1
|
Indication of retrograde tau spreading along Braak stages and functional connectivity pathways. Eur J Nucl Med Mol Imaging 2021; 48:2272-2282. [PMID: 33462630 DOI: 10.1007/s00259-020-05183-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/27/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Tau pathology progression in Alzheimer's disease (AD) is explained through the network degeneration hypothesis and the neuropathological Braak stages; however, the compatibility of these models remains unclear. METHODS We utilized [18F]AV-1451 tau-PET scans of 39 subjects with AD and 39 sex-matched amyloid-negative healthy controls (HC) in the ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset. The peak cluster of tau-tracer uptake was identified in each Braak stage of neuropathological tau deposition and used to create a seed-based functional connectivity network (FCN) using 198 HC subjects, to identify healthy networks unaffected by neurodegeneration. RESULTS Voxel-wise tau deposition was both significantly higher inside relative to outside FCNs and correlated significantly and positively with levels of healthy functional connectivity. Within many isolated Braak stages and regions, the correlation between tau and intrinsic functional connectivity was significantly stronger than it was across the whole brain. In this way, each peak cluster of tau was related to multiple Braak stages traditionally associated with both earlier and later stages of disease. CONCLUSION We show specificity of healthy FCN topography for AD-pathological tau as well as positive voxel-by-voxel correlations between pathological tau and healthy functional connectivity. We propose a model of "up- and downstream" functional tau progression, suggesting that tau pathology evolves along functional connectivity networks not only "downstream" (i.e., along the expected sequence of the established Braak stages) but also in part "upstream" or "retrograde" (i.e., against the expected sequence of the established Braak stages), with pathology in earlier Braak stages intensified by its functional relationship to later disease stages.
Collapse
|
2
|
Persistent Infection with Herpes Simplex Virus 1 and Alzheimer's Disease-A Call to Study How Variability in Both Virus and Host may Impact Disease. Viruses 2019; 11:v11100966. [PMID: 31635156 PMCID: PMC6833100 DOI: 10.3390/v11100966] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing attention has focused on the contributions of persistent microbial infections with the manifestation of disease later in life, including neurodegenerative conditions such as Alzheimer’s disease (AD). Current data has shown the presence of herpes simplex virus 1 (HSV-1) in regions of the brain that are impacted by AD in elderly individuals. Additionally, neuronal infection with HSV-1 triggers the accumulation of amyloid beta deposits and hyperphosphorylated tau, and results in oxidative stress and synaptic dysfunction. All of these factors are implicated in the development of AD. These data highlight the fact that persistent viral infection is likely a contributing factor, rather than a sole cause of disease. Details of the correlations between HSV-1 infection and AD development are still just beginning to emerge. Future research should investigate the relative impacts of virus strain- and host-specific factors on the induction of neurodegenerative processes over time, using models such as infected neurons in vitro, and animal models in vivo, to begin to understand their relationship with cognitive dysfunction.
Collapse
|
3
|
Chen YC, Chen H, Jiang L, Bo F, Xu JJ, Mao CN, Salvi R, Yin X, Lu G, Gu JP. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI. Front Behav Neurosci 2018; 12:44. [PMID: 29593512 PMCID: PMC5859072 DOI: 10.3389/fnbeh.2018.00044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/03/2022] Open
Abstract
Purpose: Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI) approach. Methods: Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis. Results: Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG), parahippocampal gyrus (PHG), precuneus and inferior parietal lobule (IPL) as well as increased neural activity in the middle frontal gyrus (MFG), cuneus and postcentral gyrus (PoCG). A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B) scores, indicative of impaired cognitive function involving the frontal lobe. Conclusions: Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the neuropathological mechanisms underlying presbycusis.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Bo
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cun-Nan Mao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-Ping Gu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Ionov ID. Specific mechanism for blood inflow stimulation in brain area prone to Alzheimer's disease lesions. Int J Neurosci 2007; 117:1425-42. [PMID: 17729154 DOI: 10.1080/00207450601125733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study describes the specific two-stage mechanism that intensifies blood supply to the brain area comprising amygdala, hippocampus, olfactory bulb, entorhinal cortex, and neocortex (AHBC). Cholinergic neurons from the nuclei of basal forebrain induce vasodilatory effect through release of acetylcholine. In physiological aging the efficacy of this neuronal system declines, while intensive formation of amyloidogenic peptides starts. These peptides at low, picomolar concentrations activate alpha7 nicotinic acetylcholine receptors, thus enhancing angiogenesis and in so doing restoring blood supply to the AHBC area.
Collapse
Affiliation(s)
- Ilya D Ionov
- Center on Theoretical Problems in Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
5
|
Zahn R, Garrard P, Talazko J, Gondan M, Bubrowski P, Juengling F, Slawik H, Dykierek P, Koester B, Hull M. Patterns of regional brain hypometabolism associated with knowledge of semantic features and categories in Alzheimer's disease. J Cogn Neurosci 2006; 18:2138-2151. [PMID: 17129196 DOI: 10.1162/jocn.2006.18.12.2138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used a semantic verification task and resting 18-fluorodeoxyglucose positron emission tomography in a group of mild to moderate AD patients to investigate this issue. The four task conditions required semantic knowledge of (1) visual, (2) functional properties of living objects, and (3) visual or (4) functional properties of nonliving objects. Visual property verification of living objects was significantly correlated with left posterior fusiform gyrus metabolism (Brodmann's area [BA] 37/19). Effects of visual and functional property verification for non-living objects largely overlapped in the left anterior temporal (BA 38/20) and bilateral premotor areas (BA 6), with the visual condition extending more into left lateral precentral areas. There were no associations with functional property verification for living concepts. Our results provide strong support for anatomically separable representations of living and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas.
Collapse
|
6
|
Yang W, Ang LC, Strong MJ. Tau protein aggregation in the frontal and entorhinal cortices as a function of aging. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 156:127-38. [PMID: 16110532 DOI: 10.1016/j.devbrainres.2005.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The abnormal accumulation of tau protein is increasingly recognized as the neuropathological hallmark of a number of dementing illness in which frontotemporal lobar degeneration occurs. In this paper we examined the age-dependant deposition of tau protein in the frontal and entorhinal neocortices. METHODS We examined autopsy records from 1997 to 2002 and selected 87 cases (10 in each decade from 0 to 79 years of age, 7 in 80-89 decade) with no history of dementia or other neurodegenerative diseases, and for which neurodegenerative diseases were excluded neuropathologically. Archival paraffin-embedded frontal and entorhinal cortices were examined by both Gallyas-Braak silver staining and a panel of antibodies recognizing tau protein accumulation. RESULTS Tau neuronal aggregates were observed in both frontal and entorhinal cortices in the third decade. While the frontal neuronal tau aggregates remained infrequent in the remaining decades, the number and extent ofneuronal tau aggregates in the entorhinal cortex increased such that by the 7th decade the majority of cases showed extensive tau aggregate formation. The most consistent morphological observation was of dense, perikaryal neuronal tau-immunoreactive aggregates, similar to the total tau distribution, firstly presenting in cortical layers II and III and subsequently involving in layers IV-VI. Neuropil threads became maximal in the 9th decade in both frontal and entorhinal cortices. Astrocytic tau accumulation was first observed in both frontal and entorhinal cortices in the 6th decade, predominantly in layer I and subcortical white matter, and increased in number with aging. Extraneuronal tau reactive aggregates and coiled bodies were rarely observed in the entorhinal cortex, and when present, were scattered through layer II to VI. CONCLUSIONS We have observed an age-dependant pattern of neuronal, extraneuronal and glial tau protein accumulation in the entorhinal cortex in individuals without neurodegenerative diseases. In contrast, tau protein aggregation is infrequently observed in the frontal cortex as a function of aging.
Collapse
|
7
|
Adlard PA, Cummings BJ. Alzheimer’s disease—a sum greater than its parts? Neurobiol Aging 2004; 25:725-33; discussion 743-6. [PMID: 15165695 DOI: 10.1016/j.neurobiolaging.2003.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Affiliation(s)
- Paul A Adlard
- Institute for Brain Aging and Dementia, University of California, 1113 Gillespie N.R.F., Irvine, CA 92697-4540, USA.
| | | |
Collapse
|
8
|
Chetelat G, Baron JC. Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging. Neuroimage 2003; 18:525-41. [PMID: 12595205 DOI: 10.1016/s1053-8119(02)00026-5] [Citation(s) in RCA: 279] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
To accurately predict the development of Alzheimer's disease (AD) at its predementia stage would be a major breakthrough from both therapeutic and research standpoints. In this review, our focus is on markers obtained with structural imaging--especially magnetic resonance imaging (MRI)--and on studies of subjects at risk of developing AD. Among the latter, amnestic mild cognitive impairment (MCI) is currently the most commonly accepted reference, and therefore is specially targeted in this review. MCI refers to patients with significant but isolated memory impairment relative to subjects of identical age. Consistent with established histopathological data, structural imaging studies comparing patients with early probable AD to healthy aged subjects have shown that the most specific and sensitive features of AD at this stage are hippocampal and entorhinal cortex atrophy, especially when combined with a reduced volume of the temporal neocortex. MCI patients have significant hippocampal atrophy when compared to aged normal controls. When comparing patients with probable AD to MCI subjects, hippocampal region atrophy significantly extends to the neighboring temporal association neocortex. However, only longitudinal studies of MCI subjects are suited to assess (in a retrospective way) the predictive value of initial atrophy measurements for progression to AD. Few such studies have been published so far and for the most they were based on small samples. Furthermore, the comparison among studies is clouded by differences in both populations studied and MRI methodology used. Nevertheless, comparing the initial MRI data of at-risk subjects who convert to AD at follow-up to those of nonconverters suggests that a reduced association temporal neocortex volume combined with hippocampal or anterior cingulate cortex atrophy may be the best predictor of progression to AD. These data, although still preliminary, are consistent with postmortem studies describing the hierarchical progression of tau lesions in normal aging and early stages of AD, such that damage to the medial temporal lobe and association cortex would account for the memory and nonmemory cognitive impairments, respectively, the combination of which is required to operationally define probable AD. Future research in this field should capitalize on thorough methodology for brain structure delineation, and combine atrophy measurements to cognitive and/or functional imaging data.
Collapse
|
9
|
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:95-130. [PMID: 10967355 DOI: 10.1016/s0165-0173(00)00019-9] [Citation(s) in RCA: 1444] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau proteins belong to the family of microtubule-associated proteins. They are mainly expressed in neurons where they play an important role in the assembly of tubulin monomers into microtubules to constitute the neuronal microtubules network. Microtubules are involved in maintaining the cell shape and serve as tracks for axonal transport. Tau proteins also establish some links between microtubules and other cytoskeletal elements or proteins. Tau proteins are translated from a single gene located on chromosome 17. Their expression is developmentally regulated by an alternative splicing mechanism and six different isoforms exist in the human adult brain. Tau proteins are the major constituents of intraneuronal and glial fibrillar lesions described in Alzheimer's disease and numerous neurodegenerative disorders referred to as 'tauopathies'. Molecular analysis has revealed that an abnormal phosphorylation might be one of the important events in the process leading to their aggregation. Moreover, a specific set of pathological tau proteins exhibiting a typical biochemical pattern, and a different regional and laminar distribution could characterize each of these disorders. Finally, a direct correlation has been established between the progressive involvement of the neocortical areas and the increasing severity of dementia, suggesting that pathological tau proteins are reliable marker of the neurodegenerative process. The recent discovery of tau gene mutations in frontotemporal dementia with parkinsonism linked to chromosome 17 has reinforced the predominant role attributed to tau proteins in the pathogenesis of neurodegenerative disorders, and underlined the fact that distinct sets of tau isoforms expressed in different neuronal populations could lead to different pathologies.
Collapse
Affiliation(s)
- L Buée
- INSERM U422, Place de Verdun, 59045 cedex, Lille, France.
| | | | | | | | | |
Collapse
|
10
|
Jellinger KA, Bancher C. Neuropathology of Alzheimer's disease: a critical update. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 54:77-95. [PMID: 9850917 DOI: 10.1007/978-3-7091-7508-8_8] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unequivocal diagnosis of Alzheimer's disease (AD) rests on histopathological evidence at brain autopsy or biopsy. The morphology of AD includes cerebral atrophy, deposition of beta A4 amyloid (A beta) (senile plaques and amyloid angiopathy), neuritic changes (neuritic plaques, neurofibrillary tangles (NFT) and neuropil threads) with formation of paired helical filaments (PHF) containing polymerized hyperphosphorylated tau protein triplet, causing disruption of the neuronal cytoskeleton with loss of synapses and neurons, with altered cortico-cortical connectivity, leading to disconnection of the cerebral cortex. Defining criteria for the morphologic diagnosis of AD is difficult due to the phenotypic heterogeneity of the disease, the absence of specific markers, and overlap of AD morphology with that observed in non-demented elderly individuals. This gray zone between normal to pathologic aging and full-fledged AD represents an important diagnostic problem and should be overcome by better standardized criteria that will allow to minimize interrater and interlaboratory variability in the diagnosis of AD. Current criteria for the morphologic diagnosis of AD are based on (semi)quantitative assessment of diffuse and neuritic plaques (NIA), exclusively neuritic plaques (CERAD), plaques and NFT in neocortex and hippocampus (Tierney et al., 1988), and staging of hierarchic spreading of neuritic AD changes (Braak and Braak, 1991); all of them have weaknesses and need to be revalidated. Multivariant analysis of an autopsy series of elderly subjects revealed significant correlations between psychostatus and both the CERAD criteria and Braak staging. Recent recommendations of the NIA-Reagan Institute for the morphologic diagnosis of AD are presented. Although the role of plaques and NFT in the pathogenesis of AD remains undetermined, clinicopathological correlative studies have shown that both lesions, if present in sufficient numbers, particularly in the neocortex, are considered the best morphological signposts for AD. Recent studies on neuron death in AD that, at least in part, appears different from classical apoptosis and may precede the symptomatic stage of AD, have shown varying results indicating only indirect relationship between DNA fragmentation and both A beta deposition and NFTs. Both these AD-typical markers appear to increase the risk of cells to degenerate, but are not the sole responsibles of the degenerative process in AD, the basic mechanisms of which remain to be elucidated.
Collapse
Affiliation(s)
- K A Jellinger
- L. Boltzmann Institute of Clinical Neurobiology, Vienna, Austria
| | | |
Collapse
|
11
|
Jellinger KA. The neuropathological diagnosis of Alzheimer disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 53:97-118. [PMID: 9700649 DOI: 10.1007/978-3-7091-6467-9_9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The unequivocal diagnosis of Alzheimer disease (AD) rests on histopathological evidence at brain autopsy or biopsy. Although the histological features of AD are well known, defining criteria for the morphological diagnosis of AD is difficult due to the phenotypical heterogeneity of the disease, absence of specific markers, and overlap of AD pathology with that observed in non-demented elderly individuals. This gray zone between normal to pathological aging and full-fledged AD represents an important diagnostic problem and should be overcome by better standardized criteria that will allow to minimize interrater and interlaboratory variability in the diagnosis of AD. Current criteria for the neuropathological diagnosis of AD are based on age-related (semi)quantitative assessment of "senile" plaques (NIA criteria), neuritic plaques (CERAD), plaques and neurofibrillary tangles in neocortex and hippocampus (Tierney et al., 1988), and staging of hierarchic spreading of neuritic AD changes in particular, neurofibrillary tangles (Braak and Braak, 1991). All these algorithms have some weaknesses and do not recognize the various subtypes of AD. Multivariant analysis of an autopsy series of elderly subjects revealed significant correlations between psychostatus assessed by the Mini-Mental State and both the CERAD criteria and Braak staging. Although the role of plaques and tangles in the pathogenesis of AD and their relationship to both neuronal loss and dementia remain to be elucidated, clinicopathological studies have shown that both lesions, if present in sufficient numbers, particularly in the neocortex, are considered the best correlates for AD related dementia. Recent consensus recommendations of the NIA- and Reagan Institute Working Group for the morphological diagnosis of AD consider AD as a heterogenous clinicopathological entity. After exclusion of other causes of dementia, the likelihood that AD accounts for dementia is considered high, intermediate or low according to the frequency of neuritic AD lesions with regard to both the CERAD criteria and Braak staging. The evaluation of small autopsy series according to these criteria demonstrated their easy and rapid application in AD and non-demented subjects, with much less reliability for other dementing disorders.
Collapse
Affiliation(s)
- K A Jellinger
- Ludwig Boltzmann Institute of Clinical Neurobiology, Wien, Austria
| |
Collapse
|
12
|
Desgranges B, Baron JC, Eustache F. The functional neuroanatomy of episodic memory: the role of the frontal lobes, the hippocampal formation, and other areas. Neuroimage 1998; 8:198-213. [PMID: 9740762 DOI: 10.1006/nimg.1998.0359] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because it allows direct mapping of synaptic activity during behavior in the normal subject, functional neuroimaging with the activation paradigm, especially positron emission tomography, has recently provided insight into our understanding of the functional neuroanatomy of episodic memory over and above established knowledge from lesional neuropsychology. The most striking application relates to the ability to distinguish the structures implicated in the encoding and the retrieval of episodic information, as these processes are extremely difficult to differentiate with behavioral tasks, either in healthy subjects or in brain-damaged patients. Regarding encoding and retrieval, the results from most studies converge on the involvement of the prefrontal cortex in these processes, with a hemispheric encoding/retrieval asymmetry (HERA) such that the left side is preferentially involved in encoding, and the right in retrieval. However, there are still some questions, for instance, about bilateral activation during retrieval and a possible specialization within the prefrontal cortex. More expected from human and monkey lesional data, the hippocampal formation appears to play a role in both the encoding and the retrieval of episodic information, but the exact conditions which determine hippocampal activation and its fine-grained functional neuroanatomy have yet to be fully elucidated. Other structures are activated during episodic memory tasks, with asymmetric activation that fits the HERA model, such as preferentially left-sided activation of the association temporal and posterior cingulate areas in encoding tasks and preferentially right-sided activation of the association parietal cortex, cerebellum, and posterior cingulate in retrieval tasks. However, this hemispheric asymmetry appears to depend to some extent on the material used. These new data enhance our capacity to comprehend episodic memory deficits in neuropsychology, as well as the neural mechanisms underlying the age-related changes in episodic memory performances.
Collapse
Affiliation(s)
- B Desgranges
- INSERM U320 and, University of Caen, Caen Cedex, 14033, France
| | | | | |
Collapse
|
13
|
Petit-Taboué MC, Landeau B, Desson JF, Desgranges B, Baron JC. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage 1998; 7:176-84. [PMID: 9597659 DOI: 10.1006/nimg.1997.0318] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aging process is thought to result in changes in synaptic activity reflecting both functional and structural cell derangement. However, previous PET reports on age-related changes in resting brain glucose utilization (CMRglc) have been discrepant, presumably because of methodological as well as subject screening differences. In contrast to other studies, which used a region of interest approach, the objective of the present work was to determine, by means of the SPM software, the changes in regional CMRglc as a function of age in 24 optimally healthy, unmedicated volunteers of ages from 20 to 67 years. Global CMRglc showed a significant decline with age (approximately 6% per decade, P < 0.05), which concerned all the voxels studied save for most of the occipital cortex and part of the cerebellum. The most significant effects (P < 0.001) concerned the association neocortex in perisylvian temporoparietal and anterior temporal areas, the insula, the inferior and posterior-lateral frontal regions, the anterior cingulate cortex, the head of caudate nucleus, and the anterior thalamus, in a bilateral and essentially symmetrical fashion. The high posterior parietal cortex was not sampled in this study. This distribution of changes in CMRglc with age may differ from that seen in Alzheimer' disease, where the earliest metabolic reduction has been shown to affect the posterior cingulate cortex.
Collapse
|
14
|
Delacourte A, Sergeant N, Wattez A, Gauvreau D, Robitaille Y. Vulnerable neuronal subsets in Alzheimer's and Pick's disease are distinguished by their tau isoform distribution and phosphorylation. Ann Neurol 1998; 43:193-204. [PMID: 9485060 DOI: 10.1002/ana.410430209] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aggregated tau proteins constitute the basic matrix of neuronal inclusions specific to numerous neurodegenerative disorders. Monodimensional and two-dimensional Western blot analyses performed on cortical brain homogenates allowed discrimination between disease-specific tau protein profiles. These observations raised the issue of the physiopathological significance of such specificities. Alzheimer's disease (AD) pathological tau proteins (PTPs) (tau 74, 69, 64, 55) were compared with those of Pick's disease (PiD) (tau 64, 55) using a panel of antibodies against peptidic sequences of tau isoforms corresponding to exons 2, 3, and 10. AD and PiD could then be critically differentiated by the absence of translated tau isoforms with exon 10 in PiD PTPs, along with the absence of the phosphorylation site on Ser262. Immunohistochemical studies corroborate these findings. Indeed, Pick bodies were strongly immunostained by an anti-"exon 2" antibody but failed to reveal any anti-exon 10 reactive epitope. Tangles in AD contained exon 2, 3, and 10 epitopes. Altogether, our results demonstrated that Pick bodies develop within specific neuronal subsets that express specific patterns of 7 isoforms lacking exon 10 peptidic sequence. We conclude that neurodegenerative disorders imply attrition of selectively vulnerable neuronal subsets, a process revealed, and may be sustained by specific tau isoform patterns.
Collapse
|
15
|
Giannakopoulos P, Hof PR, Michel JP, Guimon J, Bouras C. Cerebral cortex pathology in aging and Alzheimer's disease: a quantitative survey of large hospital-based geriatric and psychiatric cohorts. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 25:217-45. [PMID: 9403139 DOI: 10.1016/s0165-0173(97)00023-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to explore the relationships between the involvement of specific neuronal populations and cognitive deterioration, and to compare the hierarchical patterns of cortical involvement in normal brain aging and Alzheimer's disease, over 1200 brains from elderly subjects without cognitive deficits, as well as from patients with age-associated memory impairment and Alzheimer's disease, were examined. Our results suggest that the neuropathological changes associated with normal brain aging and Alzheimer's disease affect select cortical circuits at different points in time. Extensive hippocampal alterations are correlated with age-associated memory impairment, whereas substantial neurofibrillary tangle formation in neocortical association areas of the temporal lobe is a prerequisite for the development of Alzheimer's disease. Despite several lines of evidence involving amyloid deposit in the pathogenesis of Alzheimer's disease and Down's syndrome, our observations indicate that there is no correlation between senile plaque densities and degree of dementia in both disorders. In contrast to younger elderly cases, in the ninth and tenth decades of life, there is a differential cortical involvement in that parietal and cingulate areas are early affected in the course of Alzheimer's disease, and neocortical senile plaques densities are strongly correlated with the severity of dementia. Moreover, Alzheimer's disease symptomatology is characterized in these very old patients by high neurofibrillary tangle densities in the anterior CA1 field, but not in the entorhinal cortex and inferior temporal cortex. These observations are discussed in the light of the hypothesis of global corticocortical disconnection and with respect to the notion of selective neuronal vulnerability in Alzheimer's disease.
Collapse
Affiliation(s)
- P Giannakopoulos
- Department of Psychiatry, HUG Belle-Idée, University of Geneva School of Medicine, Switzerland.
| | | | | | | | | |
Collapse
|
16
|
Sergeant N, David JP, Lefranc D, Vermersch P, Wattez A, Delacourte A. Different distribution of phosphorylated tau protein isoforms in Alzheimer's and Pick's diseases. FEBS Lett 1997; 412:578-82. [PMID: 9276470 DOI: 10.1016/s0014-5793(97)00859-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tau proteins aggregate into different neuronal inclusions in several neurodegenerative disorders. In Alzheimer's disease (AD), hyperphosphorylated Tau from paired helical filaments (PHF) of neurofibrillary tangles, named PHF-Tau, have an electrophoretic profile with four main bands (Tau 55, 64, 69, 74 kDa). In Pick's disease, phosphorylated Tau from Pick bodies are made of two major components (Tau 55, 64 kDa) and a minor 69 kDa. Here we show, using specific antibodies against translated exon 2, 3 or 10 of Tau isoforms, that the set of Tau isoforms engaged in the most insoluble part of PHF in AD is made of Tau isoforms with exon 10 while they are lacking in phosphorylated Tau from Pick's disease. Our results suggest that specific sets of Tau isoforms distinguish between typical neuronal inclusions.
Collapse
|
17
|
Jellinger KA, Bancher C. Proposals for re-evaluation of current autopsy criteria for the diagnosis of Alzheimer's disease. Neurobiol Aging 1997; 18:S55-65. [PMID: 9330987 DOI: 10.1016/s0197-4580(97)00071-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Defining criteria for the postmortem diagnosis of Alzheimer's disease (AD) has proven difficult due to the phenotypical heterogeneity of the disease, the absence of a specific disease marker and an overlap of AD neuropathology with that observed in a number of nondemented aged individuals. Even though the role of plaques and tangles in the pathogenesis of AD remains undetermined, a host of clinicopathological correlative studies have shown that both lesions, if present in sufficient numbers-particularly in the neocortex-are still to be considered the best morphological signposts for the disease. All currently used criteria for the neuropathologic diagnosis of AD have some weaknesses and need to be reestablished and revalidated. Multivariant analysis in a personal autopsy series of elderly subjects revealed significant correlations between psychostatus and both the CERAD criteria and Braak staging of neuritic Alzheimer-type lesions, and less concordance with the National Institutes of Aging and Tierney criteria. We propose a set of histopathologic diagnostic criteria for both definite and preclinical AD that rely on various constellations of both different types of plaques, except diffuse amyloid deposits, and neurofibrillary tangles, in allocortical and isocortical areas considering their topographic pattern. This set of criteria encompasses phenotypic variations of the pathology and takes into account the chronic, progressive course of AD. It allows the detection of preclinical disease in subjects in whom dementia is not reported and includes those cases in the morphological gray zone between "normal" aging and full-fledged AD that practicing neuropathologists consider the most problematic. The set of criteria includes guidelines concerning tissue sampling and processing, and standardized staining methods that should allow neurologists to minimize interrater and interlaboratory variability in the assessment of morphologic lesions and the diagnosis of AD.
Collapse
Affiliation(s)
- K A Jellinger
- Ludwig Boltzmann Institute of Clinical Neurobiology, Lainz-Hospital, Vienna, Austria
| | | |
Collapse
|
18
|
Delacourte A, Buée L. Normal and pathological Tau proteins as factors for microtubule assembly. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 171:167-224. [PMID: 9066128 DOI: 10.1016/s0074-7696(08)62588-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tau proteins are microtubule-associated proteins. They regulate the dynamics of the microtubule network, especially involved in the axonal transport and neuronal plasticity. Tau proteins belong to a family of developmentally regulated isoforms generated by alternative splicing and phosphorylation. This generates several Tau variants that interact with tubulin and other proteins. Therefore, Tau proteins are influenced by many physiological regulations. Tau proteins are also powerful markers of the neuronal physiological state. Their degree of phosphorylation is a good marker of cell integrity. It is heavily disturbed in numerous neurodegenerative disorders, leading to a collapse of the microtubule network and the presence of intraneuronal lesions resulting from Tau aggregation. However, different biochemical and immunological patterns of pathological Tau proteins found among neurodegenerative disorders are useful markers for the understanding of the role of Tau protein isoforms and the diagnosis of these pathological conditions.
Collapse
|
19
|
|