1
|
Gibula-Tarlowska E, Kotlinska JH. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance. Biomolecules 2020; 10:E1376. [PMID: 32998249 PMCID: PMC7599993 DOI: 10.3390/biom10101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-059 Lublin, Poland;
| | | |
Collapse
|
2
|
|
3
|
Guzevatykh LS. Identification of functionally important dipeptide in sequences of atypical opioid peptides. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:591-609. [DOI: 10.1134/s1068162008050026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Anton B, Leff P, Calva JC, Acevedo R, Salazar A, Matus M, Pavón L, Martinez M, Meissler JJ, Adler MW, Gaughan JP, Eisenstein TK. Endomorphin 1 and endomorphin 2 suppress in vitro antibody formation at ultra-low concentrations: anti-peptide antibodies but not opioid antagonists block the activity. Brain Behav Immun 2008; 22:824-832. [PMID: 18374539 PMCID: PMC3926125 DOI: 10.1016/j.bbi.2008.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/01/2008] [Accepted: 02/08/2008] [Indexed: 11/26/2022] Open
Abstract
Endomorphin 1 (EM-1) and endomorphin 2 (EM-2) were tested for their capacity to alter immune function. Addition of either of these peptides to murine spleen cells in vitro inhibited antibody formation to sheep red blood cells in a bi-phasic dose dependent manner. Maximal inhibition was achieved at doses in the range of 10(-13) to 10(-15)M. Neither naloxone (general opioid receptor antagonist) nor CTAP (selective mu opioid receptor antagonist) blocked the immunosuppressive effect. To show that there was specificity to the immunosuppressive activity of the peptides, affinity-purified rabbit antibodies were raised against each of the synthetic EM peptides haptenized to KLH and tested for capacity to inhibit immunosuppression. Antibody responses were monitored by a standard solid phase antibody capture ELISA, and antibodies were purified by immunochromatography using the synthetic peptides coupled to a Sepharose 6B resin. Verification of the specificity of affinity-purified antisera was performed by immunodot-blot and solid-phase RIA assays. The antisera specific for both EM-1 and EM-2 neutralized the immunosuppressive effects of their respective peptides in a dose-related manner. Control normal rabbit IgG had no blocking activity on either EM-1 or EM-2. These studies show that the endomorphins are immunomodulatory at ultra-low concentrations, but the data do not support a mechanism involving the mu-opioid receptor.
Collapse
Affiliation(s)
- Benito Anton
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pan W, Kastin AJ. From MIF-1 to endomorphin: the Tyr-MIF-1 family of peptides. Peptides 2007; 28:2411-34. [PMID: 17988762 DOI: 10.1016/j.peptides.2007.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 11/22/2022]
Abstract
The Tyr-MIF-1 family of small peptides has served a prototypic role in the introduction of several novel concepts into the peptide field of research. MIF-1 (Pro-Leu-Gly-NH(2)) was the first hypothalamic peptide shown to act "up" on the brain, not just "down" on the pituitary. In several situations, including clinical depression, MIF-1 exhibits an inverted U-shaped dose-response relationship in which increasing doses can result in decreasing effects. This tripeptide also can antagonize opiate actions, and the first report of such activity also correctly predicted the discovery of other endogenous antiopiate peptides. The tetrapeptide Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH(2)) not only shows antiopiate activity, but also considerable selectivity for the mu-opiate binding site. Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH(2)) is an even more selective ligand for the mu receptor, leading to the discovery of two more Tyr-Pro tetrapeptides that have the highest specificity and affinity for this site. These are the endomorphins: endomorphin-1 is Tyr-Pro-Trp-Phe-NH(2) and endomorphin-2 is Tyr-Pro-Phe-Phe-NH(2). Tyr-MIF-1 proved, contrary to the then prevailing dogma, that peptides can be saturably transported across the blood-brain barrier by a quantifiable transport system. Unexpectedly, the Tyr-MIF-1 transporter is shared with Met-enkephalin. In the era in which it was doubtful whether a peripheral peptide could exert CNS effects, the Tyr-MIF-1 family of peptides also explicitly showed that they can exert more than one central action that persists longer than their half-lives in blood. These peptides clearly illustrate that the name of a peptide restricts neither its actions nor its conceptual implications.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
6
|
Zamfirova R, Bocheva A, Dobrinova Y, Todorov S. Study on the antinociceptive action of Tyr-K-MIF-1, a peptide from the MIF family. ACTA ACUST UNITED AC 2007; 27:93-8. [PMID: 17391278 DOI: 10.1111/j.1474-8673.2007.00394.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Tyr-K-MIF-1 is a melanocyte inhibiting factor (MIF) neuropeptide, isolated from the brain. Opposite to other MIFs (Tyr-MIF-1, Tyr-W-MIF-1), it has a very low affinity for opiate mu-receptors, but interacts with Tyr-MIF-1 specific binding sites. Tyr-MIF-1 and Tyr-W-MIF-1 evoke antinociception mainly by activating opioid receptors. We investigated the possible antinociceptive effect of Tyr-K-MIF-1 and the involvement of histaminergic system in its mechanism of action. 2. Tested on rats by paw-pressure test, Tyr-K-MIF-1 (0.5, 1 and 2 mg kg(-1)) was associated with short-lasting analgesia, which was abolished by naloxone (1 mg kg(-1)). 3. Injected intraperitoneally (i.p.) 15 min before Tyr-K-MIF-1, antagonists of H(1) (diphenhydramine, 100 mg kg(-1)) or H(2) (famotidine, 0.3 and 0.6 mg kg(-1)) histamine receptors diminished peptide antinociceptive effect. Simultaneous H(1)- and H(2) blockade, as well as pretreatment with 5 mg kg(-1) dimaprit (H(2) agonist) abolished Tyr-K-MIF-1-induced analgesia. Tyr-K-MIF-1-induced analgesia was also abolished by treatment with R-(alpha)-methylhistamine (10 mg kg(-1), i.p.), an H(3) histamine receptor agonist that acts to inhibit histamine release. 4. Our results together with data reported in the literature support the conclusion that activation of the histaminergic system is involved in the mechanism of Tyr-K-MIF-1-induced antinociception.
Collapse
Affiliation(s)
- R Zamfirova
- Institute of Physiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | | | |
Collapse
|
7
|
Salzet M, Deloffre L. PLGamide characterization and role in osmoregulation in leech brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:161-9. [PMID: 10719226 DOI: 10.1016/s0169-328x(99)00345-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurons immunoreactive to an antiserum specifically directed against the Prolyl-Leucyl-Glycinamide peptide (PLGamide: Melanocyte Inhibiting Factor: MIF) were detected in the brain of the leech Theromyzon tessulatum. Radioimmunoassay titrations of the PLGamide-like material at different physiological stages of the life cycle indicated a maximal amount at stage 3B, which is correlated to phase of both maximal water uptake and coelomic vitellogenin accumulation. In vivo experiments demonstrate that this cerebral PLGamide-like material is an anti-diuretic factor that would act at stage 3B in order to permit a water uptake leading to water retention allowing coelomic yolk protein accumulation. In brains of the Gnatobdellid leech Hirudo medicinalis and the Pharyngobdellid leech Erpobdella octoculata, anti-PLGamide material was also detected with an amount not differing with the degree of sex maturation of the animals, confirming the link between osmoregulation and ovogenesis in rhynchobdellid leeches. Using a combination of biochemical techniques including high-pressure gel permeation chromatography followed by reversed-phase HPLC on brain extracts and Edman degradation, we demonstrated the presence of an authentic MIF-1 peptide in leech brain. Finally, since in vertebrates MIF-1 belongs to the non-classical opioid peptide family, we studied its binding displacement, in contrast to morphine, on mu-receptors and on nitric oxide (NO) release experiments in leech brain. PLGamide did not bind to mu-alkaloid opioid receptors and did not stimulate NO release.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire d'Endocrinologie des Annélides, UPRES-A CNRS 8017, SN3, Université des Sciences et Technologies de Lille, 59650 Villeneuve d'Ascq, France.
| | | |
Collapse
|
8
|
Kastin AJ, Hahn K, Banks WA, Zadina JE. Regional differences in the metabolism of Tyr-MIF-1 and Tyr-W-MIF-1 by rat brain mitochondria. Biochem Pharmacol 1998; 55:33-6. [PMID: 9413927 DOI: 10.1016/s0006-2952(97)00376-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) and Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH2) are endogenous neuropeptides with opiate modulating and other CNS effects. After incubation of the tritiated tetrapeptides with fractions of tissue from different areas of rat brain, formation of the metabolites was determined by HPLC. Marked regional differences in degradation were found for both peptides. The metabolism of Tyr-MIF-1, resulting in the formation of the biologically active MIF-1 (Pro-Leu-Gly-NH2), was greater in the mitochondrial than in the synaptosomal fractions. In the mitochondrial fraction, about twice as much MIF-1 was formed in brain cortex than in striatum, diencephalon, or midbrain/pons medulla. These results, showing differential metabolism in various areas of the brain, indicate another means for regulation of the concentrations of neuropeptides.
Collapse
Affiliation(s)
- A J Kastin
- VA Medical Center and Tulane University School of Medicine, New Orleans, LA 70146, USA
| | | | | | | |
Collapse
|
9
|
Cucumel K, Bagnol D, Moinier D, Fischer J, Conrath M, Cupo A. The rat dermorphin-like immunoreactivity is supported by an aminopeptidase resistant peptide. J Neuroimmunol 1998; 81:211-24. [PMID: 9521624 DOI: 10.1016/s0165-5728(97)00182-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Site-directed antibodies against synthetic related dermorphin peptides were previously produced and characterized. One of them, which specifically recognizes the crucial 'opioid message' (the N-terminal part of the dermorphin molecule (i.e. Tyr-D-Ala-Phe-Gly) was selected in order to detect and locate endogenous dermorphin-like molecules in rat, mouse and guinea pig tissues. Dermorphin-like peptides were found to be present in tissues known to contain peptides such as neurons in the central nervous system, nerve fibers in the gut and B and T immune cells. With all the tissues assayed, the HPLC profile obtained on the immunoreactive material showed the same main peak eluted at a retention time of 32 +/- 1 min. The results of biochemical experiments in which enzymatic treatments were performed on the dermorphin-like immunoreactivity indicate the immunoreactivity is a peptide resistant to aminopeptidase hydrolysis. This finding suggests the presence of a residue conferring resistance to proteolytic processes of this kind, which is likely to be a D-amino acid residue.
Collapse
Affiliation(s)
- K Cucumel
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS-UPR411, Valbonne, France
| | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- A L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
11
|
Abstract
The numerous endogenous opioid peptides (beta-endorphin, enkephalins, dynorphins ... ) and the exogenous opioids (such as morphine) exert their effects through the activation of receptors belonging to four main types, mu, delta, kappa and epsilon. Opioidergic neurones and opioid receptors are largely distributed centrally and peripherally. It is thus not surprising that opioids have numerous pharmacological effects and that endogenous opioids are thought to be involved in the physiological control of various functions, among which nociception is particularly emphasized. Some opioid targets may be components of homeostatic systems tending to reduce the effects of opioids. "Anti-opioid" properties have been attributed to various peptides, especially cholecystokinin (CCK), neuropeptide FF (NPFF) and melanocyte inhibiting factor (MIF)-related peptides. In addition, a particular place should be attributed, paradoxically, to opioid peptides themselves among the anti-opioid peptides. These peptides can oppose some of the acute effects of opioids, and a hyperactivation of anti-opioid peptidergic neurones due to the chronic administration of opioids may be involved in the development of opioid tolerance and/or dependence. In fact, CCK, NPFF and the MIF family of peptides have complex properties and can act as opioid-like as well as anti-opioid peptides. Thus, "opioid modulating peptides" would be a better term to designate these peptides, which probably participate, together with the opioid systems, in multiple feed-back loops for the maintenance of homeostasis. "Opioid modulating peptides" have generally been shown to act through the activation of their own receptors. For example, CCK appears to exert its anti-opioid actions mainly through the activation of CCK-B receptors, whereas its opioid-like effects seem to result from the stimulation of CCK-A receptors. However, the partial agonistic properties at opioid receptors of some MIF-related peptides very likely contribute to their ability to modulate the effects of opioids. CCK- and NPFF-related drugs have potential therapeutic interest as adjuncts to opioids for alleviating pain and/or for the treatment of opioid abuse.
Collapse
|
12
|
Kastin AJ, Fabre L, Banks WA, Hackler L, Zadina JE. Increase in plasma TYR-MIF-1-like immunoreactivity after hypophysectomy is robust and reversible by corticosterone. Neuropeptides 1995; 28:65-71. [PMID: 7746353 DOI: 10.1016/0143-4179(95)90076-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tyr-MIF-1-like immunoreactivity (Tyr-MIF-1-LI) was measured in the plasma of hypophysectomized rats. The concentrations were increased in every rat examined, regardless of sex or time after hypophysectomy, and ranged from 2.5 to 10 times greater than the concentrations in intact rats. The elevated concentrations were not decreased by replacement by thyroxine, estrogen and progesterone, or acute injection of corticosterone. Chronic administration of physiological doses of corticosterone, however, did reduce the concentrations to normal. High performance liquid chromatography of tritiated Tyr-MIF-1 incubated at 37 degrees C for 3 min in plasma obtained by hypophysectomized rats eliminated the possibility that reduced degradation of Tyr-MIF-1 explained the increased concentrations. Thus, the increase in Tyr-MIF-1-LI in the plasma of hypophysectomized rats is robust and reversible by chronic replacement of corticosterone.
Collapse
Affiliation(s)
- A J Kastin
- VA Medical Center, New Orleans, LA 70146, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
A review of research on the Tyr-MIF-1 family of peptides is presented with emphasis on Tyr-MIF-1 and its structure, passage through the blood-brain barrier, and both opiate antagonist and agonist properties. Family members MIF-1, Tyr-W-MIF-1 and Tyr-K-MIF-1 are also included.
Collapse
Affiliation(s)
- G W Reed
- Department of Psychology, University of New Orleans, LA 70148
| | | | | |
Collapse
|
14
|
Affiliation(s)
- A J Kastin
- VA Medical Center, New Orleans, Louisiana
| | | | | | | |
Collapse
|