1
|
Katsuki T, Ogi K, Kinno A, Kasamatsu S, Ihara H, Sumitani H. Inhibition of Amyloid β Accumulation by Protease-Digested Whitebait (Shirasu) in a Murine Model of Alzheimer's Disease. Foods 2024; 13:2858. [PMID: 39335787 PMCID: PMC11431889 DOI: 10.3390/foods13182858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The number of people with dementia is increasing annually worldwide. Alzheimer's disease (AD), which accounts for the highest percentage of dementia-causing diseases, remains difficult to cure, and prevention of its onset is important. We aimed to discover new AD-preventive ingredients and investigate the inhibitory effects of ten different species of seafood digests prepared by protease treatment on β-secretase 1 (BACE1) activity. Substantial inhibition of BACE1 activity was observed in five species of seafood, and protease-digested whitebait (WPD) showed the highest inhibitory effect among the ten marine samples. We further examined the potential of WPD as an AD preventive component using a familial AD strain (5xFAD) murine model. The intraperitoneal administration of WPD for 28 days substantially decreased the insoluble amyloid β1-42 content and the expression of glial fibrillary acidic protein, a marker of astrogliosis, in the cerebral cortex of the 5xFAD mice. These results strongly suggest that WPD is a novel functional food-derived ingredient with preventive effects against AD.
Collapse
Affiliation(s)
- Takahiro Katsuki
- Toyo Institute of Food Technology, 23-2-4, Minami-Hanayashiki, Kawanishi-shi 666-0026, Hyogo, Japan; (T.K.)
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi 599-8531, Osaka, Japan; (A.K.); (S.K.); (H.I.)
| | - Kayako Ogi
- Toyo Institute of Food Technology, 23-2-4, Minami-Hanayashiki, Kawanishi-shi 666-0026, Hyogo, Japan; (T.K.)
| | - Ayaka Kinno
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi 599-8531, Osaka, Japan; (A.K.); (S.K.); (H.I.)
| | - Shingo Kasamatsu
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi 599-8531, Osaka, Japan; (A.K.); (S.K.); (H.I.)
| | - Hideshi Ihara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi 599-8531, Osaka, Japan; (A.K.); (S.K.); (H.I.)
| | - Hidenobu Sumitani
- Toyo Institute of Food Technology, 23-2-4, Minami-Hanayashiki, Kawanishi-shi 666-0026, Hyogo, Japan; (T.K.)
| |
Collapse
|
2
|
Feng J, Song H, Province M, Li G, Payne PRO, Chen Y, Li F. PathFinder: a novel graph transformer model to infer multi-cell intra- and inter-cellular signaling pathways and communications. Front Cell Neurosci 2024; 18:1369242. [PMID: 38846640 PMCID: PMC11155453 DOI: 10.3389/fncel.2024.1369242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Recently, large-scale scRNA-seq datasets have been generated to understand the complex signaling mechanisms within the microenvironment of Alzheimer's Disease (AD), which are critical for identifying novel therapeutic targets and precision medicine. However, the background signaling networks are highly complex and interactive. It remains challenging to infer the core intra- and inter-multi-cell signaling communication networks using scRNA-seq data. In this study, we introduced a novel graph transformer model, PathFinder, to infer multi-cell intra- and inter-cellular signaling pathways and communications among multi-cell types. Compared with existing models, the novel and unique design of PathFinder is based on the divide-and-conquer strategy. This model divides complex signaling networks into signaling paths, which are then scored and ranked using a novel graph transformer architecture to infer intra- and inter-cell signaling communications. We evaluated the performance of PathFinder using two scRNA-seq data cohorts. The first cohort is an APOE4 genotype-specific AD, and the second is a human cirrhosis cohort. The evaluation confirms the promising potential of using PathFinder as a general signaling network inference model.
Collapse
Affiliation(s)
- Jiarui Feng
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Haoran Song
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Michael Province
- Division of Statistical Genomics, Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, United States
- NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, United States
| | - Philip R. O. Payne
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Fuhai Li
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
3
|
Feng J, Province M, Li G, Payne PR, Chen Y, Li F. PathFinder: a novel graph transformer model to infer multi-cell intra- and inter-cellular signaling pathways and communications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575534. [PMID: 38293243 PMCID: PMC10827077 DOI: 10.1101/2024.01.13.575534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Recently, large-scale scRNA-seq datasets have been generated to understand the complex and poorly understood signaling mechanisms within microenvironment of Alzheimer's Disease (AD), which are critical for identifying novel therapeutic targets and precision medicine. Though a set of targets have been identified, however, it remains a challenging to infer the core intra- and inter-multi-cell signaling communication networks using the scRNA-seq data, considering the complex and highly interactive background signaling network. Herein, we introduced a novel graph transformer model, PathFinder, to infer multi-cell intra- and inter-cellular signaling pathways and signaling communications among multi-cell types. Compared with existing models, the novel and unique design of PathFinder is based on the divide-and-conquer strategy, which divides the complex signaling networks into signaling paths, and then score and rank them using a novel graph transformer architecture to infer the intra- and inter-cell signaling communications. We evaluated PathFinder using scRNA-seq data of APOE4-genotype specific AD mice models and identified novel APOE4 altered intra- and inter-cell interaction networks among neurons, astrocytes, and microglia. PathFinder is a general signaling network inference model and can be applied to other omics data-driven signaling network inference.
Collapse
Affiliation(s)
- Jiarui Feng
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, 65212, USA
- NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Philip R.O. Payne
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Fuhai Li
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Feng J, Goedegebuure SP, Zeng A, Bi Y, Wang T, Payne P, Ding L, DeNardo D, Hawkins W, Fields RC, Li F. sc2MeNetDrug: A computational tool to uncover inter-cell signaling targets and identify relevant drugs based on single cell RNA-seq data. PLoS Comput Biol 2024; 20:e1011785. [PMID: 38181047 PMCID: PMC10796047 DOI: 10.1371/journal.pcbi.1011785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 01/18/2024] [Accepted: 12/23/2023] [Indexed: 01/07/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a powerful technology to investigate the transcriptional programs in stromal, immune, and disease cells, like tumor cells or neurons within the Alzheimer's Disease (AD) brain or tumor microenvironment (ME) or niche. Cell-cell communications within ME play important roles in disease progression and immunotherapy response and are novel and critical therapeutic targets. Though many tools of scRNA-seq analysis have been developed to investigate the heterogeneity and sub-populations of cells, few were designed for uncovering cell-cell communications of ME and predicting the potentially effective drugs to inhibit the communications. Moreover, the data analysis processes of discovering signaling communication networks and effective drugs using scRNA-seq data are complex and involve a set of critical analysis processes and external supportive data resources, which are difficult for researchers who have no strong computational background and training in scRNA-seq data analysis. To address these challenges, in this study, we developed a novel open-source computational tool, sc2MeNetDrug (https://fuhaililab.github.io/sc2MeNetDrug/). It was specifically designed using scRNA-seq data to identify cell types within disease MEs, uncover the dysfunctional signaling pathways within individual cell types and interactions among different cell types, and predict effective drugs that can potentially disrupt cell-cell signaling communications. sc2MeNetDrug provided a user-friendly graphical user interface to encapsulate the data analysis modules, which can facilitate the scRNA-seq data-based discovery of novel inter-cell signaling communications and novel therapeutic regimens.
Collapse
Affiliation(s)
- Jiarui Feng
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - S. Peter Goedegebuure
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Amanda Zeng
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ye Bi
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ting Wang
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Philip Payne
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Li Ding
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David DeNardo
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - William Hawkins
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ryan C. Fields
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Fuhai Li
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
5
|
Yedke NG, Kumar P. The Neuroprotective Role of BCG Vaccine in Movement Disorders: A Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:30-38. [PMID: 36567299 DOI: 10.2174/1871527322666221223142813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/27/2022]
Abstract
Bacillus Calmette-Guérin (BCG) is the first developed vaccine to prevent tuberculosis (TB) and is the world's most widely used vaccine. It has a reconcilable defense in opposition to tuberculosis, meningitis, and miliary disease in children but changeable protection against pulmonary TB. Immune activation is responsible for regulating neural development by activating it. The effect of the BCG vaccine on neuronal disorders due to subordinate immune provocation is useful. BCG vaccine can prevent neuronal degeneration in different neurological disorders by provoking auto-reactive T-cells. In the case of TB, CD4+ T-cells effectively protect the immune response by protecting the central defense. Because of the preceding fact, BCG induces protection by creating precise T-cells like CD4+ T-cells and CD8+ T-cells. Hence, vaccination-induced protection generates specific T-cells and CD4+ T-cells, and CD8+ T-cells. The BCG vaccine may have an essential effect on motor disorders and play a crucial role in neuroprotective management. The present review describes how the BCG vaccine might be interrelated with motor disorders and play a key role in such diseases.
Collapse
Affiliation(s)
- Narhari Gangaram Yedke
- Department of Pharmaceutical Sciences and Technology Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
6
|
Gorthi SP, Gupta D. Alzheimer's Disease: Treatment Today and Tomorrow. Ann Indian Acad Neurol 2023; 26:326-333. [PMID: 37970257 PMCID: PMC10645267 DOI: 10.4103/aian.aian_254_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 11/17/2023] Open
Abstract
Background and Aims The scope of treatment in Alzheimer's Disease has widened in recent times with FDA approval of new drugs. This review looks at established treatments in AD as well as critically analyses the newer drugs available. Methods Data in this review was gathered from PubMed; Google Scholar and MEDLINE from January-March 2023. Search words used were 'Alzheimer's Disease treatment' and 'Dementia treatment'. Results Older time tested drugs like Acetyl Choline Receptor Inhibitors and NMDA Receptor antagonists remain the mainstay of pharmacological treatment in AD. Despite a lot of excitement about newer FDA approved drugs; we have to be cautious in their use. Aducanumab showed good reduction in CSF amyloid levels (biomarker of AD); but this did not necessarily translate into better clinical outcomes of patients. Conclusion Despite the recent advances and approval of drugs in treatment of AD, we have to exhibit caution while prescribing these drugs. Even with a sound mechanism of action, these drugs do not always show improvement in clinical outcomes. More clinical trials are required for development of drugs in treatment of AD which explore various different mechanisms of action.
Collapse
Affiliation(s)
- Sankar P. Gorthi
- Department of Neurology, Bharati Vidyapeeth Medical College (DTU) and Hospital, Pune, Maharashtra, India
| | - Dulari Gupta
- Department of Neurology, Bharati Vidyapeeth Medical College (DTU) and Hospital, Pune, Maharashtra, India
| |
Collapse
|
7
|
Wong-Guerra M, Calfio C, Maccioni RB, Rojo LE. Revisiting the neuroinflammation hypothesis in Alzheimer's disease: a focus on the druggability of current targets. Front Pharmacol 2023; 14:1161850. [PMID: 37361208 PMCID: PMC10288808 DOI: 10.3389/fphar.2023.1161850] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease and disability in the elderly; it is estimated to account for 60%-70% of all cases of dementia worldwide. The most relevant mechanistic hypothesis to explain AD symptoms is neurotoxicity induced by aggregated amyloid-β peptide (Aβ) and misfolded tau protein. These molecular entities are seemingly insufficient to explain AD as a multifactorial disease characterized by synaptic dysfunction, cognitive decline, psychotic symptoms, chronic inflammatory environment within the central nervous system (CNS), activated microglial cells, and dysfunctional gut microbiota. The discovery that AD is a neuroinflammatory disease linked to innate immunity phenomena started in the early nineties by several authors, including the ICC´s group that described, in 2004, the role IL-6 in AD-type phosphorylation of tau protein in deregulating the cdk5/p35 pathway. The "Theory of Neuroimmunomodulation", published in 2008, proposed the onset and progression of degenerative diseases as a multi-component "damage signals" phenomena, suggesting the feasibility of "multitarget" therapies in AD. This theory explains in detail the cascade of molecular events stemming from microglial disorder through the overactivation of the Cdk5/p35 pathway. All these knowledge have led to the rational search for inflammatory druggable targets against AD. The accumulated evidence on increased levels of inflammatory markers in the cerebrospinal fluid (CSF) of AD patients, along with reports describing CNS alterations caused by senescent immune cells in neuro-degenerative diseases, set out a conceptual framework in which the neuroinflammation hypothesis is being challenged from different angles towards developing new therapies against AD. The current evidence points to controversial findings in the search for therapeutic candidates to treat neuroinflammation in AD. In this article, we discuss a neuroimmune-modulatory perspective for pharmacological exploration of molecular targets against AD, as well as potential deleterious effects of modifying neuroinflammation in the brain parenchyma. We specifically focus on the role of B and T cells, immuno-senescence, the brain lymphatic system (BLS), gut-brain axis alterations, and dysfunctional interactions between neurons, microglia and astrocytes. We also outline a rational framework for identifying "druggable" targets for multi-mechanistic small molecules with therapeutic potential against AD.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile (CBA-USACH), Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Camila Calfio
- International Center for Biomedicine (ICC), Santiago, Chile
- Laboratory of Cellular and Molecular Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ricardo B. Maccioni
- International Center for Biomedicine (ICC), Santiago, Chile
- Laboratory of Cellular and Molecular Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Leonel E. Rojo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile (CBA-USACH), Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| |
Collapse
|
8
|
Liew Y, Retinasamy T, Arulsamy A, Ali I, Jones NC, O’Brien TJ, Shaikh MF. Neuroinflammation: A Common Pathway in Alzheimer's Disease and Epilepsy. J Alzheimers Dis 2023; 94:S253-S265. [PMID: 37092226 PMCID: PMC10473147 DOI: 10.3233/jad-230059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Neuroinflammation is an innate immunological response of the central nervous system that may be induced by a brain insult and chronic neurodegenerative conditions. Recent research has shown that neuroinflammation may contribute to the initiation of Alzheimer's disease (AD) pathogenesis and associated epileptogenesis. OBJECTIVE This systematic review aimed to investigate the available literature on the shared molecular mechanisms of neuroinflammation in AD and epilepsy. METHODS The search included in this systematic review was obtained from 5 established databases. A total of 2,760 articles were screened according to inclusion criteria. Articles related to the modulation of the inflammatory biomarkers commonly associated with the progression of AD and epilepsy in all populations were included in this review. RESULTS Only 7 articles met these criteria and were chosen for further analysis. Selected studies include both in vitro and in vivo research conducted on rodents. Several neuroinflammatory biomarkers were reported to be involved in the cross-talk between AD and epilepsy. CONCLUSION Neuroinflammation was directly associated with the advancement of AD and epilepsy in populations compared to those with either AD or epilepsy. However, more studies focusing on common inflammatory biomarkers are required to develop standardized monitoring guidelines to prevent the manifestation of epilepsy and delay the progression of AD in patients.
Collapse
Affiliation(s)
- Yee Liew
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Idrish Ali
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, Australia
| | - Nigel C. Jones
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, Australia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, Australia
- School of Dentistry and Medical Sciences, Charles Sturt University, Australia
| |
Collapse
|
9
|
Targa Dias Anastacio H, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer's disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry 2022; 12:257. [PMID: 35732622 PMCID: PMC9217953 DOI: 10.1038/s41398-022-02024-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to loss of cognitive abilities and ultimately, death. With no cure available, limited treatments mostly focus on symptom management. Identifying early changes in the disease course may provide new therapeutic targets to halt or reverse disease progression. Clinical studies have shown that cortical and hippocampal hyperactivity are a feature shared by patients in the early stages of disease, progressing to hypoactivity during later stages of neurodegeneration. The exact mechanisms causing neuronal excitability changes are not fully characterized; however, animal and cell models have provided insights into some of the factors involved in this phenotype. In this review, we summarize the evidence for neuronal excitability changes over the course of AD onset and progression and the molecular mechanisms underpinning these differences. Specifically, we discuss contributors to aberrant neuronal excitability, including abnormal levels of intracellular Ca2+ and glutamate, pathological amyloid β (Aβ) and tau, genetic risk factors, including APOE, and impaired inhibitory interneuron and glial function. In light of recent research indicating hyperexcitability could be a predictive marker of cognitive dysfunction, we further argue that the hyperexcitability phenotype could be leveraged to improve the diagnosis and treatment of AD, and present potential targets for future AD treatment development.
Collapse
Affiliation(s)
- Helena Targa Dias Anastacio
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Natalie Matosin
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia. .,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
10
|
Grotemeyer A, McFleder RL, Wu J, Wischhusen J, Ip CW. Neuroinflammation in Parkinson's Disease - Putative Pathomechanisms and Targets for Disease-Modification. Front Immunol 2022; 13:878771. [PMID: 35663989 PMCID: PMC9158130 DOI: 10.3389/fimmu.2022.878771] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive and debilitating chronic disease that affects more than six million people worldwide, with rising prevalence. The hallmarks of PD are motor deficits, the spreading of pathological α-synuclein clusters in the central nervous system, and neuroinflammatory processes. PD is treated symptomatically, as no causally-acting drug or procedure has been successfully established for clinical use. Various pathways contributing to dopaminergic neuron loss in PD have been investigated and described to interact with the innate and adaptive immune system. We discuss the possible contribution of interconnected pathways related to the immune response, focusing on the pathophysiology and neurodegeneration of PD. In addition, we provide an overview of clinical trials targeting neuroinflammation in PD.
Collapse
Affiliation(s)
| | | | - Jingjing Wu
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jörg Wischhusen
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, University Hospital of Würzburg, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Li Z, Guo W, Zeng T, Yin J, Feng K, Huang T, Cai YD. Detecting Brain Structure-Specific Methylation Signatures and Rules for Alzheimer's Disease. Front Neurosci 2022; 16:895181. [PMID: 35585924 PMCID: PMC9108872 DOI: 10.3389/fnins.2022.895181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that leads to irreversible behavioral changes, erratic emotions, and loss of motor skills. These conditions make people with AD hard or almost impossible to take care of. Multiple internal and external pathological factors may affect or even trigger the initiation and progression of AD. DNA methylation is one of the most effective regulatory roles during AD pathogenesis, and pathological methylation alterations may be potentially different in the various brain structures of people with AD. Although multiple loci associated with AD initiation and progression have been identified, the spatial distribution patterns of AD-associated DNA methylation in the brain have not been clarified. According to the systematic methylation profiles on different structural brain regions, we applied multiple machine learning algorithms to investigate such profiles. First, the profile on each brain region was analyzed by the Boruta feature filtering method. Some important methylation features were extracted and further analyzed by the max-relevance and min-redundancy method, resulting in a feature list. Then, the incremental feature selection method, incorporating some classification algorithms, adopted such list to identify candidate AD-associated loci at methylation with structural specificity, establish a group of quantitative rules for revealing the effects of DNA methylation in various brain regions (i.e., four brain structures) on AD pathogenesis. Furthermore, some efficient classifiers based on essential methylation sites were proposed to identify AD samples. Results revealed that methylation alterations in different brain structures have different contributions to AD pathogenesis. This study further illustrates the complex pathological mechanisms of AD.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jie Yin
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Human Genetics, Institute of Genetics, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
12
|
Shir D, Day GS. Deciphering the contributions of neuroinflammation to neurodegeneration: lessons from antibody-mediated encephalitis and coronavirus disease 2019. Curr Opin Neurol 2022; 35:212-219. [PMID: 35102125 PMCID: PMC8896289 DOI: 10.1097/wco.0000000000001033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
PURPOSE OF REVIEW Does neuroinflammation promote neurodegeneration? Does neurodegeneration promote neuroinflammation? Or, is the answer to both questions, yes? These questions have proven challenging to answer in patients with typical age-related neurodegenerative diseases in whom the onset of neuroinflammation and neurodegeneration are largely unknown. Patients recovering from diseases associated with abrupt-onset neuroinflammation, including rare forms of antibody-mediated encephalitis (AME) and common complications of novel coronavirus disease 2019 (COVID-19), provide a unique opportunity to untangle the relationship between neuroinflammation and neurodegeneration. This review explores the lessons learned from patients with AME and COVID-19. RECENT FINDINGS Persistent cognitive impairment is increasingly recognized in patients recovering from AME or COVID-19, yet the drivers of impairment remain largely unknown. Clinical observations, neuroimaging and biofluid biomarkers, and pathological studies imply a link between the severity of acute neuroinflammation, subsequent neurodegeneration, and disease-associated morbidity. SUMMARY Data from patients with AME and COVID-19 inform key hypotheses that may be evaluated through future studies incorporating longitudinal biomarkers of neuroinflammation and neurodegeneration in larger numbers of recovering patients. The results of these studies may inform the contributors to cognitive impairment in patients with AME and COVID-19, with potential diagnostic and therapeutic applications in patients with age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Dror Shir
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
13
|
Choi JM, Park HS, He MT, Kim YS, Kim HY, Lee AY, Cho EJ. Membrane-Free Stem Cells and Pyridoxal 5'-Phosphate Synergistically Enhance Cognitive Function in Alzheimer's Disease Mouse Model. Antioxidants (Basel) 2022; 11:antiox11030601. [PMID: 35326251 PMCID: PMC8945526 DOI: 10.3390/antiox11030601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Accumulation of amyloid beta (Aβ) is a major pathological hallmark of Alzheimer’s disease (AD). In this study, we evaluated the protective effect of membrane-free stem cell extract (MFSCE), which is a component of adipose-tissue-derived stem cells, on cognitive impairment in Aβ25–35-injected AD mice. The ICR mice were i.c.v. injected with Aβ25–35 and then treated with MFSCE for 14 days (i.p.). The Aβ25–35-injected mice showed deficits in spatial and object perception abilities, whereas treatment with MFSCE inhibited Aβ25–35-induced learning and memory impairment in the T-maze, novel object recognition, and Morris water maze tests. Moreover, Aβ25–35-induced lipid peroxidation and nitric oxide overproduction were attenuated by treatment with MFSCE. These antioxidant effects of MFSCE were related to the inhibition of the apoptotic signaling pathway. In particular, the combination treatment of MFSCE and pyridoxal 5′-phosphate (PLP) showed greater suppression of Bax and cleaved caspase-3 protein expression compared to the MFSCE- or PLP-only treatment. Furthermore, the MFSCE and PLP combination significantly downregulated the amyloidogenic-pathway-related protein expressions, such as amyloid precursor protein, presenilin 1, and presenilin 2. Therefore, the MFSCE and PLP combination may synergistically prevent Aβ25–35-induced neuronal apoptosis and amyloidogenesis, which contributes to cognitive improvement and has potential therapeutic implications for AD patients.
Collapse
Affiliation(s)
- Ji Myung Choi
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea; (J.M.C.); (H.S.P.); (M.T.H.)
- Department of Food Science and Biotechnology, Kyungsung University, Busan 48434, Korea
| | - Hye Sook Park
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea; (J.M.C.); (H.S.P.); (M.T.H.)
- T-Stem Co., Ltd., Changwon 51573, Korea;
| | - Mei Tong He
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea; (J.M.C.); (H.S.P.); (M.T.H.)
| | | | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52828, Korea;
| | - Ah Young Lee
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52828, Korea;
- Correspondence: (A.Y.L.); (E.J.C.)
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea; (J.M.C.); (H.S.P.); (M.T.H.)
- Correspondence: (A.Y.L.); (E.J.C.)
| |
Collapse
|
14
|
McFarland KN, Chakrabarty P. Microglia in Alzheimer's Disease: a Key Player in the Transition Between Homeostasis and Pathogenesis. Neurotherapeutics 2022; 19:186-208. [PMID: 35286658 PMCID: PMC9130399 DOI: 10.1007/s13311-021-01179-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Immune activation accompanies the development of proteinopathy in the brains of Alzheimer's dementia patients. Evolving from the long-held viewpoint that immune activation triggers the pathological trajectory in Alzheimer's disease, there is accumulating evidence now that microglial activation is neither pro-amyloidogenic nor just a simple reactive process to the proteinopathy. Preclinical studies highlight an interesting aspect of immunity, i.e., spurring immune system activity may be beneficial under certain circumstances. Indeed, a dynamic evolving relationship between different activation states of the immune system and its neuronal neighbors is thought to regulate overall brain organ health in both healthy aging and progression of Alzheimer's dementia. A new premise evolving from genome, transcriptome, and proteome data is that there might be at least two major phases of immune activation that accompany the pathological trajectory in Alzheimer's disease. Though activation on a chronic scale will certainly lead to neurodegeneration, this emerging knowledge of a potential beneficial aspect of immune activation allows us to form holistic insights into when, where, and how much immune system activity would need to be tuned to impact the Alzheimer's neurodegenerative cascade. Even with the trove of recently emerging -omics data from patients and preclinical models, how microglial phenotypes are functionally related to the transition of a healthy aging brain towards progressive degenerative state remains unknown. A deeper understanding of the synergism between microglial functional states and brain organ health could help us discover newer interventions and therapies that enable us to address the current paucity of disease-modifying therapies in Alzheimer's disease.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
15
|
Neshan M, Malakouti SK, Kamalzadeh L, Makvand M, Campbell A, Ahangari G. Alterations in T-Cell Transcription Factors and Cytokine Gene Expression in Late-Onset Alzheimer's Disease. J Alzheimers Dis 2021; 85:645-665. [PMID: 34864659 DOI: 10.3233/jad-210480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Late-onset Alzheimer's disease (LOAD) is associated with many environmental and genetic factors. The effect of systemic inflammation on the pathogenesis of neurodegenerative diseases such as AD has been strongly suggested. T helper cells (Th) are one of the important components of the immune system and can easily infiltrate the brain in pathological conditions. The development of each Th-subset depends on the production of unique cytokines and their main regulator. OBJECTIVE This study aimed to compare the mRNA levels of Th-related genes derived from peripheral blood mononuclear cells of LOAD patients with control. Also, the identification of the most important Th1/Th2 genes and downstream pathways that may be involved in the pathogenesis of AD was followed by computational approaches. METHODS This study invloved 30 patients with LOAD and 30 non-demented controls. The relative expression of T-cell cytokines (IFN-γ, TNF-α, IL-4, and IL-5) and transcription factors (T-bet and GATA-3) were assessed using real-time PCR. Additionally, protein-protein interaction (PPI) was investigated by gene network construction. RESULTS A significant decrease at T-bet, IFN-γ, TNF-α, and GATA-3 mRNA levels was detected in the LOAD group, compared to the controls. However, there was no significant difference in IL-4 or IL-5 mRNA levels. Network analysis revealed a list of the highly connected protein (hubs) related to mitogen-activated protein kinase (MAPK) signaling and Th17 cell differentiation pathways. CONCLUSION The findings point to a molecular dysregulation in Th-related genes, which can promising in the early diagnosis or targeted interventions of AD. Furthermore, the PPI analysis showed that upstream off-target stimulation may involve MAPK cascade activation and Th17 axis induction.
Collapse
Affiliation(s)
- Masoud Neshan
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Kazem Malakouti
- Mental Health Research Center, Tehran Institute of Psychiatry-School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Kamalzadeh
- Mental Health Research Center, Tehran Institute of Psychiatry-School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Makvand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Ghasem Ahangari
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
16
|
Increased plasma brain-derived neurotrophic factor (BDNF) as a potential biomarker for and compensatory mechanism in mild cognitive impairment: a case-control study. Aging (Albany NY) 2021; 13:22666-22689. [PMID: 34607976 PMCID: PMC8544315 DOI: 10.18632/aging.203598] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022]
Abstract
Background: Previous meta-analyses examining the continuum of Alzheimer’s disease (AD) concluded significantly decreased peripheral brain-derived neurotrophic factor (BDNF) in AD. However, across different meta-analyses, there remain inconsistent findings on peripheral BDNF levels in individuals with mild cognitive impairment (MCI). This issue has been attributed to the highly heterogenous clinical and laboratory factors. Thus, BDNF’s level, discriminative accuracy for identifying all-cause MCI and its subtypes, and its associations with other biomarkers and neurocognitive domains, remain largely unknown. Methods: To address this heterogeneity, we compared a healthy control cohort (n=56, 45 female) to an MCI cohort (n=40, 28 female), to determine whether plasma BDNF, hs-CRP, and DHEA-S can differentiate healthy from MCI individuals, including two MCI subtypes (amnestic [aMCI] and non-amnestic [non-aMCI]). The associations between BDNF with other biomarkers and neurocognitive tests were examined. Adults with cerebral palsy were included as sensitivity analyses. Results: Compared to healthy controls, BDNF was significantly higher in all-cause MCI, aMCI, and non-aMCI. Furthermore, BDNF had good (AUC=0.84, 95% CI=0.74 to 0.95, p<0.001) and excellent discriminative accuracies (AUC=0.92, 95% CI=0.84 to 1.00, p<0.001) for all-cause MCI and non-amnestic MCI, respectively. BDNF was significantly and positively associated with plasma hs-CRP (β=0.26, 95% CI=0.02 to 0.50, p=0.038), despite attenuated association upon controlling for BMI (β=0.15, 95% CI=-0.08 to 0.38, p=0.186). Multiple inverse associations between BDNF and detailed neurocognitive tests were also detected. Conclusions: These findings suggest BDNF is increased as a compensatory mechanism in preclinical dementia, supporting the neurotrophic and partially the inflammatory hypotheses of cognitive impairment.
Collapse
|
17
|
Kern DM, Lovestone S, Cepeda MS. Treatment with TNF-α inhibitors versus methotrexate and the association with dementia and Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12163. [PMID: 34584936 PMCID: PMC8450793 DOI: 10.1002/trc2.12163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Peripheral inhibition of tumor necrosis factor (TNF)-α, outside of the central nervous system, may result in clinical improvement of Alzheimer's disease (AD) outcomes. TNF-α inhibitors (TNFIs) are effective treatments for various autoimmune conditions and may be effective for preventing and/or treating AD. The objective of this study was to compare the risk of dementia and AD in patients initiating methotrexate versus those initiating TNFIs. METHODS Insurance claims data from databases of commercially insured and Medicare-eligible patients were used to estimate the risk of dementia and AD within patients with rheumatoid arthritis (RA) initiating a TNFI versus initiation of methotrexate. A sensitivity analysis included all patients without the RA diagnosis requirement. The at-risk period spanned from the index date until a diagnosis of the outcome, loss-to-follow-up, or receipt of the comparator drug. Patients were matched 1-to-1 using propensity scores. A Cox proportional hazards model was used to estimate the hazard ratio (HR). Negative controls were used to calibrate the results. RESULTS A total of 11,092 new TNFI patients and 44,023 new methotrexate patients were identified, and 8925 from each group were matched. The outcome of dementia occurred in 1.4% of patients in both groups. The calibrated results from the Cox regression found no difference between the two groups (commercially insured database: calibrated HR = 0.69, 95% confidence interval = 0.45 to 1.05; Medicare-only database: 1.14, 0.66 to 1.96). Results were similar in all sensitivity analyses: outcome of AD and including patients without RA. DISCUSSION No significant difference for the risk of dementia or AD was seen between patients initiating a TNFI versus methotrexate. Although this study cannot conclude whether use of TNFIs is protective against dementia and AD compared with receiving no treatment, there was no evidence that it is more protective than the active comparator methotrexate.
Collapse
Affiliation(s)
- David M. Kern
- Janssen Research & DevelopmentLLCTitusvilleNew JerseyUSA
| | - Simon Lovestone
- Janssen Research & DevelopmentNeuroscienceBeerse, TurnhoutsewegBelgium
| | | |
Collapse
|
18
|
Abstract
Amyloidosis constitutes a large spectrum of diseases characterized by an extracellular deposition of a fibrillar aggregate, generating insoluble and toxic amasses that may be deposited in tissues in bundles with an abnormal cross-β-sheet conformation, known as amyloid. Amyloid may lead to a cell damage and an impairment of organ function. Several different proteins are recognized as able to produce amyloid fibrils with a different tissue tropism related to the molecular structure. The deposition of amyloid may occur as a consequence of the presence of an abnormal protein, caused by high plasma levels of a normal protein, or as a result of the aging process along with some environmental factors. Although amyloidosis is rare, amyloid deposits play a role in several conditions as degenerative diseases. Thus, the development of antiamyloid curative treatments may be a rational approach to treat neurodegenerative conditions like Alzheimer's disease in the future. Nowadays, novel treatment options are currently refined through controlled trials, as new drug targets and different therapeutic approaches have been identified and validated through modern advances in basic research. Fibril formation stabilizers, proteasome inhibitors, and immunotherapy revealed promising results in improving the outcomes of patients with systemic amyloidosis, and these novel algorithms will be effectively combined with current treatments based on chemotherapeutic regimens. The aim of this review is to provide an update on diagnosis and treatment for systemic amyloidosis.
Collapse
|
19
|
Kim H, Chung JY. Pathobiolgy and Management of Alzheimer's Disease. Chonnam Med J 2021; 57:108-117. [PMID: 34123738 PMCID: PMC8167446 DOI: 10.4068/cmj.2021.57.2.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/02/2023] Open
Abstract
Amyloid and tau protein abnormalities have been identified as the main causes of Alzheimer's disease but exact mechanisms remain to be revealed. Especially, amyloid beta and tau protein coupling and neuroinflammatory and neurovascular contributions to Alzheimer disease are quite mysterious. Many animal models and basic biological research are trying to solve these puzzles. Known as aging processes, autophagy, mitochondrial degeneration with generation of reactive oxygen species, and age-related epigenetic modifications are also known to be associated with development of Alzheimer's disease. Environmental factors such as bacterial and viral infections, heavy metal ions, diet, sleep, stress, and gut microbiota are also risk factors of Alzheimer's disease. Future development of preventive and therapeutic modalities may be dependent on the pathobiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Hoowon Kim
- Department of Neurology, Chosun University Hospital, Gwangju, Korea
| | - Ji Yeon Chung
- Department of Neurology, Chosun University Hospital, Gwangju, Korea
| |
Collapse
|
20
|
Huynh PK, Setty A, Phan H, Le TQ. Probabilistic domain-knowledge modeling of disorder pathogenesis for dynamics forecasting of acute onset. Artif Intell Med 2021; 115:102056. [PMID: 34001316 PMCID: PMC8493977 DOI: 10.1016/j.artmed.2021.102056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022]
Abstract
Disease pathogenesis, a type of domain knowledge about biological mechanisms leading to diseases, has not been adequately encoded in machine-learning-based medical diagnostic models because of the inter-patient variabilities and complex dependencies of the underlying pathogenetic mechanisms. We propose 1) a novel pathogenesis probabilistic graphical model (PPGM) to quantify the dynamics underpinning patient-specific data and pathogenetic domain knowledge, 2) a Bayesian-based inference paradigm to answer the medical queries and forecast acute onsets. The PPGM model consists of two components: a Bayesian network of patient attributes and a temporal model of pathogenetic mechanisms. The model structure was reconstructed from expert knowledge elicitation, and its parameters were estimated using Variational Expectation-Maximization algorithms. We benchmarked our model with two well-established hidden Markov models (HMMs) - Input-output HMM (IO-HMM) and Switching Auto-Regressive HMM (SAR-HMM) - to evaluate the computational costs, forecasting performance, and execution time. Two case studies on Obstructive Sleep Apnea (OSA) and Paroxysmal Atrial Fibrillation (PAF) were used to validate the model. While the performance of the parameter learning step was equivalent to those of IO-HMM and SAR-HMM models, our model forecasting ability was outperforming those two models. The merits of the PPGM model are its representation capability to capture the dynamics of pathogenesis and perform medical inferences and its interpretability for physicians. The model has been used to perform medical queries and forecast the acute onset of OSA and PAF. Additional applications of the model include prognostic healthcare and preventive personalized treatments.
Collapse
Affiliation(s)
- Phat K Huynh
- Department of Industrial and Manufacturing Engineering, North Dakota State University at Fargo, ND, USA
| | | | - Hao Phan
- Pham Ngoc Thach University of Medicine at Ho Chi Minh City, Viet Nam
| | - Trung Q Le
- Department of Industrial and Manufacturing Engineering, North Dakota State University at Fargo, ND, USA; Department of Biomedical Engineering, North Dakota State University at Fargo, ND, USA.
| |
Collapse
|
21
|
Koçancı FG. Role of Fatty Acid Chemical Structures on Underlying Mechanisms of Neurodegenerative Diseases and Gut Microbiota. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Gonca Koçancı
- Vocational High School of Health Services Department of Medical Laboratory Techniques Alanya Alaaddin Keykubat University Alanya/Antalya 07425 Turkey
| |
Collapse
|
22
|
Sabbatinelli J, Ramini D, Giuliani A, Recchioni R, Spazzafumo L, Olivieri F. Connecting vascular aging and frailty in Alzheimer's disease. Mech Ageing Dev 2021; 195:111444. [PMID: 33539904 DOI: 10.1016/j.mad.2021.111444] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Aging plays an important role in the etiology of the most common age-related diseases (ARDs), including Alzheimer's disease (AD). The increasing number of AD patients and the lack of disease-modifying drugs warranted intensive research to tackle the pathophysiological mechanisms underpinning AD development. Vascular aging/dysfunction is a common feature of almost all ARDs, including cardiovascular (CV) diseases, diabetes and AD. To this regard, interventions aimed at modifying CV outcomes are under extensive investigation for their pleiotropic role in ameliorating and slowing down cognitive impairment in middle-life and elderly individuals. Evidence from observational and clinical studies confirm the notion that the earlier the interventions are conducted, the most favorable are the effects on cognitive function. Therefore, epidemiological research should focus on the early detection of deviations from a healthy cognitive aging trajectory, through the stratification of adult individuals according to the rate of aging. Here, we review the interplay between vascular and cognitive dysfunctions associated with aging, to disentangle the complex mechanisms underpinning the development and progression of neurodegenerative disorders, with a specific focus on AD.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Liana Spazzafumo
- Epidemiologic Observatory, Regional Health Agency, Regione Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
23
|
Advances in Drug Therapy for Alzheimer's Disease. Curr Med Sci 2021; 40:999-1008. [PMID: 33428127 DOI: 10.1007/s11596-020-2281-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/03/2020] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that mainly causes dementia. It is a serious threat to the health of the global elderly population. Considerable money and effort has been invested in the development of drug therapy for AD worldwide. Many drug therapies are currently under development or in clinical trials, based on two known mechanisms of AD, namely, Aβ toxicity and the abnormal Tau hyperphosphorylation. Numerous drugs are also being developed for other AD associated mechanisms such as neuroinflammation, neurotransmitter imbalance, oxidative damage and mitochondrial dysfunction, neuron loss and degeneration. Even so, the number of drugs that can successfully improve symptoms or delay the progression of the disease remains very limited. However, multi-drug combinations may provide a new avenue for drug therapy for AD. In addition, early diagnosis of AD and timely initiation of treatment may allow drugs that act on the early pathological processes of AD to help improve the symptoms and prevent the progression of the condition.
Collapse
|
24
|
Singh S, Dhanawat M, Gupta S, Kumar D, Kakkar S, Nair A, Verma I, Sharma P. Naturally Inspired Pyrimidines Analogues for Alzheimer's Disease. Curr Neuropharmacol 2021; 19:136-151. [PMID: 33176653 PMCID: PMC8033975 DOI: 10.2174/1570159x18666201111110136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is a multifarious and developing neurodegenerative disorder. The treatment of AD is still a challenge and availability of drug therapy on the basis of symptoms is not up to the mark. In the context of existence, which is getting worse for the human brain, it is necessary to take care of all critical measures. The disease is caused due to multidirectional pathology of the body, which demands the multi-target-directed ligand (MTDL) approach. This gives hope for new drugs for AD, summarized here in with the pyrimidine based natural product inspired molecule as a lead. The review is sufficient in providing a list of chemical ingredients of the plant to cure AD and screen them against various potential targets of AD. The synthesis of a highly functionalized scaffold in one step in a single pot without isolating the intermediate is a challenging task. In few examples, we have highlighted the importance of this kind of reaction, generally known as multi-component reaction. Multi-component is a widely accepted technique by the drug discovery people due to its high atom economy. It reduces multi-step process to a one-step process, therefore the compounds library can be made in minimum time and cost. This review has highlighted the importance of multicomponent reactions by giving the example of active scaffolds of pyrimidine/fused pyrimidines. This would bring importance to the fast as well as smart synthesis of bio-relevant molecules.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Pharmaceutical Sciences, Somany College of Pharmacy, Rewari, Haryana, India
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Meenakshi Dhanawat
- Department of Pharmaceutical Sciences, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, Indra Gandhi University, Mirpur, Rewari Haryana, India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Anroop Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Inderjeet Verma
- Department of Pharmaceutical Sciences, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| | - Prerna Sharma
- Department of Pharmaceutical Sciences, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| |
Collapse
|
25
|
Keskin M, Kaya G, Guragac Dereli FT, Belwal T. Berberine. NATURALLY OCCURRING CHEMICALS AGAINST ALZHEIMER'S DISEASE 2021:147-154. [DOI: 10.1016/b978-0-12-819212-2.00012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Fluid Candidate Biomarkers for Alzheimer's Disease: A Precision Medicine Approach. J Pers Med 2020; 10:jpm10040221. [PMID: 33187336 PMCID: PMC7712586 DOI: 10.3390/jpm10040221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
A plethora of dynamic pathophysiological mechanisms underpins highly heterogeneous phenotypes in the field of dementia, particularly in Alzheimer's disease (AD). In such a faceted scenario, a biomarker-guided approach, through the implementation of specific fluid biomarkers individually reflecting distinct molecular pathways in the brain, may help establish a proper clinical diagnosis, even in its preclinical stages. Recently, ultrasensitive assays may detect different neurodegenerative mechanisms in blood earlier. ß-amyloid (Aß) peptides, phosphorylated-tau (p-tau), and neurofilament light chain (NFL) measured in blood are gaining momentum as candidate biomarkers for AD. P-tau is currently the more convincing plasma biomarker for the diagnostic workup of AD. The clinical role of plasma Aβ peptides should be better elucidated with further studies that also compare the accuracy of the different ultrasensitive techniques. Blood NFL is promising as a proxy of neurodegeneration process tout court. Protein misfolding amplification assays can accurately detect α-synuclein in cerebrospinal fluid (CSF), thus representing advancement in the pathologic stratification of AD. In CSF, neurogranin and YKL-40 are further candidate biomarkers tracking synaptic disruption and neuroinflammation, which are additional key pathophysiological pathways related to AD genesis. Advanced statistical analysis using clinical scores and biomarker data to bring together individuals with AD from large heterogeneous cohorts into consistent clusters may promote the discovery of pathophysiological causes and detection of tailored treatments.
Collapse
|
27
|
Nakano-Kobayashi A, Fukumoto A, Morizane A, Nguyen DT, Le TM, Hashida K, Hosoya T, Takahashi R, Takahashi J, Hori O, Hagiwara M. Therapeutics potentiating microglial p21-Nrf2 axis can rescue neurodegeneration caused by neuroinflammation. SCIENCE ADVANCES 2020; 6:6/46/eabc1428. [PMID: 33188020 PMCID: PMC7673758 DOI: 10.1126/sciadv.abc1428] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/01/2020] [Indexed: 05/13/2023]
Abstract
Neurodegenerative disorders are caused by progressive neuronal loss, and there is no complete treatment available yet. Neuroinflammation is a common feature across neurodegenerative disorders and implicated in the progression of neurodegeneration. Dysregulated activation of microglia causes neuroinflammation and has been highlighted as a treatment target in therapeutic strategies. Here, we identified novel therapeutic candidate ALGERNON2 (altered generation of neurons 2) and demonstrate that ALGERNON2 suppressed the production of proinflammatory cytokines and rescued neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease model. ALGERNON2 stabilized cyclinD1/p21 complex, leading to up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2), which contributes to antioxidative and anti-inflammatory responses. Notably, ALGERNON2 enhanced neuronal survival in other neuroinflammatory conditions such as the transplantation of induced pluripotent stem cell-derived dopaminergic neurons into murine brains. In conclusion, we present that the microglial potentiation of the p21-Nrf2 pathway can contribute to neuronal survival and provide novel therapeutic potential for neuroinflammation-triggered neurodegeneration.
Collapse
Affiliation(s)
- A Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - A Fukumoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - A Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - D T Nguyen
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - T M Le
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - K Hashida
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - T Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - R Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - O Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - M Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
28
|
McLarnon JG. Consideration of a Pharmacological Combinatorial Approach to Inhibit Chronic Inflammation in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:1007-1017. [PMID: 31692444 DOI: 10.2174/1567205016666191106095038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023]
Abstract
A combinatorial cocktail approach is suggested as a rationale intervention to attenuate chronic inflammation and confer neuroprotection in Alzheimer's disease (AD). The requirement for an assemblage of pharmacological compounds follows from the host of pro-inflammatory pathways and mechanisms present in activated microglia in the disease process. This article suggests a starting point using four compounds which present some differential in anti-inflammatory targets and actions but a commonality in showing a finite permeability through Blood-brain Barrier (BBB). A basis for firstchoice compounds demonstrated neuroprotection in animal models (thalidomide and minocycline), clinical trial data showing some slowing in the progression of pathology in AD brain (ibuprofen) and indirect evidence for putative efficacy in blocking oxidative damage and chemotactic response mediated by activated microglia (dapsone). It is emphasized that a number of candidate compounds, other than ones suggested here, could be considered as components of the cocktail approach and would be expected to be examined in subsequent work. In this case, systematic testing in AD animal models is required to rigorously examine the efficacy of first-choice compounds and replace ones showing weaker effects. This protocol represents a practical approach to optimize the reduction of microglial-mediated chronic inflammation in AD pathology. Subsequent work would incorporate the anti-inflammatory cocktail delivery as an adjunctive treatment with ones independent of inflammation as an overall preventive strategy to slow the progression of AD.
Collapse
Affiliation(s)
- James G McLarnon
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
| |
Collapse
|
29
|
Sadeghmousavi S, Eskian M, Rahmani F, Rezaei N. The effect of insomnia on development of Alzheimer's disease. J Neuroinflammation 2020; 17:289. [PMID: 33023629 PMCID: PMC7542374 DOI: 10.1186/s12974-020-01960-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disorder characterized by memory deficits especially forgetting recent information, recall ability impairment, and loss of time tracking, problem-solving, language, and recognition difficulties. AD is also a globally important health issue but despite all scientific efforts, the treatment of AD is still a challenge. Sleep has important roles in learning and memory consolidation. Studies have shown that sleep deprivation (SD) and insomnia are associated with the pathogenesis of Alzheimer's disease and may have an impact on the symptoms and development. Thus, sleep disorders have decisive effects on AD; this association deserves more attention in research, diagnostics, and treatment, and knowing this relation also can help to prevent AD through screening and proper management of sleep disorders. This study aimed to show the potential role of SD and insomnia in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nima Rezaei
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Kushairi N, Tarmizi NAKA, Phan CW, Macreadie I, Sabaratnam V, Naidu M, David P. Modulation of neuroinflammatory pathways by medicinal mushrooms, with particular relevance to Alzheimer's disease. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Lim HS, Kim Y, Kim YJ, Sohn E, Kim JH, Jeong SJ. The Effects of Crinum asiaticum var. japonicum Baker Seeds on Neuroprotection and Antineuroinflammation in Neuronal Cell Lines. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20965465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Crinum asiaticum var. japonicum Baker is a Korean herbal medicine that is traditionally prescribed for reducing fever and inflammation. In the present study, we investigated if the ethanol extract of C. asiaticum seeds (ECAS) influences the hallmarks of Alzheimer’s disease (AD) pathogenesis. ECAS markedly inhibited the activity of acetylcholinesterase (AChE). Concurrent treatment with hydrogen peroxide (H2O2) and ECAS significantly prevented the neuronal cell death by regulating phosphorylation of cyclic adenosine monophosphate response element-binding protein and p38 mitogen-activated protein kinase. ECAS revealed antineuroinflammatory effects by inhibiting nitric oxide production and suppressing inducible nitric oxide expression in lipopolysaccharide-stimulated BV-2 microglia. Furthermore, the high-performance liquid chromatographic analysis determined lycorine as a standard compound of ECAS. Our data suggest that ECAS has inhibitory effects on AD pathogenesis such as AChE activation, neuronal damage, and neuroinflammation.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Yoonju Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Eunjin Sohn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
32
|
Cisbani G, Koppel A, Knezevic D, Suridjan I, Mizrahi R, Bazinet RP. Peripheral cytokine and fatty acid associations with neuroinflammation in AD and aMCI patients: An exploratory study. Brain Behav Immun 2020; 87:679-688. [PMID: 32135194 DOI: 10.1016/j.bbi.2020.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation is thought to be important in the progression of Alzheimer's disease (AD). To evaluate cerebral inflammation radioligands that target TSPO, a translocator protein strongly expressed in microglia and macrophages during inflammation, can be used in conjunction with positron emission tomography (PET) imaging. In AD patients, neuroinflammation is up-regulated compared to both healthy volunteers as well as to subjects with amnestic Mild Cognitive Impairment. Peripheral biomarkers, such as serum cytokines and total fatty acids (FAs), can also be indicative of the inflammatory state of subjects with neurodegenerative disorders. To understand whether peripheral biomarkers are predictive of neuroinflammation we conducted a secondary exploratory analysis of two TSPO imaging studies conducted in subjects with AD, aMCI and aged matched healthy volunteers. We examined the association between candidate peripheral biomarkers (including amyloid beta, cytokines and serum total fatty acids) with brain TSPO levels. Our results showed that serum IL-6 and IL-10 are higher in AD compared to the aMCI and healthy volunteers while levels of some fatty acids are modulated during the disease. A limited number of associations were observed between region-specific inflammation and fatty acids in aMCI patients, and between amyloid beta 42 and brain inflammation in AD, however no associations were present with systemic cytokines. Our study suggests that while TSPO binding and systemic IL-6 and IL-10 were elevated in AD, serum amyloid beta, cytokines and fatty acids were generally not predictive of the disease nor correlated with neuroinflammation.
Collapse
Affiliation(s)
- Giulia Cisbani
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Canada
| | - Alex Koppel
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Dunja Knezevic
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ivonne Suridjan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|
33
|
Future avenues for Alzheimer's disease detection and therapy: liquid biopsy, intracellular signaling modulation, systems pharmacology drug discovery. Neuropharmacology 2020; 185:108081. [PMID: 32407924 DOI: 10.1016/j.neuropharm.2020.108081] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
When Alzheimer's disease (AD) disease-modifying therapies will be available, global healthcare systems will be challenged by a large-scale demand for clinical and biological screening. Validation and qualification of globally accessible, minimally-invasive, and time-, cost-saving blood-based biomarkers need to be advanced. Novel pathophysiological mechanisms (and related candidate biomarkers) - including neuroinflammation pathways (TREM2 and YKL-40), axonal degeneration (neurofilament light chain protein), synaptic dysfunction (neurogranin, synaptotagmin, α-synuclein, and SNAP-25) - may be integrated into an expanding pathophysiological and biomarker matrix and, ultimately, integrated into a comprehensive blood-based liquid biopsy, aligned with the evolving ATN + classification system and the precision medicine paradigm. Liquid biopsy-based diagnostic and therapeutic algorithms are increasingly employed in Oncology disease-modifying therapies and medical practice, showing an enormous potential for AD and other brain diseases as well. For AD and other neurodegenerative diseases, newly identified aberrant molecular pathways have been identified as suitable therapeutic targets and are currently investigated by academia/industry-led R&D programs, including the nerve-growth factor pathway in basal forebrain cholinergic neurons, the sigma1 receptor, and the GTPases of the Rho family. Evidence for a clinical long-term effect on cognitive function and brain health span of cholinergic compounds, drug candidates for repositioning programs, and non-pharmacological multidomain interventions (nutrition, cognitive training, and physical activity) is developing as well. Ultimately, novel pharmacological paradigms, such as quantitative systems pharmacology-based integrative/explorative approaches, are gaining momentum to optimize drug discovery and accomplish effective pathway-based strategies for precision medicine. This article is part of the special issue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
|
34
|
Hampel H, Caraci F, Cuello AC, Caruso G, Nisticò R, Corbo M, Baldacci F, Toschi N, Garaci F, Chiesa PA, Verdooner SR, Akman-Anderson L, Hernández F, Ávila J, Emanuele E, Valenzuela PL, Lucía A, Watling M, Imbimbo BP, Vergallo A, Lista S. A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer's Disease. Front Immunol 2020; 11:456. [PMID: 32296418 PMCID: PMC7137904 DOI: 10.3389/fimmu.2020.00456] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation commences decades before Alzheimer's disease (AD) clinical onset and represents one of the earliest pathomechanistic alterations throughout the AD continuum. Large-scale genome-wide association studies point out several genetic variants—TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, and HLA-DRB5-HLA-DRB1—potentially linked to neuroinflammation. Most of these genes are involved in proinflammatory intracellular signaling, cytokines/interleukins/cell turnover, synaptic activity, lipid metabolism, and vesicle trafficking. Proteomic studies indicate that a plethora of interconnected aberrant molecular pathways, set off and perpetuated by TNF-α, TGF-β, IL-1β, and the receptor protein TREM2, are involved in neuroinflammation. Microglia and astrocytes are key cellular drivers and regulators of neuroinflammation. Under physiological conditions, they are important for neurotransmission and synaptic homeostasis. In AD, there is a turning point throughout its pathophysiological evolution where glial cells sustain an overexpressed inflammatory response that synergizes with amyloid-β and tau accumulation, and drives synaptotoxicity and neurodegeneration in a self-reinforcing manner. Despite a strong therapeutic rationale, previous clinical trials investigating compounds with anti-inflammatory properties, including non-steroidal anti-inflammatory drugs (NSAIDs), did not achieve primary efficacy endpoints. It is conceivable that study design issues, including the lack of diagnostic accuracy and biomarkers for target population identification and proof of mechanism, may partially explain the negative outcomes. However, a recent meta-analysis indicates a potential biological effect of NSAIDs. In this regard, candidate fluid biomarkers of neuroinflammation are under analytical/clinical validation, i.e., TREM2, IL-1β, MCP-1, IL-6, TNF-α receptor complexes, TGF-β, and YKL-40. PET radio-ligands are investigated to accomplish in vivo and longitudinal regional exploration of neuroinflammation. Biomarkers tracking different molecular pathways (body fluid matrixes) along with brain neuroinflammatory endophenotypes (neuroimaging markers), can untangle temporal–spatial dynamics between neuroinflammation and other AD pathophysiological mechanisms. Robust biomarker–drug codevelopment pipelines are expected to enrich large-scale clinical trials testing new-generation compounds active, directly or indirectly, on neuroinflammatory targets and displaying putative disease-modifying effects: novel NSAIDs, AL002 (anti-TREM2 antibody), anti-Aβ protofibrils (BAN2401), and AL003 (anti-CD33 antibody). As a next step, taking advantage of breakthrough and multimodal techniques coupled with a systems biology approach is the path to pursue for developing individualized therapeutic strategies targeting neuroinflammation under the framework of precision medicine.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | - Robert Nisticò
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.,School of Pharmacy, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Filippo Baldacci
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Department of Radiology, "Athinoula A. Martinos" Center for Biomedical Imaging, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Patrizia A Chiesa
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | | | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | | | - Alejandro Lucía
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Research Institute of the Hospital 12 de Octubre ("imas"), Madrid, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | - Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Parma, Italy
| | - Andrea Vergallo
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| |
Collapse
|
35
|
Barton SM, Janve VA, McClure R, Anderson A, Matsubara JA, Gore JC, Pham W. Lipopolysaccharide Induced Opening of the Blood Brain Barrier on Aging 5XFAD Mouse Model. J Alzheimers Dis 2020; 67:503-513. [PMID: 30584141 DOI: 10.3233/jad-180755] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of neurotherapeutics for many neurodegenerative diseases has largely been hindered by limited pharmacologic penetration across the blood-brain barrier (BBB). Previous attempts to target and clear amyloid-β (Aβ) plaques, a key mediator of neurodegenerative changes in Alzheimer's disease (AD), have had limited clinical success due to low bioavailability in the brain because of the BBB. Here we test the effects of inducing an inflammatory response to disrupt the BBB in the 5XFAD transgenic mouse model of AD. Lipopolysaccharide (LPS), a bacterial endotoxin recognized by the innate immune system, was injected at varying doses. 24 hours later, mice were injected with either thioflavin S, a fluorescent Aβ-binding small molecule or 30 nm superparamagnetic iron oxide (SPIO) nanoparticles, both of which are unable to penetrate the BBB under normal physiologic conditions. Our results showed that when pretreated with 3.0 mg/kg LPS, thioflavin S can be found in the brain bound to Aβ plaques in aged 5XFAD transgenic mice. Following the same LPS pretreatment, SPIO nanoparticles could also be found in the brain. However, when done on wild type or young 5XFAD mice, limited SPIO was detected. Our results suggest that the BBB in aged 5XFAD mouse model is susceptible to increased permeability mediated by LPS, allowing for improved delivery of the small molecule thioflavin S to target Aβ plaques and SPIO nanoparticles, which are significantly larger than antibodies used in clinical trials for immunotherapy of AD. Although this approach demonstrated efficacy for improved delivery to the brain, LPS treatment resulted in significant weight loss even at low doses, resulting from the induced inflammatory response. These findings suggest inducing inflammation can improve delivery of small and large materials to the brain for improved therapeutic or diagnostic efficacy. However, this approach must be balanced with the risks of systemic inflammation.
Collapse
Affiliation(s)
- Shawn M Barton
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Vaibhav A Janve
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard McClure
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Adam Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Nashville, TN, USA.,Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, TN, USA
| |
Collapse
|
36
|
Solis E, Hascup KN, Hascup ER. Alzheimer's Disease: The Link Between Amyloid-β and Neurovascular Dysfunction. J Alzheimers Dis 2020; 76:1179-1198. [PMID: 32597813 PMCID: PMC7483596 DOI: 10.3233/jad-200473] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While prevailing evidence supports that the amyloid cascade hypothesis is a key component of Alzheimer's disease (AD) pathology, many recent studies indicate that the vascular system is also a major contributor to disease progression. Vascular dysfunction and reduced cerebral blood flow (CBF) occur prior to the accumulation and aggregation of amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles. Although research has predominantly focused on the cellular processes involved with Aβ-mediated neurodegeneration, effects of Aβ on CBF and neurovascular coupling are becoming more evident. This review will describe AD vascular disturbances as they relate to Aβ, including chronic cerebral hypoperfusion, hypertension, altered neurovascular coupling, and deterioration of the blood-brain barrier. In addition, we will describe recent findings about the relationship between these vascular defects and Aβ accumulation with emphasis on in vivo studies utilizing rodent AD models.
Collapse
Affiliation(s)
- Ernesto Solis
- Department of Neurology, Neuroscience Institute, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N. Hascup
- Department of Neurology, Neuroscience Institute, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Department of Neurology, Neuroscience Institute, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
37
|
Stoyanov D. Biological Signatures of Disease in Neuro-Psychiatry as Inter-Theoretical Reduction. Curr Top Med Chem 2020; 20:746. [PMID: 32442080 DOI: 10.2174/156802662009200331084634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol 2019; 183:101694. [PMID: 31542363 PMCID: PMC7323939 DOI: 10.1016/j.pneurobio.2019.101694] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are small bilipid layer-enclosed extracellular vesicles that can be found in tissues and biological fluids. As a key cell-to-cell and distant communication mediator, exosomes are involved in various central nervous system (CNS) diseases, potentially through transferring their contents such as proteins, lipids and nucleic acids to the target cells. Exosomal miRNAs, which are small non-coding RNAs in the exosomes, are known to be more stable than free miRNAs and therefore have lasting effects on disease-related gene expressions. There are distinct profiles of exosomal miRNAs in different types of CNS diseases even before the onset of irreversible neurological damages, indicating that exosomal miRNAs within tissues and biological fluids could serve as promising biomarkers. Emerging evidence has also demonstrated the pathological effects of several exosomal miRNAs in CNS diseases via specific modulation of disease-related factors. Moreover, exosomes carry therapeutically beneficial miRNAs across the blood-brain-barrier, which can be exploited as a powerful drug delivery tool to help alleviating multiple CNS diseases. In this review, we summarize the recent progress made in understanding the biological roles of exosomal miRNAs as potential diagnostic biomarkers, pathological regulators, and therapeutic targets/drugs for CNS diseases. A comprehensive discussion of the main concerns and challenges for the applications of exosomal miRNAs in the clinical setting is also provided.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Han Zhang
- Second Military Medical University, Shanghai 200433, China
| | - Hongfang Lu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
39
|
Golde TE. Harnessing Immunoproteostasis to Treat Neurodegenerative Disorders. Neuron 2019; 101:1003-1015. [PMID: 30897353 DOI: 10.1016/j.neuron.2019.02.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Immunoproteostasis is a term used to reflect interactions between the immune system and the proteinopathies that are presumptive "triggers" of many neurodegenerative disorders. The study of immunoproteostasis is bolstered by several observations. Mutations or rare variants in genes expressed in microglial cells, known to regulate immune functions, or both can cause, or alter risk for, various neurodegenerative disorders. Additionally, genetic association studies identify numerous loci harboring genes that encode proteins of known immune function that alter risk of developing Alzheimer's disease (AD) and other neurodegenerative proteinopathies. Further, preclinical studies reveal beneficial effects and liabilities of manipulating immune pathways in various neurodegenerative disease models. Although there are concerns that manipulation of the immune system may cause more harm than good, there is considerable interest in developing immune modulatory therapies for neurodegenerative disorders. Herein, I highlight the promise and challenges of harnessing immunoproteostasis to treat neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Todd E Golde
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, University of Florida, Gainesville, FL 32607, USA.
| |
Collapse
|
40
|
Pourhanifeh MH, Shafabakhsh R, Reiter RJ, Asemi Z. The Effect of Resveratrol on Neurodegenerative Disorders: Possible Protective Actions Against Autophagy, Apoptosis, Inflammation and Oxidative Stress. Curr Pharm Des 2019; 25:2178-2191. [DOI: 10.2174/1381612825666190717110932] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of neurodegenerative disorders characterized by the loss of neuronal function is rapidly
increasing. The pathogenesis of the majority of these diseases is not entirely clear, but current evidence has
shown the possibility that autophagy, apoptosis, inflammation and oxidative stress are involved. The present
review summarizes the therapeutic effects of resveratrol on neurodegenerative disorders, based on the especially
molecular biology of these diseases. The PubMed, Cochrane, Web of Science and Scopus databases were
searched for studies published in English until March 30th, 2019 that contained data for the role of inflammation,
oxidative stress, angiogenesis and apoptosis in the neurodegenerative disorders. There are also studies documenting
the role of molecular processes in the progression of central nervous system diseases. Based on current evidence,
resveratrol has potential properties that may reduce cell damage due to inflammation. This polyphenol
affects cellular processes, including autophagy and the apoptosis cascade under stressful conditions. Current
evidence supports the beneficial effects of resveratrol on the therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad H. Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
41
|
Eden BD, Rice AJ, Lovett TD, Toner OM, Geissler EP, Bowman WE, Young SC. Microwave-assisted synthesis and in vitro stability of N-benzylamide non-steroidal anti-inflammatory drug conjugates for CNS delivery. Bioorg Med Chem Lett 2019; 29:1487-1491. [PMID: 30987893 DOI: 10.1016/j.bmcl.2019.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
Abstract
More effective delivery of non-steroidal anti-inflammatory drugs (NSAIDs) to the brain could treat the underlying inflammatory pathology of a range of CNS diseases and conditions. Use of a blood-brain barrier shuttle such as the N-benzylamide moiety, which has been largely unexplored for this purpose, could improve the brain bioavailabilities of NSAIDs. A series of novel N-benzylamide NSAID conjugates was synthesized via a three-step process with a microwave-assisted bimolecular nucleophilic substitution as the final step. We explored conditions to promote substitution over a competing elimination reaction, which was successfully suppressed with isopropyl alcohol solvent. All molecules exhibit physicochemical properties consistent with those of brain-penetrant molecules. Furthermore, they exhibit long (>48 h) half-lives in phosphate-buffered saline (PBS; pH 7.4) and short to moderate half-lives in human plasma. N-Benzylamide NSAID conjugates represent promising CNS drug discovery leads.
Collapse
Affiliation(s)
- Brandon D Eden
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Andrew J Rice
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Troy D Lovett
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Olivia M Toner
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Evan P Geissler
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - William E Bowman
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Sherri C Young
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States.
| |
Collapse
|
42
|
Yuan NN, Cai CZ, Wu MY, Su HX, Li M, Lu JH. Neuroprotective effects of berberine in animal models of Alzheimer's disease: a systematic review of pre-clinical studies. Altern Ther Health Med 2019; 19:109. [PMID: 31122236 PMCID: PMC6533761 DOI: 10.1186/s12906-019-2510-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
Background Berberine is an isoquinoline alkaloid extracted from various Berberis species which is widely used in East Asia for a wide range of symptoms. Recently, neuroprotective effects of berberine in Alzheimer’s disease (AD) animal models are being extensively reported. So far, no clinical trial has been carried out on the neuroprotective effects of berberine. However, a review of the experimental data is needed before choosing berberine as a candidate drug for clinical experiments. We conducted a systematic review on AD rodent models to analyze the drug effects with minimal selection bias. Methods Five online literature databases were searched to find publications reporting studies of the effect of berberine treatment on animal models of AD. Up to March 2018, 15 papers were identified to describe the efficacy of berberine. Results The included 15 articles met our inclusion criteria with different quality ranging from 3 to 5. We analyzed data extracted from full texts with regard to pharmacological effects and potential anti-Alzheimer’s properties. Our analysis revealed that in multiple memory defects animal models, berberine showed significant memory-improving activities with multiple mechanisms, such as anti-inflammation, anti-oxidative stress, cholinesterase (ChE) inhibition and anti-amyloid effects. Conclusion AD is likely to be a complex disease driven by multiple factors. Yet, many therapeutic strategies based on lowering β-amyloid have failed in clinical trials. This suggest that the threapy should not base on a single cause of Alzheimer’s disease but rather a number of different pathways that lead to the disease. Overall we think that berberine can be a promising multipotent agent to combat Alzheimer’s disease.
Collapse
|
43
|
Wadhawan A, Stiller JW, Potocki E, Okusaga O, Dagdag A, Lowry CA, Benros ME, Postolache TT. Traumatic Brain Injury and Suicidal Behavior: A Review. J Alzheimers Dis 2019; 68:1339-1370. [PMID: 30909230 DOI: 10.3233/jad-181055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Abhishek Wadhawan
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Saint Elizabeths Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - John W. Stiller
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Saint Elizabeths Hospital, Neurology Consultation Service, Washington, DC, USA
- Maryland State Athletic Commission, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Olaoluwa Okusaga
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Aline Dagdag
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland Medical Center, Baltimore, MD, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA
| | - Michael E. Benros
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Teodor T. Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| |
Collapse
|
44
|
Li C, Meng P, Zhang BZ, Kang H, Wen HL, Schluesener H, Cao ZW, Zhang ZY. Computer-aided identification of protein targets of four polyphenols in Alzheimer's disease (AD) and validation in a mouse AD model. J Biomed Res 2019; 33:101-112. [PMID: 30249814 PMCID: PMC6477175 DOI: 10.7555/jbr.32.20180021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Natural polyphenols are a large class of phytochemicals with neuroprotective effects. Four polyphenolic compounds: hesperidin, icariin, dihydromyricetin and baicalin were selected to evaluate their effects on Alzheimer’s disease (AD). We analyzed by an inverse docking procedure (INVDOCK) the potential protein targets of these polyphenols within the KEGG AD pathway. Consequently, their therapeutic effects were evaluated and compared in a transgenic APP/PS1 mouse model of AD. These polyphenols were docked to several targets, including APP, BACE, PSEN, IDE, CASP, calpain and TNF-α, suggesting potential in vivo activities. Five month old transgenic mice were treated with these polyphenols. Icariin and hesperidin restored behavioral deficits and ameliorated Aβ deposits in both the cortex and hippocampus while baicalin and dihydromyricetin showed no substantial effects. Our findings suggest that hesperidin and icariin could be considered potential therapeutic candidates of human AD.
Collapse
Affiliation(s)
- Chaoyun Li
- Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen D-72076, Germany
| | - Ping Meng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ben-Zheng Zhang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hong Kang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Han-Li Wen
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hermann Schluesener
- Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen D-72076, Germany
| | - Zhi-Wei Cao
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhi-Yuan Zhang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
45
|
Sun J, Martin JM, Vanderpoel V, Sumbria RK. The Promises and Challenges of Erythropoietin for Treatment of Alzheimer's Disease. Neuromolecular Med 2019; 21:12-24. [PMID: 30656553 DOI: 10.1007/s12017-019-08524-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the world, and intracellular neurofibrillary tangles and extracellular amyloid-beta protein deposits represent the major pathological hallmarks of the disease. Currently available treatments provide some symptomatic relief but fail to modify primary pathological processes that underlie the disease. Erythropoietin (EPO), a hematopoietic growth factor, acts primarily to stimulate erythroid cell production, and is clinically used to treat anemia. EPO has evolved as a therapeutic agent for neurodegeneration and has improved neurological outcomes and AD pathology in rodents. However, penetration of the blood-brain barrier (BBB) and negative hematopoietic effects are the two major challenges for the therapeutic development of EPO for chronic neurodegenerative diseases like AD. The transferrin receptors at the BBB, which are responsible for transporting transferrin-bound iron from the blood into the brain parenchyma, can be used to shuttle therapeutic molecules across the BBB. In this review, we discuss the role of EPO as a potential neurotherapeutic for AD, challenges associated with EPO development for AD, and targeting the BBB transferrin receptor for EPO brain delivery.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, CA, 91711, USA
| | - Jan Michelle Martin
- College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA
| | | | - Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, CA, 91711, USA. .,Department of Neurology, University of California, Irvine, CA, 92868, USA.
| |
Collapse
|
46
|
Chia Seed Does Not Improve Cognitive Impairment in SAMP8 Mice Fed with High Fat Diet. Nutrients 2018; 10:nu10081084. [PMID: 30110883 PMCID: PMC6115970 DOI: 10.3390/nu10081084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Chia seed is an ancient seed with the richest plant source of α-linolenic acid, which has been demonstrated to improve metabolic syndrome associated risk factors. Under high fat diet (HFD) condition, the senescence-accelerated mouse-prone 8 (SAMP8) mice demonstrated worsen Alzheimer’s disease (AD) related pathology compared to low fat diet fed SAMP8 mice. Objective: To explore whether chia seed supplementation might improve cognitive impairment under aging and metabolic stress via high fat diet (HFD) fed SAMP8 mice as a model. Design: SAMP8 mice and senescence-accelerated mouse-resistant 1 (SAMR1) were randomized into 4 groups, i.e., SAMR1 low fat diet group (SAMR1-LFD), SAMP8-HFD and SAMP8-HFD group supplemented with 10% chia seed (SAMP8-HFD+Chia). At the end of the intervention, cognitive function was measured via Morris water maze (MWM) test. Hippocampus and parietal cortex were dissected for further analysis to measure key markers involved AD pathology including Aβ, tau and neuro-inflammation. Results: During navigation trials of MWM test, mice in SAMP8-LFD group demonstrated impaired learning ability compared to SAMR1-LFD group, and chia seed had no effect on learning and memory ability for HFD fed SAMP8 mice. As for Alzheimer’s disease (AD) related pathology, chia seed not only increased α-secretase such as ADAM10 and insulin degrading enzyme (IDE), but also increased β-secretase including beta-secretase 1 (BACE1) and cathepsin B, with an overall effects of elevation in the hippocampal Aβ42 level; chia seed slightly reduced p-Tauser404 in the hippocampus; while an elevation in neuro-inflammation with the activation of glial fibrillary acidic protein (GFAP) and Ibα-1 were observed post chia seed supplementation. Conclusions: Chia seed supplementation did not improve cognitive impairment via MWM in HFD fed SAMP8 mice. This might be associated with that chia seed increased key enzymes involved both in non-amyloidogenic and amyloidogenic pathways, and neuro-inflammation. Future studies are necessary to confirm our present study.
Collapse
|
47
|
Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat Neurosci 2018; 21:541-551. [DOI: 10.1038/s41593-018-0100-x] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/21/2018] [Indexed: 12/26/2022]
|
48
|
Allicin ameliorates cognitive impairment in APP/PS1 mice via Suppressing oxidative stress by Blocking JNK Signaling Pathways. Tissue Cell 2018; 50:89-95. [DOI: 10.1016/j.tice.2017.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/16/2017] [Accepted: 11/26/2017] [Indexed: 01/02/2023]
|
49
|
Taipa R, Sousa AL, Melo Pires M, Sousa N. Does the Interplay Between Aging and Neuroinflammation Modulate Alzheimer's Disease Clinical Phenotypes? A Clinico-Pathological Perspective. J Alzheimers Dis 2018; 53:403-17. [PMID: 27176075 DOI: 10.3233/jad-160121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and is the most common cause of dementia worldwide. Cumulative data suggests that neuroinflammation plays a prominent and early role in AD, and there is compelling data from different research groups of age-associated dysregulation of the neuroimmune system. From the clinical point of view, despite clinical resemblance and neuropathological findings, there are important differences between the group of patients with sporadic early-onset (<65 years old) and late-onset AD (>65 years old). Thus, it seems important to understand the age-dependent relationship between neuroinflammation and the underlying biology of AD in order to identify potential explanations for clinical heterogeneity, interpret biomarkers, and promote the best treatment to different clinical AD phenotypes. The study of the delicate balance between pro-inflammatory or anti-inflammatory sides of immune players in the different ages of onset of AD would be important to understand treatment efficacy in clinical trials and eventually, not only direct treatment to early disease stages, but also the possibility of establishing different treatment approaches depending on the age of the patient. In this review, we would like to summarize what is currently known about the interplay between "normal" age associated inflammatory changes and AD pathological mechanisms, and also the potential differences between early-onset and late-onset AD taking into account the age-related neuroimmune background at disease onset.
Collapse
Affiliation(s)
- Ricardo Taipa
- Neuropathology Unit, Department of Neuroscience, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Ana Luísa Sousa
- Department of Neurology, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal
| | - Manuel Melo Pires
- Neuropathology Unit, Department of Neuroscience, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| |
Collapse
|
50
|
Zhu CJ, Jiang GX, Chen JM, Zhou ZM, Cheng Q. Serum haptoglobin in Chinese patients with Alzheimer's disease and mild cognitive impairment: A case-control study. Brain Res Bull 2018; 137:301-305. [PMID: 29325993 DOI: 10.1016/j.brainresbull.2018.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Serum level of Haptoglobin (Hp) maybe associated with Alzheimer's disease (AD) and mild cognitive impairment (MCI). OBJECTIVE To investigate associations between serum Hp and AD, as well as between Hp and MCI. METHODS Serum levels of Hp were measured and analyzed for 51 patients with AD, 139 patients with MCI and their healthy controls matched with sex and age. All study subjects were from a survey among residents aged 60 years and over in a community located in the southwest suburb of Shanghai. RESULTS Serum levels of Hp were observed significantly higher in AD and MCI cases than controls (both p < 0.0001). A significant positive correlation was found between Hp and Activities of Daily Living (ADL) score (rs = 0.430, p = 0.007), as well as between Hp and Clinical Dementia Rating (CDR) score (rs = 0.359, p = 0.027) in all AD patients. According to the receiver operating characteristic (ROC) curve analysis, the optimal cut-off point for Hp was found to be 67.50 μg/ml (sensitivity, 0.902; specificity, 0.745) in AD patients, and 44.76 μg/ml (sensitivity, 0.986; specificity, 0.403) in MCI patients. CONCLUSION Elevated serum levels of Hp were observed in AD and MCI patients than controls. In addition, Hp may correlate with the severity of AD.
Collapse
Affiliation(s)
- Cen-Jing Zhu
- Department of Neurology, Ruijin Hospital affiliated with the School of Medicine, Shanghai Jiao Tong University, 197 Ruijin No. 2 Road, Shanghai, 200025, China; School of Public Health, Shanghai Jiao Tong University, 227 Chong Qing Nan Road, Shanghai, 200025, China
| | - Guo-Xin Jiang
- Department of Learning, Informatics, Management and Ethics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Jin-Mei Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 280 Mo He Road, Shanghai, 201999,China
| | - Zhi-Ming Zhou
- Sheshan Town Community Health Service Center in Shanghai, 11 Xi Lin Road, Shanghai, 201602, China
| | - Qi Cheng
- Department of Neurology, Ruijin Hospital affiliated with the School of Medicine, Shanghai Jiao Tong University, 197 Ruijin No. 2 Road, Shanghai, 200025, China; School of Public Health, Shanghai Jiao Tong University, 227 Chong Qing Nan Road, Shanghai, 200025, China.
| |
Collapse
|