1
|
Nielsen SN, Müller F. The Entropy of Entropy: Are We Talking about the Same Thing? ENTROPY (BASEL, SWITZERLAND) 2023; 25:1288. [PMID: 37761587 PMCID: PMC10529441 DOI: 10.3390/e25091288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
In the last few decades, the number of published papers that include search terms such as thermodynamics, entropy, ecology, and ecosystems has grown rapidly. Recently, background research carried out during the development of a paper on "thermodynamics in ecology" revealed huge variation in the understanding of the meaning and the use of some of the central terms in this field-in particular, entropy. This variation seems to be based primarily on the differing educational and scientific backgrounds of the researchers responsible for contributions to this field. Secondly, some ecological subdisciplines also seem to be better suited and applicable to certain interpretations of the concept than others. The most well-known seems to be the use of the Boltzmann-Gibbs equation in the guise of the Shannon-Weaver/Wiener index when applied to the estimation of biodiversity in ecology. Thirdly, this tendency also revealed that the use of entropy-like functions could be diverted into an area of statistical and distributional analyses as opposed to real thermodynamic approaches, which explicitly aim to describe and account for the energy fluxes and dissipations in the systems. Fourthly, these different ways of usage contribute to an increased confusion in discussions about efficiency and possible telos in nature, whether at the developmental level of the organism, a population, or an entire ecosystem. All the papers, in general, suffer from a lack of clear definitions of the thermodynamic functions used, and we, therefore, recommend that future publications in this area endeavor to achieve a more precise use of language. Only by increasing such efforts it is possible to understand and resolve some of the significant and possibly misleading discussions in this area.
Collapse
Affiliation(s)
- Søren Nors Nielsen
- Department of Chemistry and Bioscience, Section for Bioscience and Engineering, Sustainable Bioresource Technology, Aalborg University, A.C. Meyers Vænge 15, DK-2450 Copenhagen, Denmark
| | - Felix Müller
- Department of Ecosystem Management, Institute for Natural Resource Conservation, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 75, D-24118 Kiel, Germany;
| |
Collapse
|
2
|
|
3
|
Friesen DE, Craddock TJA, Kalra AP, Tuszynski JA. Biological wires, communication systems, and implications for disease. Biosystems 2014; 127:14-27. [PMID: 25448891 DOI: 10.1016/j.biosystems.2014.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 12/14/2022]
Abstract
Microtubules, actin, and collagen are macromolecular structures that compose a large percentage of the proteins in the human body, helping form and maintain both intracellular and extracellular structure. They are biological wires and are structurally connected through various other proteins. Microtubules (MTs) have been theorized to be involved in classical and quantum information processing, and evidence continues to suggest possible semiconduction through MTs. The previous Dendritic Cytoskeleton Information Processing Model has hypothesized how MTs and actin form a communication network in neurons. Here, we review information transfer possibilities involving MTs, actin, and collagen, and the evidence of an organism-wide high-speed communication network that may regulate morphogenesis and cellular proliferation. The direct and indirect evidence in support of this hypothesis, and implications for chronic diseases such as cancer and neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Douglas E Friesen
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Travis J A Craddock
- Center for Psychological Studies, Graduate School of Computer and Information Sciences, College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Aarat P Kalra
- Department of Chemistry, Dayalbagh Educational Institute, Agra 282005, India
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada; Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
4
|
|
5
|
Abstract
There are thousands of experiments in the world of science, but we do not have a uniform system, in which different results from the divergent development of science, as well as from our entire world can be connected to each other in a wholistic way. If divergence predominated over convergence, it would favor destructive and self-disastrous processes. Besides, it is indisputable that such a complex theory must involve the matter of consciousness and of the subconscious, as well as laws of physics, similarly to the concept presented here. According to Neumann's reasoning, and because the brain does not use the language of mathematics, any complex theory should think in terms of tendencies and processes instead of formulas. Therefore, the complex theory described in this paper works in processes. In the first part of this article a possible role of the brain's biopiezoelectric crystals is shown as they could take part in the process of storage of conscious information in a holographic way in the brain. The second part describes a concept of quantum vacuum theory of the unconscious implicit background (subconscious) and its connection with consciousness. In the third part, the global role of virtual particles (scalar waves) in the processes of the brain and in the material world is raised.
Collapse
Affiliation(s)
- ISTVÁN BÓKKON
- National Institute of Chemical Safety, Láng Endre u. 68, Budapest 1238, Hungary
| |
Collapse
|
6
|
Scarr G. Simple geometry in complex organisms. J Bodyw Mov Ther 2010; 14:424-44. [DOI: 10.1016/j.jbmt.2008.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/22/2008] [Accepted: 11/22/2008] [Indexed: 11/30/2022]
|
7
|
Bókkon I, Salari V. Information storing by biomagnetites. J Biol Phys 2009; 36:109-20. [PMID: 19728122 DOI: 10.1007/s10867-009-9173-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 08/13/2009] [Indexed: 11/26/2022] Open
Abstract
Since the discovery of the presence of biogenic magnetites in living organisms, there have been speculations on the role that these biomagnetites play in cellular processes. It seems that the formation of biomagnetite crystals is a universal phenomenon and not an exception in living cells. Many experimental facts show that features of organic and inorganic processes could be indistinguishable at nanoscale levels. Living cells are quantum "devices" rather than simple electronic devices utilizing only the charge of conduction electrons. In our opinion, due to their unusual biophysical properties, special biomagnetites must have a biological function in living cells in general and in the brain in particular. In this paper, we advance a hypothesis that while biomagnetites are developed jointly with organic molecules and cellular electromagnetic fields in cells, they can record information about the Earth's magnetic vector potential of the entire flight in migratory birds.
Collapse
|
8
|
Tombarkiewicz B. Effect of long-term geomagnetic field deprivation on the concentration of some elements in the hair of laboratory rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:75-79. [PMID: 21783891 DOI: 10.1016/j.etap.2008.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 05/31/2023]
Abstract
The aim of the study was to determine the effect of long-term geomagnetic field (GMF) deprivation on the concentration of selected elements in the hair of laboratory rats. A total of 32 Wistar laboratory rats were divided into four equal groups (males and females) kept under hypomagnetic conditions (GMF vertical component below 20nT) and two control groups (males and females) kept free of field disturbances (GMF vertical component approx. 38000nT). At the beginning and at 7 months of the experiment, hair was taken from the dorsal part of all rats and analysed using atomic emission spectrometry for the concentration of selected magnetic elements (Fe, Ni, Co, Cr, Mn and Cu). Long-term GMF deprivation was found to affect the concentration of Fe, Mn, Cu and Cr, but had no significant effect on the concentration of Co or Ni in the hair of the analysed rats.
Collapse
Affiliation(s)
- Barbara Tombarkiewicz
- Laboratory of Animal Hygiene, Department of Poultry and Fur Animal Breeding and Animal Hygiene, Agricultural University of Kraków, Al. Mickiwicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
9
|
Bernabò N, Tettamanti E, Pistilli MG, Nardinocchi D, Berardinelli P, Mattioli M, Barboni B. Effects of 50 Hz extremely low frequency magnetic field on the morphology and function of boar spermatozoa capacitated in vitro. Theriogenology 2006; 67:801-15. [PMID: 17196643 DOI: 10.1016/j.theriogenology.2006.10.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate the effect of an acute exposure to a sinusoidal MF-ELF (50 Hz, 1mT) on the ability of boar mature spermatozoa to acquire the fertilizing competence in vitro. The spermatozoa exposed during the 4h of incubation to the MF-ELF were evaluated for morphological (surface morphology and acrosome integrity) and functional parameters (cell viability, motility, induction of acrosomal reaction, AR, and the ability to in vitro fertilize oocytes). In parallel, the intracellular Ca(2+) levels as well as the major mechanisms of Ca(2+) clearance were assessed: (45)Ca intakes and intracellular Ca(2+) sequestration by analyzing intracellular Ca(2+) elevation induced by thapsigargin or studying mitochondrial function with Mito-Tracker. The MF-ELF exposure did not affect sperm viability and morphology during the first h of incubation when sperm Ca(2+) homeostasis were already compromised. First of all, MF-ELF treated spermatozoa showed resting intracellular Ca(2+) levels significantly lower than those recorded in controls. This result was dependent on a lower extracellular Ca(2+) intake and from the inhibitory role exerted on both intracellular Ca(2+) storages. As a consequence, after 1h of incubation MF-ELF exposed cells displayed a reduced motility, a modest reactivity when coincubated with solubilized zonae pellucidae and a reduction in oocyte penetrating ability. After 2 or 4h of incubation, in addition, signs of morphological damage appeared on plasma membrane and at acrosomal level. In conclusion, MF-ELF influence negatively spermatozoa first by impairing cell Ca(2+) homeostasis then by dramatically affecting sperm morphology and function.
Collapse
Affiliation(s)
- N Bernabò
- Institute of Physiology, Department of Biomedical Science, P.zza Aldo Moro 45, Teramo, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Water was called by Szent-Gyorgi "life's mater and matrix, mother and medium." This chapter considers both aspects of his statement. Many astrobiologists argue that some, if not all, of Earth's water arrived during cometary bombardments. Amorphous water ices of comets possibly facilitated organization of complex organic molecules, kick-starting prebiotic evolution. In Gaian theory, Earth retains its water as a consequence of biological activity. The cell cytomatrix is a proteinaceous matrix/lattice incorporating the cytoskeleton, a pervasive, holistic superstructural network that integrates metabolic pathways. Enzymes of metabolic pathways are ordered in supramolecular clusters (metabolons) associated with cytoskeleton and/or membranes. Metabolic intermediates are microchanneled through metabolons without entering a bulk aqueous phase. Rather than being free in solution, even major signaling ions are probably clustered in association with the cytomatrix. Chloroplasts and mitochondria, like bacteria and archaea, also contain a cytoskeletal lattice, metabolons, and channel metabolites. Eukaryotic metabolism is mathematically a scale-free or small-world network. Enzyme clusters of bacterial origin are incorporated at a pathway level that is architecturally archaean. The eucaryotic cell may be a product of serial endosymbiosis, a chimera. Cell cytoplasm is approximately 80% water. Water is indisputably a conserved structural element of proteins, essential to their folding, specificity, ligand binding, and to enzyme catalysis. The vast literature of organized cell water has long argued that the cytomatrix and cell water are an entire system, a continuum, or gestalt. Alternatives are offered to mainstream explanations of cell electric potentials, ion channel, enzyme, and motor protein function, in terms of high-order cooperative systems of ions, water, and macromolecules. This chapter describes some prominent concepts of organized cell water, including vicinal water network theory, the association-induction hypothesis, wave-cluster theory, phase-gel transition theories, and theories of low- and high-density water polymorphs.
Collapse
Affiliation(s)
- V A Shepherd
- Department of Biophysics, School of Physics, The University of NSW NSW 2052, Sydney, Australia
| |
Collapse
|
11
|
Ho MW, Ulanowicz R. Sustainable systems as organisms? Biosystems 2005; 82:39-51. [PMID: 15985324 DOI: 10.1016/j.biosystems.2005.05.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/18/2005] [Accepted: 05/18/2005] [Indexed: 11/21/2022]
Abstract
Schrödinger [Schrödinger, E., 1944. What is Life? Cambridge University Press, Cambridge] marvelled at how the organism is able to use metabolic energy to maintain and even increase its organisation, which could not be understood in terms of classical statistical thermodynamics. Ho [Ho, M.W., 1993. The Rainbow and the Worm, The Physics of Organisms, World Scientific, Singapore; Ho, M.W., 1998a. The Rainbow and the Worm, The Physics of Organisms, 2nd (enlarged) ed., reprinted 1999, 2001, 2003 (available online from ISIS website www.i-sis.org.uk)] outlined a novel "thermodynamics of organised complexity" based on a nested dynamical structure that enables the organism to maintain its organisation and simultaneously achieve non-equilibrium and equilibrium energy transfer at maximum efficiency. This thermodynamic model of the organism is reminiscent of the dynamical structure of steady state ecosystems identified by Ulanowicz [Ulanowicz, R.E., 1983. Identifying the structure of cycling in ecosystems. Math. Biosci. 65, 210-237; Ulanowicz, R.E., 2003. Some steps towards a central theory of ecosystem dynamics. Comput. Biol. Chem. 27, 523-530]. The healthy organism excels in maintaining its organisation and keeping away from thermodynamic equilibrium--death by another name--and in reproducing and providing for future generations. In those respects, it is the ideal sustainable system. We propose therefore to explore the common features between organisms and ecosystems, to see how far we can analyse sustainable systems in agriculture, ecology and economics as organisms, and to extract indicators of the system's health or sustainability. We find that looking at sustainable systems as organisms provides fresh insights on sustainability, and offers diagnostic criteria for sustainability that reflect the system's health. In the case of ecosystems, those diagnostic criteria of health translate into properties such as biodiversity and productivity, the richness of cycles, the efficiency of energy use and minimum dissipation. In the case of economic systems, they translate into space-time differentiation or organised heterogeneity, local autonomy and sufficiency at appropriate levels, reciprocity and equality of exchange, and most of all, balancing the exploitation of natural resources--real input into the system--against the ability of the ecosystem to regenerate itself.
Collapse
Affiliation(s)
- Mae-Wan Ho
- Biophysics Group, Department of Pharmacy, King's College, London SE1 9NN, UK.
| | | |
Collapse
|
12
|
|
13
|
Ho MW, Triglia A, Musumeci F, Scordino A. Changes in membrane potential and delayed luminescence of Acetabularia acetabulum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 55:70-3. [PMID: 10877070 DOI: 10.1016/s1011-1344(00)00033-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This paper examines the effect of changes in membrane potential on the critical parameters of delayed luminescence of Acetabularia acetabulum. We show that these parameters are altered by changes in membrane potential in ways that may reflect concomitant changes in energy storage and energy coupling.
Collapse
Affiliation(s)
- M W Ho
- Open University, Milton Keynes, UK
| | | | | | | |
Collapse
|
14
|
Ho MW, Knight DP. The acupuncture system and the liquid crystalline collagen fibers of the connective tissues. THE AMERICAN JOURNAL OF CHINESE MEDICINE 1998; 26:251-63. [PMID: 9862013 DOI: 10.1142/s0192415x98000294] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We propose that the acupuncture system and the DC body field detected by western scientists both in here in the continuum of liquid crystalline collagen fibers that make up the bulk of the connective tissues. Bound water layers on the collagen fibers provide proton conduction pathways for rapid intercommunication throughout the body, enabling the organism to function as a coherent whole. This liquid crystalline continuum mediates hyperreactivity to allergens and the body's responsiveness to different forms of subtle energy medicine. It constitutes a "body consciousness" working in tandem with the "brain consciousness" of the nervous system. We review supporting evidence from biochemistry, cell biology, biophysics and neurophysiology, and suggest experiments to test our hypothesis.
Collapse
Affiliation(s)
- M W Ho
- Bioelectrodynamics Laboratory, Open University, Milton Keynes, U.K
| | | |
Collapse
|
15
|
Ho M, Musumeci F, Scordino A, Triglia A. Influence of cations in extracellular liquid on delayed luminescence of Acetabularia acetabulum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1998. [DOI: 10.1016/s1011-1344(98)00161-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Ho MW. Towards a theory of the organism. INTEGRATIVE PHYSIOLOGICAL AND BEHAVIORAL SCIENCE : THE OFFICIAL JOURNAL OF THE PAVLOVIAN SOCIETY 1997; 32:343-63. [PMID: 9502521 DOI: 10.1007/bf02688631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A tentative theory of the organism is derived from McClare's (1971) notion of stored energy and Denbigh's (1951) thermodynamics of the steady state, as a dynamically closed, energetically self-sufficient domain of cyclic non-dissipative processes coupled to irreversible dissipative processes. This effectively frees the organism from thermodynamic constraints so that it is poised for rapid, specific intercommunication, enabling it to function as a coherent whole. In the ideal, the organism is a quantum superposition of coherent activities over all space-time domains, with instantaneous (nonlocal) noiseless intercommunication throughout the system. Evidence for quantum coherence is considered and reviewed.
Collapse
Affiliation(s)
- M W Ho
- Bioelectrodynamics Laboratory, Open University, Milton Keynes, UK
| |
Collapse
|