step have been defined. Opioid receptor activation, especially of the μ-subtype, may provide merits in the amelioration of defective insulin action. Atypical zeta (ζ) isoform of protein kinase C serves as a factor that integrates with peripheral MOR pathway and insulin signals for glucose utilization. The developments call new insights into the chemical compounds and/or herbal products that might enhance opioid peptide secretion and/or stimulate MOR in peripheral insulin-sensitive tissues to serve as potential agents or adjuvants for helping the glucose metabolism. In the present review, we update these topics and discuss the concept of targeting peripheral MOR pathway for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Heroin dependence duration influences the metabolic parameters: mechanisms and consequences of impaired insulin sensitivity in hepatitis C virus seronegative heroin dependents. J Addict Med 2013; 6:304-10. [PMID: 23013781 DOI: 10.1097/adm.0b013e31826bd76c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Carbohydrate metabolism disorder in heroin dependence is an issue with long history and contradicting results. The aim of the study was to evaluate basal insulin sensitivity in hepatitis C virus seronegative heroin dependents with normal body mass index, taking into consideration the duration of heroin dependence. METHOD 78 heroin dependents and 32 healthy controls were enrolled in the cross-sectional, prospective study. The dependents were observed in 2 groups: group 1 with dependence duration less than or equal to 3 years and group 2 with more than 3 years. Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) and β-cell function (HOMA-B%) were used to define basal glucose-insulin homeostasis. RESULTS The group with longer dependence duration had HOMA-IR (2.23 ± 3.15) significantly higher compared with the control group (1.23 ± 0.53, P = 0.016) but lower compared with the group with the shorter dependence duration (2.65 ± 2.66, P = 0.024), after adjustment for HOMA-B%, waist circumference, and aspartate aminotransferase. The decrease in HOMA-IR during prolonged heroin addiction was significantly associated with the reduced β-cell function (P < 0.001) and waist circumference (P = 0.004). CONCLUSIONS Heroin dependence is associated with increased insulin resistance in hepatitis C virus seronegative heroin dependents. Prolonged heroin use is associated with reduction of basal β-cell pancreatic function with decreased insulin resistance controlled for waist circumference, but still inducing significantly decreased basal insulin sensitivity.
Collapse
|
8
|
Kögel B, De Vry J, Tzschentke TM, Christoph T. The antinociceptive and antihyperalgesic effect of tapentadol is partially retained in OPRM1 (μ-opioid receptor) knockout mice. Neurosci Lett 2011; 491:104-7. [PMID: 21232580 DOI: 10.1016/j.neulet.2011.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Activation of the μ-opioid receptor (MOR) and noradrenaline reuptake inhibition (NRI) are well recognized as analgesic principles in acute and chronic pain indications. The novel analgesic tapentadol combines MOR agonism and NRI in a single molecule. The present study used OPRM1 (MOR) knockout (KO) mice to determine the relative contribution of MOR activation to tapentadol-induced analgesia in models of acute (nociceptive) and chronic (neuropathic) pain. Antinociceptive efficacy was inferred from paw withdrawal latencies on a 48 °C hot plate in naive animals. Antihyperalgesic efficacy was inferred from the number of nocifensive reactions in diabetic animals (streptozotocin-induced) and non-diabetic controls on a 50 °C hot plate. The effect of tapentadol (0.316-31.6 mg/kg IP) and the MOR agonist morphine (3-10 mg/kg IP) was determined in OPRM1 KO- and congenic wildtype mice. At baseline, diabetic OPRM1 KO mice showed reduced nocifensive reactions as compared to diabetic wildtype mice. In both pain models, morphine and tapentadol were effective in wildtype mice. In the KO mice, however, morphine failed to produce analgesia in either model. On the other hand, tapentadol still had clear effects, and when tested at a dose that was fully efficacious in wildtype mice, showed reduced but still significant antinociceptive efficacy in non-diabetic, and antihyperalgesic efficacy in diabetic OPRM1 KO mice. The remaining antinociceptive activity of tapentadol in OPRM1 KO mice was abolished by the α₂-adrenoceptor antagonist yohimbine. In OPRM1 wildtype mice, the antihyperalgesic effect of tapentadol was 10 times more potent in diabetic animals (ED₅₀=1.10 mg/kg) than its antinociceptive effect in naïve animals (ED₅₀=10.8 mg/kg). This study supports the conclusion that the analgesic effect of tapentadol is only partly due to the activation of MOR, both under acute and chronic pain conditions, and that the efficacy of tapentadol against acute and chronic pain is based on its combined mechanism of action.
Collapse
Affiliation(s)
- Babette Kögel
- Grünenthal GmbH, Global Preclinical Research and Development, Department of Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany.
| | | | | | | |
Collapse
|
9
|
Liu IM, Cheng JT. Mediation of Endogenous β-Endorphin in the Plasma Glucose-Lowering Action of Herbal Products Observed in Type 1-Like Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011:987876. [PMID: 19095661 PMCID: PMC3147137 DOI: 10.1093/ecam/nen078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 11/14/2008] [Indexed: 01/01/2023]
Abstract
Recently, there have been advances in the development of new substances effective in managing diabetic disorders. Opioid receptors couple multiple systems to result in various biological effects, although opioids are best known for analgesia. In the present review, we used our recent data to describe the advance in plasma glucose-lowering action of herbal products, especially the mediation of β-endorphin in glucose homeostasis of insulin-deficient diabetes. In type 1-like streptozotocin-induced diabetic rats, we identified many products purified from herbs that show a dose-dependent plasma glucose-lowering action. Increase in β-endorphin secretion from the adrenal gland may activate peripheral opioid μ-receptors (MOR) to enhance the expression of muscle glucose transporters and/or to reduce hepatic gluconeogenesis at the gene level, thereby leading to improved glucose utilization in peripheral tissues for amelioration of severe hyperglycemia. It has also been observed that stimulation of α(1)-adrenoceptors (α(1)-ARs) in the adrenal gland by some herbal products is responsible for the increase in β-endorphin secretion via a phospholipase C-protein kinase dependent pathway. However, an increase in β-endorphin secretion from the adrenal gland by herbal products can function via another receptor. New insights into the mediation of endogenous β-endorphin activation of peripheral MOR by herbal products for regulation of glucose homeostasis without the presence of insulin have been established. Therefore, an increase in β-endorphin secretion and/or direct stimulation of peripheral MOR via an insulin-independent action might serve as the potential target for development of a therapeutic agent or promising adjuvant in intensive plasma glucose control.
Collapse
Affiliation(s)
- I M Liu
- Department of Pharmacy, Tajen University, Yen-Pou, Ping Tung Shien, Taiwan
| | | |
Collapse
|
10
|
Characterization of blood glucose level regulation in mouse opioid withdrawal models. Neurosci Lett 2010; 476:119-22. [DOI: 10.1016/j.neulet.2010.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 11/21/2022]
|
11
|
Wen T, Peng B, Pintar JE. The MOR-1 opioid receptor regulates glucose homeostasis by modulating insulin secretion. Mol Endocrinol 2009; 23:671-8. [PMID: 19221053 DOI: 10.1210/me.2008-0345] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In addition to producing analgesia, opioids have also been proposed to regulate glucose homeostasis by altering insulin secretion. A considerable controversy exists, however, regarding the contribution of the mu-opioid receptor (MOR-1) to insulin secretion dynamics. We employed congenic C57BL/6J MOR-1 knockout (KO) mice to clarify the role of MOR in glucose homeostasis. We first found that both sexes of MOR-1 KO mice weigh more than wild-type mice throughout postnatal life and that this increase includes preferentially increased fat deposition. We also found that MOR-1 KO mice exhibit enhanced glucose tolerance that results from insulin hypersecretion that reflects increased beta-cell mass and increased secretory dynamics in the MOR-1 mutant mice compared with wild type. Analysis of the isolated islets indicated that islet insulin hypersecretion is mediated directly by MOR expressed on islet cells via a mechanism downstream of ATP-sensitive K(+) channel activation by glucose. These findings indicate that MOR-1 regulates body weight by a mechanism that involves insulin secretion and thus may represent a novel target for new diabetes therapies.
Collapse
Affiliation(s)
- Ting Wen
- Department of Cell Biology and Neuroscience, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
12
|
Liu IM, Niu CS, Chi TC, Kuo DH, Cheng JT. Investigations of the mechanism of the reduction of plasma glucose by cold-stress in streptozotocin-induced diabetic rats. Neuroscience 1999; 92:1137-42. [PMID: 10426552 DOI: 10.1016/s0306-4522(99)00068-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to a cold environment may increase the activity of the sympathetic nervous system inducing an elevation of plasma norepinephrine and may result in hyperglycemia. In the present study, we found that a hypoglycemic effect was produced in streptozotocin-induced diabetic rats after cold-exposure at 4 degrees C for 1 h. In addition to the blockade of this hypoglycemic effect by guanethidine (a ganglion-blocking agent) and prazosin (an alpha1-adrenoceptor antagonist), an increase of plasma norepinephrine was also observed in streptozotocin-induced diabetic rats receiving this cold-stress. Participation of sympathetic hyperactivity can thus be considered. Furthermore, naloxone, in a dose (0.5 mg/kg, i.p.) sufficient to block opioid receptors, reversed this hypoglycemia. Also, an increase of plasma beta-endorphin-like immunoreactivity was observed in streptozotocin-induced diabetic rats receiving this cold-stress. Intravenous injection of beta-endorphin into streptozotocin-induced diabetic rats produced a lowering of plasma glucose. Administration of methoxamine at a dose sufficient to activate the alpha1-adrenoceptors produced hypoglycemia and a similar increase of plasma beta-endorphin-like immunoreactivity in streptozotocin-induced diabetic rats. However, plasma beta-endorphin-like immunoreactivity level was not modified by similar treatment with methoxamine or cold-stress in normoglycemic rats. Therefore, beta-endorphin appears to be responsible for the induction of hypoglycemic effects in streptozotocin-induced diabetic rats after cold exposure which is different to the response in normal rats.
Collapse
Affiliation(s)
- I M Liu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Bouix O, Najimi A, Orsetti A. Mise en jeu et rôles physiologiques des peptides opioïdes endogènes dans l'adaptation à l'exercice physique. Sci Sports 1997. [DOI: 10.1016/s0765-1597(97)80065-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Roda LG, Bongiorno L, Trani E, Urbani A, Marini M. Positive and negative immunomodulation by opioid peptides. INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY 1996; 18:1-16. [PMID: 8732427 DOI: 10.1016/0192-0561(95)00105-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The data that follow review part of the existing evidence concerning the neuroimmune functions mediated by opioid peptides, with particular regard to dual immunomodulatory effects. Limited references to substances other than opioid peptides are included, mainly to emphasize the possible similarities in the mediation of neuroimmune interactions by different informational substances, while the interactions directed from the immune to the nervous system have deliberately been omitted.
Collapse
Affiliation(s)
- L G Roda
- Dipartimento di Medicina Sperimentale, Universita degli Studi di Roma, Italy
| | | | | | | | | |
Collapse
|
15
|
Abstract
The obese-hyperglycemic syndrome is well characterized in adult mice. However, little is known about islet morphology and function at an early age when obese mice islets start to proliferate. We have now studied islet morphology and functional development in obese-hyperglycemic mice (Umeå ob/ob) and their lean littermates at ages < or = 38 days. The weight of obese mice began to increase more than that of the lean littermates at days 8 to 12. At day 18, clinical diagnosis of the ob/ob syndrome could be made with 100% certainty. Islets from obese mice started to show enhanced growth rate during week 4, coinciding with the time of onset of hyperglycemia. 3H-thymidine labeling index is enhanced in ob/ob mice from day 22. Insulin secretion in islets from mice aged 18 to 21 days was the same in obese and lean mice from the same litter. At days 30 to 33, second-phase release and islet insulin content were decreased in islets from obese animals, but were restored after an overnight fast. It is likely that the hyperglycemia rather than increased insulin demand triggers increased beta-cell growth.
Collapse
Affiliation(s)
- A Edvell
- Department of Histology and Cell Biology, Umeå University, Sweden
| | | |
Collapse
|
16
|
Hummel A, Zühlke H. Expression of two proopiomelanocortin mRNAs in the islets of Langerhans of neonatal rats. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1994; 375:811-5. [PMID: 7710695 DOI: 10.1515/bchm3.1994.375.12.811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proopiomelanocortin-(POMC) derived peptides have been found in pituitary and in nonpituitary tissues including the endocrine pancreas. However, only a truncated 800-base POMC-like mRNA is demonstrable in most nonpituitary tissues. The functional relevance of this RNA is doubtful, because it lacks the sequences of translation initiation and signal peptide (exon 1 and 2). Recently we have demonstrated the truncated POMC-like mRNA in pancreatic islets. Using PCR techniques in this paper we prove the existence of a full-length POMC mRNA in this tissue. This RNA contains the sequences of exon 1 and 2, as shown by Southern blot technique and by sequencing parts of the PCR products. We suppose that this RNA is the source of the POMC peptides in islets despite of its small amount.
Collapse
Affiliation(s)
- A Hummel
- Klinik für Innere Medizin, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | | |
Collapse
|
17
|
Abstract
This paper is the fourteenth installment of our annual review of research concerning the opiate system. It includes papers published during 1991 involving the behavioral, nonanalgesic, effects of the endogenous opiate peptides. The specific topics this year include stress; tolerance and dependence; eating; drinking; gastrointestinal and renal function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunological responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148
| | | | | |
Collapse
|
18
|
Khawaja XZ, Green IC. Studies on the effects of glucose in vitro and of the glycaemic state in vivo on the binding characteristics of mu, delta and kappa opiate receptors in mouse brain. Life Sci 1992; 50:1273-81. [PMID: 1314928 DOI: 10.1016/0024-3205(92)90327-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of glucose on the binding characteristics of opiate receptor subtypes was investigated in brain membranes from normoglycaemic lean Aston (C57BL/6J) mice using [3H][D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO), [3H][D-Pen2,D-Pen5]enkephalin (DPDPE) and [3H]U69,593 as selective ligands for mu, delta and kappa opiate receptors respectively. The equilibrium dissociation constants (Kd) and maximal binding capacities (Bmax) of [3H]DAMGO and [3H]DPDPE were unaltered by 20mM glucose in vitro. Similarly, [3H]U69,593 binding was not modified by increasing the concentration of glucose from 0 to 20mM (P between 0.10 and 0.05), or by the presence of 20mM fructose and of 20mM 3-O-me-glucose, a non-metabolisable sugar, in the incubation medium. The nonselective opiate ligand, [3H]diprenorphine, bound with similar affinity and binding capacity to brain membranes prepared from control and streptozotocin-diabetic Swiss (CD1) mice. The addition of 20mM glucose or of 20mM fructose in vitro induced no changes in their binding parameters. The affinity and binding capacity of [3H]U69,593 to STZ-diabetic Swiss mouse brain membranes was not significantly different to that of normoglycaemic controls; 20mM glucose in vitro had no effect on ligand binding to kappa sites in STZ-diabetic mouse brain membranes. We conclude that glucose does not interact directly with the opiate receptor to modfy it in such as way as could explain the altered sensitivity to different opioid agonists seen in obese and hyperglycaemic animal models in vivo.
Collapse
MESH Headings
- Animals
- Benzeneacetamides
- Binding, Competitive
- Brain/drug effects
- Brain/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalins/metabolism
- Glucose/pharmacology
- Ligands
- Mice
- Mice, Inbred C57BL
- Pyrrolidines/metabolism
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta
- Receptors, Opioid, kappa
- Receptors, Opioid, mu
- Streptozocin
Collapse
Affiliation(s)
- X Z Khawaja
- School of Biological Sciences, University of Sussex, U.K
| | | |
Collapse
|
19
|
Khawaja XZ, Chattopadhyay AK, Green IC. Increased beta-endorphin and dynorphin concentrations in discrete hypothalamic regions of genetically obese (ob/ob) mice. Brain Res 1991; 555:164-8. [PMID: 1681994 DOI: 10.1016/0006-8993(91)90874-u] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Disturbances in hypothalamic beta-endorphin and dynorphin levels were investigated in non-fasted genetically obese (ob/ob) and homozygous lean mice at 14-15 weeks of age. Eight brain regions were microdissected from fresh, unfixed brain slices, and opioid peptide concentrations were determined in tissue micropunches by radioimmunoassay. A two-fold and five-fold increase in beta-endorphin levels in ob/ob versus lean mice were found in the ventromedial and dorsomedial hypothalamic nuclei respectively. Dynorphin levels were comparable between ob/ob and lean mice in the anterior, lateral, ventromedial and paraventricular hypothalamic areas, but a 5-fold increase in dynorphin concentrations was detected in the dorsomedial hypothalamic nucleus of the ob/ob mouse. These results demonstrate that increased concentrations of beta-endorphin and dynorphin occur in discrete hypothalamic nuclei, which are known to influence food intake and glucose homeostasis. This could signify an important central defect contributing to hyperphagia and glucoregulatory dysfunction in obese mice.
Collapse
Affiliation(s)
- X Z Khawaja
- School of Biological Sciences, University of Sussex, Brighton, U.K
| | | | | |
Collapse
|