1
|
Lyke DR, Dorweiler JE, Manogaran AL. The three faces of Sup35. Yeast 2019; 36:465-472. [PMID: 30963611 DOI: 10.1002/yea.3392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Sup35p is an essential protein in yeast that functions in complex with Sup45p for efficient translation termination. Although some may argue that this function is the only important attribute of Sup35p, there are two additional known facets of Sup35p's biology that may provide equally important functions for yeast; both of which involve various strategies for coping with stress. Recently, the N-terminal and middle regions (NM) of Sup35p, which are not required for translation termination function, have been found to provide stress-sensing abilities and facilitate the phase separation of Sup35p into biomolecular condensates in response to transient stress. Interestingly, the same NM domain is also required for Sup35p to misfold and enter into aggregates associated with the [PSI+ ] prion. Here, we review these three different states or "faces" of Sup35p. For each, we compare the functionality and necessity of different Sup35p domains, including the role these domains play in facilitating interactions with important protein partners, and discuss the potential ramifications that each state affords yeast cells under varying environmental conditions.
Collapse
Affiliation(s)
- Douglas R Lyke
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Jane E Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
2
|
Matveenko AG, Belousov MV, Bondarev SA, Moskalenko SE, Zhouravleva GA. Identification of new genes that affect [PSI +] prion toxicity in Saccharomyces cerevisiae yeast. Mol Biol 2016. [DOI: 10.1134/s0026893316050113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Matveenko AG, Drozdova PB, Belousov MV, Moskalenko SE, Bondarev SA, Barbitoff YA, Nizhnikov AA, Zhouravleva GA. SFP1-mediated prion-dependent lethality is caused by increased Sup35 aggregation and alleviated by Sis1. Genes Cells 2016; 21:1290-1308. [DOI: 10.1111/gtc.12444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew G. Matveenko
- St Petersburg Branch; Vavilov Institute of General Genetics of the Russian Academy of Sciences; St Petersburg Russia
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| | - Polina B. Drozdova
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| | - Mikhail V. Belousov
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
| | - Svetlana E. Moskalenko
- St Petersburg Branch; Vavilov Institute of General Genetics of the Russian Academy of Sciences; St Petersburg Russia
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| | - Yury A. Barbitoff
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
| | - Anton A. Nizhnikov
- St Petersburg Branch; Vavilov Institute of General Genetics of the Russian Academy of Sciences; St Petersburg Russia
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- All-Russia Research Institute for Agricultural Microbiology; Pushkin St Petersburg Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| |
Collapse
|
4
|
Eraña H, Venegas V, Moreno J, Castilla J. Prion-like disorders and Transmissible Spongiform Encephalopathies: An overview of the mechanistic features that are shared by the various disease-related misfolded proteins. Biochem Biophys Res Commun 2016; 483:1125-1136. [PMID: 27590581 DOI: 10.1016/j.bbrc.2016.08.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023]
Abstract
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species. Its causative agent, disease-associated prion protein (PrPd), is a self-propagating β-sheet rich aberrant conformation of the cellular prion protein (PrPC) with neurotoxic and aggregation-prone properties, capable of inducing misfolding of PrPC molecules. PrPd is the major constituent of prions and, most importantly, is the first known example of a protein with infectious attributes. It has been suggested that similar molecular mechanisms could be shared by other proteins implicated in diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis or systemic amyloidoses. Accordingly, several terms have been proposed to collectively group all these disorders. Through the stringent evaluation of those aspects that characterise TSE-causing prions, in particular propagation and spread, strain variability or transmissibility, we will discuss whether terms such as "prion", "prion-like", "prionoid" or "propagon" can be used when referring to the aetiological agents of the above other disorders. Moreover, it will also be discussed whether the term "infectious", which defines a prion essential trait, is currently misused when referring to the other misfolded proteins.
Collapse
Affiliation(s)
- Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Vanesa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Jorge Moreno
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Bizkaia, Spain.
| |
Collapse
|
5
|
Serio TR, Lindquist SL. The yeast prion [PSI+]: molecular insights and functional consequences. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:391-412. [PMID: 11868278 DOI: 10.1016/s0065-3233(01)59012-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- T R Serio
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
6
|
Abstract
Biochemical characterization of the yeast prions has revealed many similarities with the mammalian amyloidogenic proteins. The ease of generating in vivo mutations in yeast and the developing in vitro models for [PSI+] and [URE3] circumvent many of the difficulties of studying the proteins linked to the mammalian amyloidoses. Future work especially aimed at understanding the molecular role of chaperone proteins in regulating conversion as well as the early steps in de novo formation of the prion state in yeast will likely provide invaluable lessons that may be more broadly applicable to related processes in higher eukaryotes. It is important to remember, however, that there are clear distinctions between disease states associated with amyloidogenesis and the epigenetic modulation of protein function by self-perpetuating conformational conversions. Amyloid formation is detrimental to mammals and is likely selected against, providing a possible explanation for the late onset of these disorders (Lansbury, 1999). In contrast, the known yeast prions are compatible with normal growth and, if beneficial to the organism, may be subject to evolutionary pressures that ultimately maximize transmission. In the prion proteins examined to date, distinct domains are responsible for normal function and for the conformational switches producing a prion conversion of that function. Recent work has demonstrated that the prion domains are both modular and transferable to other proteins on which they can confer a heritable epigenetic alteration of function (Edskes et al., 1999; Li and Lindquist, 2000; Patino et al., 1996; Santoso et al., 2000; Sondheimer and Lindquist, 2000). That is, prion domains need not coevolve with particular functional domains but might be moved from one protein to another during evolution. Such processes may be widely used in biology. Mechanistic studies of [PSI+] and [URE3] replication are sure to lay a foundation of knowledge for understanding a host of nonconventional genetic elements that currently remain elusive.
Collapse
Affiliation(s)
- T R Serio
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
7
|
Jensen MA, True HL, Chernoff YO, Lindquist S. Molecular population genetics and evolution of a prion-like protein in Saccharomyces cerevisiae. Genetics 2001; 159:527-35. [PMID: 11606530 PMCID: PMC1461843 DOI: 10.1093/genetics/159.2.527] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prion-like behavior of Sup35p, the eRF3 homolog in the yeast Saccharomyces cerevisiae, mediates the activity of the cytoplasmic nonsense suppressor known as [PSI(+)]. Sup35p is divided into three regions of distinct function. The N-terminal and middle (M) regions are required for the induction and propagation of [PSI(+)] but are not necessary for translation termination or cell viability. The C-terminal region encompasses the termination function. The existence of the N-terminal region in SUP35 homologs of other fungi has led some to suggest that this region has an adaptive function separate from translation termination. To examine this hypothesis, we sequenced portions of SUP35 in 21 strains of S. cerevisiae, including 13 clinical isolates. We analyzed nucleotide polymorphism within this species and compared it to sequence divergence from a sister species, S. paradoxus. The N domain of Sup35p is highly conserved in amino acid sequence and is highly biased in codon usage toward preferred codons. Amino acid changes are under weak purifying selection based on a quantitative analysis of polymorphism and divergence. We also conclude that the clinical strains of S. cerevisiae are not recently derived and that outcrossing between strains in S. cerevisiae may be relatively rare in nature.
Collapse
Affiliation(s)
- M A Jensen
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
8
|
Abstract
The experimental evidence accumulated for the last half of the century clearly suggests that inherited variation is not restricted to the changes in genomic sequences. The prion model, originally based on unusual transmission of certain neurodegenerative diseases in mammals, provides a molecular mechanism for the template-like reproduction of alternative protein conformations. Recent data extend this model to protein-based genetic elements in yeast and other fungi. Reproduction and transmission of yeast protein-based genetic elements is controlled by the "prion replication" machinery of the cell, composed of the protein helpers responsible for the processes of assembly and disassembly of protein structures and multiprotein complexes. Among these, the stress-related chaperones of Hsp100 and Hsp70 groups play an important role. Alterations of levels or activity of these proteins result in "mutator" or "antimutator" affects in regard to protein-based genetic elements. "Protein mutagens" have also been identified that affect formation and/or propagation of the alternative protein conformations. Prion-forming abilities appear to be conserved in evolution, despite the divergence of the corresponding amino acid sequences. Moreover, a wide variety of proteins of different origins appear to possess the ability to form amyloid-like aggregates, that in certain conditions might potentially result in prion-like switches. This suggests a possible mechanism for the inheritance of acquired traits, postulated in the Lamarckian theory of evolution. The prion model also puts in doubt the notion that cloned animals are genetically identical to their genome donors, and suggests that genome sequence would not provide a complete information about the genetic makeup of an organism.
Collapse
Affiliation(s)
- Y O Chernoff
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, M/C 0363, 315 Ferst Drive, Atlanta, GA 30332-0363, USA.
| |
Collapse
|
9
|
True HL, Lindquist SL. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 2000; 407:477-83. [PMID: 11028992 DOI: 10.1038/35035005] [Citation(s) in RCA: 534] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A major enigma in evolutionary biology is that new forms or functions often require the concerted effects of several independent genetic changes. It is unclear how such changes might accumulate when they are likely to be deleterious individually and be lost by selective pressure. The Saccharomyces cerevisiae prion [PSI+] is an epigenetic modifier of the fidelity of translation termination, but its impact on yeast biology has been unclear. Here we show that [PSI+] provides the means to uncover hidden genetic variation and produce new heritable phenotypes. Moreover, in each of the seven genetic backgrounds tested, the constellation of phenotypes produced was unique. We propose that the epigenetic and metastable nature of [PSI+] inheritance allows yeast cells to exploit pre-existing genetic variation to thrive in fluctuating environments. Further, the capacity of [PSI+] to convert previously neutral genetic variation to a non-neutral state may facilitate the evolution of new traits.
Collapse
Affiliation(s)
- H L True
- Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, The University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
10
|
Abstract
Recent work suggests that two unrelated phenotypes, [PSI+] and [URE3], in the yeast Saccharomyces cerevisiae are transmitted by non-covalent changes in the physical states of their protein determinants, Sup35p and Ure2p, rather than by changes in the genes that encode these proteins. The mechanism by which alternative protein states are self-propagating is the key to understanding how proteins function as elements of epigenetic inheritance. Here, we focus on recent molecular-genetic analysis of the inheritance of the [PSI+] factor of S. cerevisiae. Insights into this process might be extendable to a group of mammalian diseases (the amyloidoses), which are also believed to be a manifestation of self-perpetuating changes in protein conformation.
Collapse
Affiliation(s)
- T R Serio
- Dept of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
11
|
Chernoff YO, Galkin AP, Lewitin E, Chernova TA, Newnam GP, Belenkiy SM. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol 2000; 35:865-76. [PMID: 10692163 DOI: 10.1046/j.1365-2958.2000.01761.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae prion [PSI ] is a self-propagating isoform of the eukaryotic release factor eRF3 (Sup35p). Sup35p consists of the evolutionary conserved release factor domain (Sup35C) and two evolutionary variable regions - Sup35N, which serves as a prion-forming domain in S. cerevisiae, and Sup35M. Here, we demonstrate that the prion form of Sup35p is not observed among industrial and natural strains of yeast. Moreover, the prion ([PSI + ]) state of the endogenous S. cerevisiae Sup35p cannot be transmitted to the next generations via heterologous Sup35p or Sup35NM, originating from the distantly related yeast species Pichia methanolica. This suggests the existence of a 'species barrier' in yeast prion conversion. However, the chimeric Sup35p, containing the Sup35NM region of Pichia, can be turned into a prion in S. cerevisiae by overproduction of the identical Pichia Sup35NM. Therefore, the prion-forming potential of Sup35NM is conserved in evolution. In the heterologous system, overproduction of Pichia Sup35p or Sup35NM induced formation of the prion form of S. cerevisiae Sup35p, albeit less efficiently than overproduction of the endogenous Sup35p. This implies that prion induction by protein overproduction does not require strict correspondence of the 'inducer' and 'inducee' sequences, and can overcome the 'species barrier'.
Collapse
Affiliation(s)
- Y O Chernoff
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | | | | | | | | | |
Collapse
|
12
|
Serio TR, Cashikar AG, Moslehi JJ, Kowal AS, Lindquist SL. Yeast prion [psi +] and its determinant, Sup35p. Methods Enzymol 1999; 309:649-73. [PMID: 10507053 DOI: 10.1016/s0076-6879(99)09043-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- T R Serio
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
13
|
Bailleul PA, Newnam GP, Steenbergen JN, Chernoff YO. Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. Genetics 1999; 153:81-94. [PMID: 10471702 PMCID: PMC1460745 DOI: 10.1093/genetics/153.1.81] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Striking similarities between cytoskeletal assembly and the "nucleated polymerization" model of prion propagation suggest that similar or overlapping sets of proteins may assist in both processes. We show that the C-terminal domain of the yeast cytoskeletal assembly protein Sla1 (Sla1C) specifically interacts with the N-terminal prion-forming domain (Sup35N) of the yeast release factor Sup35 (eRF3) in the two-hybrid system. Sla1C and several other Sup35N-interacting proteins also exhibit two-hybrid interactions with the poly-Gln-expanded N-proximal fragment of human huntingtin, which promotes Huntington disease-associated aggregation. The Sup35N-Sla1C interaction is inhibited by Sup35N alterations that make Sup35 unable to propagate the [PSI(+)] state and by the absence of the chaperone protein Hsp104, which is essential for [PSI] propagation. In a Sla1(-) background, [PSI] curing by dimethylsulfoxide or excess Hsp104 is increased, while translational readthrough and de novo [PSI] formation induced by excess Sup35 or Sup35N are decreased. These data show that, in agreement with the proposed function of Sla1 during cytoskeletal formation, Sla1 assists in [PSI] formation and propagation, but is not required for these processes. Sla1(-) strains are sensitive to some translational inhibitors, and some sup35 mutants, obtained in a Sla1(-) background, are sensitive to Sla1, suggesting that the interaction between Sla1 and Sup35 proteins may play a role in the normal function of the translational apparatus. We hypothesize that Sup35N is involved in regulatory interactions with intracellular structural networks, and [PSI] prion may be formed as a by-product of this process.
Collapse
Affiliation(s)
- P A Bailleul
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | | | | | |
Collapse
|
14
|
Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 1995; 268:880-4. [PMID: 7754373 DOI: 10.1126/science.7754373] [Citation(s) in RCA: 842] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The yeast non-Mendelian factor [psi+] has been suggested to be a self-modified protein analogous to mammalian prions. Here it is reported that an intermediate amount of the chaperone protein Hsp104 was required for the propagation of the [psi+] factor. Over-production or inactivation of Hsp104 caused the loss of [psi+]. These results suggest that chaperone proteins play a role in prion-like phenomena, and that a certain level of chaperone expression can cure cells of prions without affecting viability. This may lead to antiprion treatments that involve the alteration of chaperone amounts or activity.
Collapse
Affiliation(s)
- Y O Chernoff
- Department of Biological Sciences, University of Illinois, Chicago 60607-7020, USA
| | | | | | | | | |
Collapse
|