1
|
Larsen HA, Atkins WM, Nath A. The origins of nonideality exhibited by monoclonal antibodies and Fab fragments in human serum. Protein Sci 2023; 32:e4812. [PMID: 37861473 PMCID: PMC10659951 DOI: 10.1002/pro.4812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The development of therapeutic antibodies remains challenging, time-consuming, and expensive. A key contributing factor is a lack of understanding of how proteins are affected by complex biological environments such as serum and plasma. Nonideality due to attractive or repulsive interactions with cosolutes can alter the stability, aggregation propensity, and binding interactions of proteins in solution. Fluorescence correlation spectroscopy (FCS) can be used to measure apparent second virial coefficient (B2,app ) values for therapeutic and model monoclonal antibodies (mAbs) that capture the nature and strength of interactions with cosolutes directly in undiluted serum and similar complex biological media. Here, we use FCS-derived B2,app measurements to identify the components of human serum responsible for nonideal interactions with mAbs and Fab fragments. Most mAbs exhibit neutral or slightly attractive interactions with intact serum. Generally, mAbs display repulsive interactions with albumin and mildly attractive interactions with IgGs in the context of whole serum. Crucially, however, these attractive interactions are much stronger with pooled IgGs isolated from other serum components, indicating that the effects of serum nonideality can only be understood by studying the intact medium (rather than isolated components). Moreover, Fab fragments universally exhibited more attractive interactions than their parental mAbs, potentially rendering them more susceptible to nonideality-driven perturbations. FCS-based B2,app measurements have the potential to advance our understanding of how physiological environments impact protein-based therapeutics in general. Furthermore, incorporating such assays into preclinical biologics development may help de-risk molecules and make for a faster and more efficient development process.
Collapse
Affiliation(s)
- Hayli A. Larsen
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - William M. Atkins
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Abhinav Nath
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
2
|
Abstract
Invention of DNA origami has transformed the fabrication and application of biological nanomaterials. In this review, we discuss DNA origami nanoassemblies according to their four fundamental mechanical properties in response to external forces: elasticity, pliability, plasticity and stability. While elasticity and pliability refer to reversible changes in structures and associated properties, plasticity shows irreversible variation in topologies. The irreversible property is also inherent in the disintegration of DNA nanoassemblies, which is manifested by its mechanical stability. Disparate DNA origami devices in the past decade have exploited the mechanical regimes of pliability, elasticity, and plasticity, among which plasticity has shown its dominating potential in biomechanical and physiochemical applications. On the other hand, the mechanical stability of the DNA origami has been used to understand the mechanics of the assembly and disassembly of DNA nano-devices. At the end of this review, we discuss the challenges and future development of DNA origami nanoassemblies, again, from these fundamental mechanical perspectives.
Collapse
Affiliation(s)
- Jiahao Ji
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
3
|
Larsen HA, Atkins WM, Nath A. Probing interactions of therapeutic antibodies with serum via second virial coefficient measurements. Biophys J 2021; 120:4067-4078. [PMID: 34384764 DOI: 10.1016/j.bpj.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/17/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
Antibody-based therapeutics are the fastest-growing drug class on the market, used to treat aggressive forms of cancer, chronic autoimmune conditions, and numerous other disease states. Although the specificity, affinity, and versatility of therapeutic antibodies can provide an advantage over traditional small-molecule drugs, their development and optimization can be much more challenging and time-consuming. This is, in part, because the ideal formulation buffer systems used for in vitro characterization inadequately reflect the crowded biological environments (serum, endosomal lumen, etc.) that these drugs experience once administered to a patient. Such environments can perturb the binding of antibodies to their antigens and receptors, as well as homo- and hetero-aggregation, thereby altering therapeutic effect and disposition in ways that are incompletely understood. Although excluded volume effects are classically thought to favor binding, weak interactions with co-solutes in crowded conditions can inhibit binding. The second virial coefficient (B2) parameter quantifies such weak interactions and can be determined by a variety of techniques in dilute solution, but analogous methods in complex biological fluids are not well established. Here, we demonstrate that fluorescence correlation spectroscopy is able to measure diffusive B2-values directly in undiluted serum. Apparent second virial coefficient (B2,app) measurements of antibodies in serum reveal that changes in the balance between attractive and repulsive interactions can dramatically impact global nonideality. Furthermore, our findings suggest that the approach of isolating specific components and completing independent cross-term virial coefficient measurements may not be an effective approach to characterizing nonideality in serum. The approach presented here could enrich our understanding of the effects of biological environments on proteins in general and advance the development of therapeutic antibodies and other protein-based therapeutics.
Collapse
Affiliation(s)
- Hayli A Larsen
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington.
| |
Collapse
|
4
|
Uttinger MJ, Wawra SE, Guckeisen T, Walter J, Bear A, Thajudeen T, Sherwood PJ, Smith A, Wagemans AM, Stafford WF, Peukert W. A Comprehensive Brownian Dynamics Approach for the Determination of Non-ideality Parameters from Analytical Ultracentrifugation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11491-11502. [PMID: 31385708 DOI: 10.1021/acs.langmuir.9b01916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brownian dynamics (BD) has been applied as a comprehensive tool to model sedimentation and diffusion of nanoparticles in analytical ultracentrifugation (AUC) experiments. In this article, we extend the BD algorithm by considering space-dependent diffusion and solvent compressibility. With this, the changes in the sedimentation and diffusion coefficient from altered solvent properties at increased pressures are accurately taken into account. Moreover, it is demonstrated how the concept of space-dependent diffusion is employed to describe concentration-dependent sedimentation and diffusion coefficients, in particular, through the Gralen coefficient and the second virial coefficient. The influence of thermodynamic nonideality on diffusional properties can be accurately simulated and agree with well-known evaluation tools. BD simulations for sedimentation equilibrium and sedimentation velocity (SV) AUC experiments including effects of hydrodynamic and thermodynamic nonideality are validated by global evaluation in SEDANAL. The interplay of solvent compressibility and retrieved nonideality parameters can be studied utilizing BD. Finally, the second virial coefficient is determined for lysozyme from SV AUC experiments and BD simulations and compared to membrane osmometry. These results are in line with DLVO theory. In summary, BD simulations are established for the validation of nonideal sedimentation in AUC providing a sound basis for the evaluation of complex interactions even in polydisperse systems.
Collapse
Affiliation(s)
- Maximilian J Uttinger
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems , Friedrich-Alexander-Universität Erlangen-Nürnberg , Haberstraße 9a , 91058 Erlangen , Germany
| | - Simon E Wawra
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems , Friedrich-Alexander-Universität Erlangen-Nürnberg , Haberstraße 9a , 91058 Erlangen , Germany
| | - Tobias Guckeisen
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems , Friedrich-Alexander-Universität Erlangen-Nürnberg , Haberstraße 9a , 91058 Erlangen , Germany
| | - Johannes Walter
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems , Friedrich-Alexander-Universität Erlangen-Nürnberg , Haberstraße 9a , 91058 Erlangen , Germany
| | - Andreas Bear
- PULS Group, Department of Physics, Interdisciplinary Center of Nanostructured Films , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstrasse 3 , 91058 Erlangen , Germany
| | - Thaseem Thajudeen
- School of Mechanical Sciences , Indian Institute of Technology Goa , Goa College of Engineering Campus , Farmagudi, 403401 Ponda , Goa , India
| | - Peter J Sherwood
- Interactive Technology Inc. , P.O. Box 2768, Oakland , 94602 California , United States
| | - Ana Smith
- PULS Group, Department of Physics, Interdisciplinary Center of Nanostructured Films , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstrasse 3 , 91058 Erlangen , Germany
| | - Anja M Wagemans
- Institute of Food Technology and Food Chemistry , Technical University Berlin , Königin Luise-Str. 22 , 14195 Berlin , Germany
| | - Walter F Stafford
- Department of Neurology , Harvard Medical School , 220 Longwood Avenue Goldenson Building , Boston , 02115 Massachusetts , United States
| | - Wolfgang Peukert
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems , Friedrich-Alexander-Universität Erlangen-Nürnberg , Haberstraße 9a , 91058 Erlangen , Germany
| |
Collapse
|
5
|
Use of molecular crowding for the detection of protein self-association by size-exclusion chromatography. Anal Biochem 2019; 584:113392. [PMID: 31408631 DOI: 10.1016/j.ab.2019.113392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 11/24/2022]
Abstract
The feasibility of employing molecular crowding cosolutes to facilitate the detection of protein self-association by zonal size exclusion chromatography is investigated. Theoretical considerations have established that although the cosolute-induced displacement of a self-association equilibrium towards the oligomeric state invariably occurs in the mobile phase of the column, that displacement is only manifested as a decreased protein elution volume for cosolutes sufficiently small to partition between the mobile and stationary phases. Indeed, the use of a crowding agent sufficiently large to be confined to the mobile phase gives rise to an increased elution volume that could be misconstrued as evidence of cosolute-induced protein dissociation. Those theoretical considerations are reinforced by experimental studies of α-chymotrypsin (a reversibly dimerizing enzyme) on Superdex 200. The use of cosolutes such as sucrose and small polyethylene glycol fractions such as PEG-2000 is therefore recommended for the detection of protein self-association by molecular crowding effects in size exclusion chromatography.
Collapse
|
6
|
Dib L, Salamin N, Gfeller D. Polymorphic sites preferentially avoid co-evolving residues in MHC class I proteins. PLoS Comput Biol 2018; 14:e1006188. [PMID: 29782520 PMCID: PMC5983860 DOI: 10.1371/journal.pcbi.1006188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 06/01/2018] [Accepted: 05/09/2018] [Indexed: 01/11/2023] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules are critical to adaptive immune defence mechanisms in vertebrate species and are encoded by highly polymorphic genes. Polymorphic sites are located close to the ligand-binding groove and entail MHC-I alleles with distinct binding specificities. Some efforts have been made to investigate the relationship between polymorphism and protein stability. However, less is known about the relationship between polymorphism and MHC-I co-evolutionary constraints. Using Direct Coupling Analysis (DCA) we found that co-evolution analysis accurately pinpoints structural contacts, although the protein family is restricted to vertebrates and comprises less than five hundred species, and that the co-evolutionary signal is mainly driven by inter-species changes, and not intra-species polymorphism. Moreover, we show that polymorphic sites in human preferentially avoid co-evolving residues, as well as residues involved in protein stability. These results suggest that sites displaying high polymorphism may have been selected during vertebrates’ evolution to avoid co-evolutionary constraints and thereby maximize their mutability. Amino acid co-evolution represents cases of simultaneous substitution of amino acids at distinct positions in protein sequences. In the MHC-I protein family, such co-evolution could result from either amino acid changes across species or changes within species due to the high polymorphism of MHC-I molecules. Here we show that signals captured by global methods such as Direct Coupling Analysis (DCA) to estimate co-evolution primarily result from changes across species. Moreover, our results indicate that polymorphic sites in MHC-I molecules tend to be decoupled from co-evolving ones. This could suggest that they have been selected to maximize their mutability, which is known to be functionally important to entail MHC-I molecules with a wide repertoire of binding specificities for antigen presentation.
Collapse
Affiliation(s)
- Linda Dib
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Switzerland
- Swiss Institutes of Bioinformatics, Quartier Sorge, Lausanne, Switzerland
| | - Nicolas Salamin
- Swiss Institutes of Bioinformatics, Quartier Sorge, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Switzerland
- Swiss Institutes of Bioinformatics, Quartier Sorge, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Hall D, Harding SE. Foreword to 'Quantitative and analytical relations in biochemistry'-a special issue in honour of Donald J. Winzor's 80th birthday. Biophys Rev 2016; 8:269-277. [PMID: 28510020 PMCID: PMC5425807 DOI: 10.1007/s12551-016-0227-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022] Open
Abstract
The purpose of this special issue is to honour Professor Donald J. Winzor's long career as a researcher and scientific mentor, and to celebrate the milestone of his 80th birthday. Throughout his career, Don has been renowned for his development of clever approximations to difficult quantitative relations governing a range of biophysical measurements. The theme of this special issue, 'Quantitative and analytical relations in biochemistry', was chosen to reflect this aspect of Don's scientific approach.
Collapse
Affiliation(s)
- Damien Hall
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
8
|
Harding SE, Gillis RB, Adams GG. Assessing sedimentation equilibrium profiles in analytical ultracentrifugation experiments on macromolecules: from simple average molecular weight analysis to molecular weight distribution and interaction analysis. Biophys Rev 2016; 8:299-308. [PMID: 28003857 PMCID: PMC5135724 DOI: 10.1007/s12551-016-0232-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022] Open
Abstract
Molecular weights (molar masses), molecular weight distributions, dissociation constants and other interaction parameters are fundamental characteristics of proteins, nucleic acids, polysaccharides and glycoconjugates in solution. Sedimentation equilibrium analytical ultracentrifugation provides a powerful method with no supplementary immobilization, columns or membranes required. It is a particularly powerful tool when used in conjunction with its sister technique, namely sedimentation velocity. Here, we describe key approaches now available and their application to the characterization of antibodies, polysaccharides and glycoconjugates. We indicate how major complications, such as thermodynamic non-ideality, can now be routinely dealt with, thanks to a great extent to the extensive contribution of Professor Don Winzor over several decades of research.
Collapse
Affiliation(s)
- Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, UK.
| | - Richard B Gillis
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, UK.,School of Health Sciences, Queen's Medical Centre, Nottingham, NG7 2HA, UK
| | - Gary G Adams
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, UK.,School of Health Sciences, Queen's Medical Centre, Nottingham, NG7 2HA, UK
| |
Collapse
|
9
|
A Hilly path through the thermodynamics and statistical mechanics of protein solutions. Biophys Rev 2016; 8:291-298. [PMID: 28510018 DOI: 10.1007/s12551-016-0226-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022] Open
Abstract
The opus of Don Winzor in the fields of physical and analytical biochemistry is a major component of that certain antipodean approach to this broad area of research that blossomed in the second half of the twentieth century. The need to formulate problems in terms of thermodynamic nonideality posed the challenge of describing a clear route from molecular interactions to the parameters that biochemists routinely measure. Mapping out this route required delving into the statistical mechanics of solutions of macromolecules, and at every turn mathematically complex, rigorous, general results that had previously been derived previously, often by Terrell Hill, came to the fore. Central to this work were the definition of the "thermodynamic activity", the pivotal position of the polynomial expansion of the osmotic pressure in terms of molar concentration and the relationship of virial coefficients to details of the forces between limited-size groups of interacting molecules. All of this was richly exploited in the task of taking account of excluded volume and electrostatic interactions, especially in the use of sedimentation equilibrium to determine values of constants for molecular association reactions. Such an approach has proved relevant to the study of molecular interactions generally, even those between the main macromolecular solute and components of the solvent, by using techniques such as exclusion and affinity chromatography as well as light scattering.
Collapse
|
10
|
Kamal MZ, Ahmad S, Rao NM. Stabilizing effect of polyols is sensitive to inherent stability of protein. Biophys Chem 2011; 156:68-71. [DOI: 10.1016/j.bpc.2010.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 12/26/2010] [Indexed: 10/18/2022]
|
11
|
Crisman RL, Randolph TW. Crystallization of recombinant human growth hormone at elevated pressures: Pressure effects on PEG-induced volume exclusion interactions. Biotechnol Bioeng 2010; 107:663-72. [DOI: 10.1002/bit.22832] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Douglas JF, Dudowicz J, Freed KF. Crowding induced self-assembly and enthalpy-entropy compensation. PHYSICAL REVIEW LETTERS 2009; 103:135701. [PMID: 19905522 DOI: 10.1103/physrevlett.103.135701] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Indexed: 05/28/2023]
Abstract
We develop a general virial expansion to describe the influence of molecular additives on the equilibrium self-assembly of proteins or other supermolecularly assembling species M in solution. When specialized to high molar mass polymer additives, the cross-virial coefficient between the polymer and M, which dominates this effect, is found to vanish at a particular temperature T_{Theta} corresponding to an enthalpy-entropy compensation condition. Specifically, the increased stability of the assembled form of M, due to the modification of the entropy of the assembly by repulsive polymer-protein interactions, is progressively compensated by attractive interactions that alter the enthalpy of assembly.
Collapse
Affiliation(s)
- Jack F Douglas
- Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | | |
Collapse
|
13
|
Abstract
The typical environment for biomolecules in vivo is highly crowded. Under such conditions chemical activities, rather than simply concentrations, govern the behavior of the molecules. In this chapter we discuss the underlying solvation principles that give rise to the chemical activities. We focus on simple experimentally accessible examples, macromolecular crowding, protein folding, and ligand binding under crowded conditions. We discuss effects of high concentrations of both macromolecules and small molecules in terms of the Kirkwood-Buff theory, which couples solution structure to thermodynamics.
Collapse
|
14
|
Winzor DJ, Deszczynski M, Harding SE, Wills PR. Nonequivalence of second virial coefficients from sedimentation equilibrium and static light scattering studies of protein solutions. Biophys Chem 2007; 128:46-55. [PMID: 17382457 DOI: 10.1016/j.bpc.2007.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 03/02/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
Experimental data for ovalbumin and lysozyme are presented to highlight the nonequivalence of second virial coefficients obtained for proteins by sedimentation equilibrium and light scattering. Theoretical considerations confirm that the quantity deduced from sedimentation equilibrium distributions is B(22), the osmotic second virial coefficient describing thermodynamic nonideality arising solely from protein self-interaction. On the other hand, the virial coefficient determined by light scattering is shown to reflect the combined contributions of protein-protein and protein-buffer interactions to thermodynamic nonideality of the protein solution. Misidentification of the light scattering parameter as B(22) accounts for published reports of negative osmotic second virial coefficients as indicators of conditions conducive to protein crystal growth. Finally, textbook assertions about the equivalence of second virial coefficients obtained by sedimentation equilibrium and light scattering reflect the restriction of consideration to single-solute systems. Although sedimentation equilibrium distributions for buffered protein solutions are, indeed, amenable to interpretation in such terms, the same situation does not apply to light scattering measurements because buffer constituents cannot be regarded as part of the solvent: instead they must be treated as non-scattering cosolutes.
Collapse
Affiliation(s)
- Donald J Winzor
- Department of Biochemistry, School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
15
|
Winzor DJ, Wills PR. Molecular crowding effects of linear polymers in protein solutions. Biophys Chem 2005; 119:186-95. [PMID: 16129549 DOI: 10.1016/j.bpc.2005.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 11/20/2022]
Abstract
Measurement of protein-polymer second virial coefficients (BAP) by sedimentation equilibrium studies of carbonic anhydrase and cytochrome c in the presence of dextrans (T10-T80) has revealed an inverse dependence of BAP upon dextran molecular mass that conforms well with the behaviour predicted for the excluded-volume interaction between a spherical protein solute A and a random-flight representation of the polymeric cosolute P. That model of the protein-polymer interaction is also shown to provide a reasonable description of published gel chromatographic and equilibrium dialysis data on the effect of polymer molecular mass on BAP for human serum albumin in the presence of polyethylene glycols, a contrary finding from analysis of albumin solubility measurements being rejected on theoretical grounds. Inverse dependence upon polymer chainlength is also the predicted excluded-volume effect on the strength of several types of macromolecular equilibria-protein isomerization, protein dimerization, and 1:1 complex formation between dissimilar protein reactants. It is therefore concluded that published experimental observations of the reverse dependence, preferential reaction enhancement within DNA replication complexes by larger polyethylene glycols, must reflect the consequences of cosolute chemical interactions that outweigh those of thermodynamic nonideality arising from excluded-volume effects.
Collapse
Affiliation(s)
- Donald J Winzor
- Department of Biochemistry, School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
16
|
Minton AP. Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited. Biophys J 2004; 88:971-85. [PMID: 15596487 PMCID: PMC1305169 DOI: 10.1529/biophysj.104.050351] [Citation(s) in RCA: 279] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Statistical-thermodynamic models for the excluded volume interaction between an unfolded polypeptide chain and a hard sphere or hard rod cosolute are presented, permitting estimation of the free energy of transfer of a polypeptide chain with fixed radius of gyration from a dilute (ideal) solution to a solution containing volume fraction of either cosolute. Also presented is a general thermodynamic description of the equilibrium between a unique native state and a manifold of unfolded or partially unfolded states of a protein distinguished by their respective radii of gyration. Together with results of a Monte Carlo calculation of the distribution of radii of gyration of four different unfolded proteins published by Goldenberg in 2003, these models are used to estimate the effect of intermolecular excluded volume upon an experimentally measurable apparent two-state constant for equilibrium between native and nonnative conformations of each of the four proteins, and upon the experimentally measurable root mean-square radius of gyration of the unfolded protein. Model calculations predict that addition of inert cosolutes at volume fractions exceeding 0.1 stabilizes the native state relative to unfolded states by an amount that increases strongly with and with the size of the native protein relative to the size of inert cosolute, and results in significant compaction of the manifold of unfolded states. Predicted effects are in qualitative and/or semiquantitative accord with the results of several published experimental studies.
Collapse
Affiliation(s)
- Allen P Minton
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
17
|
Tian L, Yam L, Zhou N, Tat H, Uhrich KE. Amphiphilic Scorpion-like Macromolecules: Design, Synthesis, and Characterization. Macromolecules 2003. [DOI: 10.1021/ma030411a] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lu Tian
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854
| | - Larry Yam
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854
| | - Nan Zhou
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854
| | - Henry Tat
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854
| |
Collapse
|
18
|
Cunha S, Woldringh CL, Odijk T. Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids. J Struct Biol 2001; 136:53-66. [PMID: 11858707 DOI: 10.1006/jsbi.2001.4420] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleoids of Escherichia coli were isolated by osmotic shock under conditions of low salt in the absence of added polyamines or Mg(2+). As determined by fluorescence microscopy, the isolated nucleoids in 0.2 M NaCl are expanded structures with an estimated volume of about 27 microm(3) according to a procedure based on a 50% threshold for the fluorescence intensity. The nucleoid volume is measured as a function of the concentration of added polyethylene glycol. The collapse is a continuous process, so that a coil-globule transition is not witnessed. The Helmholtz free energy of the nucleoids is determined via the depletion interaction between the DNA helix and the polyethylene glycol chains. The resulting compaction relation is discussed in terms of the current theory of branched DNA supercoils and it is concluded that the in vitro nucleoid is crosslinked in a physical sense. Despite the congested and crosslinked state of the nucleoid, the relaxation rate of its superhelical segments, as monitored by dynamic light scattering, turns out to be purely diffusional. At small scales, the nucleoid behaves as a fluid.
Collapse
Affiliation(s)
- S Cunha
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, Kruislaan 316, 1098 SM Amsterdam, The Netherlands
| | | | | |
Collapse
|
19
|
Maassen R, Eisenriegler E, Bringer A. Density depletion profile and solvation free energy of a colloidal particle in a polymer solution. J Chem Phys 2001. [DOI: 10.1063/1.1394206] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Davis-Searles PR, Saunders AJ, Erie DA, Winzor DJ, Pielak GJ. Interpreting the effects of small uncharged solutes on protein-folding equilibria. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:271-306. [PMID: 11340061 DOI: 10.1146/annurev.biophys.30.1.271] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteins are designed to function in environments crowded by cosolutes, but most studies of protein equilibria are conducted in dilute solution. While there is no doubt that crowding changes protein equilibria, interpretations of the changes remain controversial. This review combines experimental observations on the effect of small uncharged cosolutes (mostly sugars) on protein stability with a discussion of the thermodynamics of cosolute-induced nonideality and critical assessments of the most commonly applied interpretations. Despite the controversy surrounding the most appropriate manner for interpreting these effects of thermodynamic nonideality arising from the presence of small cosolutes, experimental advantage may still be taken of the ability of the cosolute effect to promote not only protein stabilization but also protein self-association and complex formation between dissimilar reactants. This phenomenon clearly has potential ramifications in the cell, where the crowded environment could well induce the same effects.
Collapse
Affiliation(s)
- P R Davis-Searles
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,USA.
| | | | | | | | | |
Collapse
|
21
|
Laue TM, Stafford WF. Modern applications of analytical ultracentrifugation. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 28:75-100. [PMID: 10410796 DOI: 10.1146/annurev.biophys.28.1.75] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Analytical ultracentrifugation is a classical method of biochemistry and molecular biology. Because it is a primary technique, sedimentation can provide first-principle hydrodynamic and first-principle thermodynamic information for nearly any molecule, in a wide range of solvents and over a wide range of solute concentrations. For many questions, it is the technique of choice. This review stresses what information is available from analytical ultracentrifugation and how that information is being extracted and used in contemporary applications.
Collapse
Affiliation(s)
- T M Laue
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham 03824-3544, USA.
| | | |
Collapse
|
22
|
Parsegian VA, Rand RP, Rau DC. Osmotic stress, crowding, preferential hydration, and binding: A comparison of perspectives. Proc Natl Acad Sci U S A 2000; 97:3987-92. [PMID: 10760270 PMCID: PMC18129 DOI: 10.1073/pnas.97.8.3987] [Citation(s) in RCA: 370] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There has been much confusion recently about the relative merits of different approaches, osmotic stress, preferential interaction, and crowding, to describe the indirect effect of solutes on macromolecular conformations and reactions. To strengthen all interpretations of measurements and to forestall further unnecessary conceptual or linguistic confusion, we show here how the different perspectives all can be reconciled. Our approach is through the Gibbs-Duhem relation, the universal constraint on the number of ways it is possible to change the temperature, pressure, and chemical potentials of the several components in any thermodynamically defined system. From this general Gibbs-Duhem equation, it is possible to see the equivalence of the different perspectives and even to show the precise identity of the more specialized equations that the different approaches use.
Collapse
Affiliation(s)
- V A Parsegian
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5626, USA.
| | | | | |
Collapse
|
23
|
van Dijk JA, Smit JA. Size-exclusion chromatography--multiangle laser light scattering analysis of beta-lactoglobulin and bovine serum albumin in aqueous solution with added salt. J Chromatogr A 2000; 867:105-12. [PMID: 10670713 DOI: 10.1016/s0021-9673(99)01161-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solution characteristics of beta-LGB (beta-lactoglobulin) and BSA (bovine serum albumin) are reported as determined by size-exclusion chromatography with on-line multiangle laser light scattering, differential refractive index and UV detection. The order of the three in series placed detectors as well as the interdetector volumes have been carefully pointed out. At concentrations below 2.5 mg/ml and at different values of pH the weight-average molecular mass of both proteins have been obtained. They indicate the appearance of monomers, dimers and higher order multimers. For beta-LGB the growth of self-associates could be observed at the isoelectric point over a period of days. The range of applicability of the method is discussed.
Collapse
Affiliation(s)
- J A van Dijk
- Department of Physical and Macromolecular Chemistry, Leiden University, The Netherlands
| | | |
Collapse
|
24
|
Rivas G, Stafford W, Minton AP. Characterization of heterologous protein-protein interactions using analytical ultracentrifugation. Methods 1999; 19:194-212. [PMID: 10527726 DOI: 10.1006/meth.1999.0851] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methods for quantitative characterization of heterologous protein-protein interactions by means of analytical ultracentrifugation (AUC) include sedimentation equilibrium, tracer sedimentation equilibrium, sedimentation velocity, and analytical band sedimentation. Fundamental principles governing the behavior of macromolecules in a centrifugal field are summarized, and the application of these principles to the interpretation of data obtained from each type of experiment is reviewed. Instrumentation and software for the acquisition and analysis of data obtained from different types of AUC experiments are described.
Collapse
Affiliation(s)
- G Rivas
- Centro de Investigaciones Biológicas, CSIC, Madrid, 28006, Spain
| | | | | |
Collapse
|
25
|
Rivas G, Fernandez JA, Minton AP. Direct observation of the self-association of dilute proteins in the presence of inert macromolecules at high concentration via tracer sedimentation equilibrium: theory, experiment, and biological significance. Biochemistry 1999; 38:9379-88. [PMID: 10413513 DOI: 10.1021/bi990355z] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The technique of tracer sedimentation equilibrium [Rivas, G., et al. (1994) Biochemistry, 2341-2348 (1); Rivas, G., et al. (1996) J. Mol. Recognit. 9, 31-38 (2)] is utilized, together with an extension of the theory of sedimentation equilibrium of highly nonideal solutions [Chatelier and Minton, (1987) Biopolymers 26, 1097-1113 (3)], to characterize the thermodynamic activity and/or the state of association of a dilute, labeled macromolecular solute in the presence of an arbitary concentration of a second, unlabeled macromolecular solute. Experiments are performed on solutions of labeled fibrinogen (0.25-1 g/L) in bovine serum albumin (0-100 g/L) in the presence and absence of divalent cations (Ca(2+), Mg(2+)), and on solutions of labeled tubulin (0.2-0.6 g/L) in dextran (0-100 g/L). It is found that in the absence of the divalent cations, the large dependence of the thermodynamic activity of fibrinogen on BSA concentration is well accounted for by a simple model for steric repulsion. In the presence of the cations and sufficiently large concentrations of BSA (>30 g/L), fibrinogen appears to self-associate to a weight-average molar mass approximately twice that of monomeric fibrinogen. Tubulin appears to self-associate to an extent that increases monotonically with increasing dextran concentration, reaching a weight-average molar mass almost 3 times that of the alphabeta dimer in the presence of 100 g/L dextran. Possible biological ramifications are discussed.
Collapse
Affiliation(s)
- G Rivas
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
26
|
Chatterjee AP, Schweizer KS. Correlation effects in dilute particle-polymer mixtures. J Chem Phys 1998. [DOI: 10.1063/1.477730] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Chatterjee AP, Schweizer KS. Microscopic theory of polymer-mediated interactions between spherical particles. J Chem Phys 1998. [DOI: 10.1063/1.477729] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Minton AP. Molecular crowding: analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion. Methods Enzymol 1998; 295:127-49. [PMID: 9750217 DOI: 10.1016/s0076-6879(98)95038-8] [Citation(s) in RCA: 262] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A P Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| |
Collapse
|
29
|
Abstract
Dextran has been found to enhance the polymerisation of actin. This enhancement increases exponentially with increasing mass concentrations of dextran, in a manner that is consistent with excluded volume theory. Mathematical prediction of experimental results is difficult due to the fact that all participating species, namely F-actin, G-actin and dextran are best represented by differently shaped hard particles. Modelling dextran as a sphere of radius defined by an effective thermodynamic radius (Reff), we have predicted our experimental results to an acceptable degree, given the relative crudity of the model. The results imply that the highly crowded cellular environment may help to stabilise the filamentous actin network in vivo.
Collapse
Affiliation(s)
- R A Lindner
- Department of Biochemistry, University of Sydney, NSW, Australia
| | | |
Collapse
|
30
|
Minton AP. Influence of excluded volume upon macromolecular structure and associations in 'crowded' media. Curr Opin Biotechnol 1997; 8:65-9. [PMID: 9013656 DOI: 10.1016/s0958-1669(97)80159-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Results of experimental studies published since the last major review of excluded volume effects in biopolymer solutions in 1993 add to our appreciation of the scope and magnitude of such effects. Recent theoretical studies have improved incrementally our ability to understand and model excluded volume effects in simple model systems.
Collapse
Affiliation(s)
- A P Minton
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 8, Room 226, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
31
|
Affiliation(s)
- Theo Odijk
- Faculty of Chemical Engineering and Materials Science, Delft University of Technology, P.O. Box 5045, 2600 GA Delft, The Netherlands
| |
Collapse
|
32
|
Winzor DJ, Wills PR. Thermodynamic nonideality of enzyme solutions supplemented with inert solutes: yeast hexokinase revisited. Biophys Chem 1995; 57:103-10. [PMID: 8534833 DOI: 10.1016/0301-4622(95)00051-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Published experimental results on the activating effect of polyethylene glycol on the interaction of yeast hexokinase with glucose (R.P. Rand, N.L. Fuller, P. Butko, G. Francis and P. Nicholls, Biochemistry, 32 (1993) 5925) are reinterpreted in statistical-mechanical terms of excluded volume. Of particular interest is the ability of this standard treatment of thermodynamic nonideality to accommodate the observed non-exponential dependence of the activation upon osmotic pressure of the polyethylene glycol solution--a dependence which is not predicted by analyses based on the concept of osmotic stress that was invoked originally to account for the results.
Collapse
Affiliation(s)
- D J Winzor
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | |
Collapse
|