1
|
Roobab U, Fidalgo LG, Arshad RN, Khan AW, Zeng XA, Bhat ZF, Bekhit AEDA, Batool Z, Aadil RM. High-pressure processing of fish and shellfish products: Safety, quality, and research prospects. Compr Rev Food Sci Food Saf 2022; 21:3297-3325. [PMID: 35638360 DOI: 10.1111/1541-4337.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Seafood products have been one of the main drivers behind the popularity of high-pressure processing (HPP) in the food industry owing to a high demand for fresh ready-to-eat seafood products and food safety. This review provides an overview of the advanced knowledge available on the use of HPP for production of wholesome and highly nutritive clean label fish and shellfish products. Out of 653 explored items, 65 articles published during 2016-2021 were used. Analysis of the literature showed that most of the earlier work evaluated the HPP effect on physicochemical and sensorial properties, and limited information is available on nutritional aspects. HPP has several applications in the seafood industry. Application of HPP (400-600 MPa) eliminates common seafood pathogens, such as Vibrio and Listeria spp., and slows the growth of spoilage microorganisms. Use of cold water as a pressure medium induces minimal changes in sensory and nutritional properties and helps in the development of clean label seafood products. This technology (200-350 MPa) is also useful to shuck oysters, lobsters, crabs, mussels, clams, and scallops to increase recovery of the edible meat. High-pressure helps to preserve organoleptic and functional properties for an extended time during refrigerated storage. Overall, HPP helps seafood manufacturers to maintain a balance between safety, quality, processing efficiency, and regulatory compliance. Further research is required to understand the mechanisms of pressure-induced modifications and clean label strategies to minimize these modifications.
Collapse
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong, China
| | - Liliana G Fidalgo
- Department of Technology and Applied Sciences, School of Agriculture, Polytechnic Institute of Beja, Beja, Portugal.,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Abdul Waheed Khan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-Jammu, Jammu and Kashmir, India
| | - Ala El-Din A Bekhit
- Department of Food Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Zahra Batool
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
2
|
Aviner B, Gradwohl G, Bliznyuk A, Grossman Y. Selective pressure modulation of synaptic voltage-dependent calcium channels-involvement in HPNS mechanism. J Cell Mol Med 2016; 20:1872-88. [PMID: 27273194 PMCID: PMC5020619 DOI: 10.1111/jcmm.12877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/21/2016] [Indexed: 11/28/2022] Open
Abstract
Exposure to hyperbaric pressure (HP) exceeding 100 msw (1.1 MPa) is known to cause a constellation of motor and cognitive impairments named high-pressure neurological syndrome (HPNS), considered to be the result of synaptic transmission alteration. Long periods of repetitive HP exposure could be an occupational risk for professional deep-sea divers. Previous studies have indicated the modulation of presynaptic Ca(2+) currents based on synaptic activity modified by HP. We have recently demonstrated that currents in genetically identified cellular voltage-dependent Ca(2+) channels (VDCCs), CaV 1.2 and CaV 3.2 are selectively affected by HP. This work further elucidates the HPNS mechanism by examining HP effect on Ca(2+) currents in neuronal VDCCs, CaV 2.2 and CaV 2.1, which are prevalent in presynaptic terminals, expressed in Xenopus oocytes. HP augmented the CaV 2.2 current amplitude, much less so in a channel variation containing an additional modulatory subunit, and had almost no effect on the CaV 2.1 currents. HP differentially affected the channels' kinetics. It is, therefore, suggested that HPNS signs and symptoms arise, at least in part, from pressure modulation of various VDCCs.
Collapse
Affiliation(s)
- Ben Aviner
- Department of Physiology and Neurobiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Gideon Gradwohl
- Department of Physics, Jerusalem College of Technology, Jerusalem, Israel
| | - Alice Bliznyuk
- Department of Physiology and Neurobiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yoram Grossman
- Department of Physiology and Neurobiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Aviner B, Gradwohl G, Mor Aviner M, Levy S, Grossman Y. Selective modulation of cellular voltage-dependent calcium channels by hyperbaric pressure-a suggested HPNS partial mechanism. Front Cell Neurosci 2014; 8:136. [PMID: 24904281 PMCID: PMC4034351 DOI: 10.3389/fncel.2014.00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/30/2014] [Indexed: 11/30/2022] Open
Abstract
Professional deep sea divers experience motor and cognitive impairment, known as High Pressure Neurological Syndrome (HPNS), when exposed to pressures of 100 msw (1.1 MPa) and above, considered to be the result of synaptic transmission alteration. Previous studies have indicated modulation of presynaptic Ca2+ currents at high pressure. We directly measured for the first time pressure effects on the currents of voltage dependent Ca2+ channels (VDCCs) expressed in Xenopus oocytes. Pressure selectivity augmented the current in CaV1.2 and depressed it in CaV3.2 channels. Pressure application also affected the channels' kinetics, such as ƮRise, ƮDecay. Pressure modulation of VDCCs seems to play an important role in generation of HPNS signs and symptoms.
Collapse
Affiliation(s)
- Ben Aviner
- Department of Physiology and Neurobiology, Ben Gurion University of the Negev Beer Sheva, Israel
| | - Gideon Gradwohl
- Department of Physics, Jerusalem College of Technology Jerusalem, Israel
| | - Merav Mor Aviner
- Department of Physiology and Neurobiology, Ben Gurion University of the Negev Beer Sheva, Israel
| | - Shiri Levy
- Department of Physiology and Neurobiology, Ben Gurion University of the Negev Beer Sheva, Israel
| | - Yoram Grossman
- Department of Physiology and Neurobiology, Ben Gurion University of the Negev Beer Sheva, Israel
| |
Collapse
|
4
|
Aviner B, Gradwohl G, Moore HJ, Grossman Y. Modulation of presynaptic Ca(2+) currents in frog motor nerve terminals by high pressure. Eur J Neurosci 2013; 38:2716-29. [PMID: 23738821 DOI: 10.1111/ejn.12267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 04/17/2013] [Accepted: 04/29/2013] [Indexed: 11/27/2022]
Abstract
Presynaptic Ca(2+) -dependent mechanisms have already been implicated in depression of evoked synaptic transmission by high pressure (HP). Therefore, pressure effects on terminal Ca(2+) currents were studied in Rana pipiens peripheral motor nerves. The terminal currents, evoked by nerve or direct stimulation, were recorded under the nerve perineurial sheath with a loose macropatch clamp technique. The combined use of Na(+) and K(+) channel blockers, [Ca(2+) ]o changes, voltage-dependent Ca(2+) channel (VDCC) blocker treatments and HP perturbations revealed two components of presynaptic Ca(2+) currents: an early fast Ca(2+) current (ICaF ), possibly carried by N-type (CaV 2.2) Ca(2+) channels, and a late slow Ca(2+) current (ICaS ), possibly mediated by L-type (CaV 1) Ca(2+) channels. HP reduced the amplitude and decreased the maximum (saturation level) of the Ca(2+) currents, ICaF being more sensitive to pressure, and may have slightly shifted the voltage dependence. HP also moderately diminished the Na(+) action current, which contributed to the depression of VDCC currents. Computer-based modeling was used to verify the interpretation of the currents and investigate the influence of HP on the presynaptic currents. The direct HP reduction of the VDCC currents and the indirect effect of the action potential decrease are probably the major cause of pressure depression of synaptic release.
Collapse
Affiliation(s)
- Ben Aviner
- Department of Physiology and Neurobiology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | |
Collapse
|
5
|
Talpalar AE, Giugliano M, Grossman Y. Enduring medial perforant path short-term synaptic depression at high pressure. Front Cell Neurosci 2010; 4:128. [PMID: 21048901 PMCID: PMC2967425 DOI: 10.3389/fncel.2010.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/23/2010] [Indexed: 12/02/2022] Open
Abstract
The high pressure neurological syndrome develops during deep-diving (>1.1 MPa) involving impairment of cognitive functions, alteration of synaptic transmission and increased excitability in cortico-hippocampal areas. The medial perforant path (MPP), connecting entorhinal cortex with the hippocampal formation, displays synaptic frequency-dependent-depression (FDD) under normal conditions. Synaptic FDD is essential for specific functions of various neuronal networks. We used rat cortico-hippocampal slices and computer simulations for studying the effects of pressure and its interaction with extracellular Ca2+ ([Ca2+]o) on FDD at the MPP synapses. At atmospheric pressure, high [Ca2+]o (4–6 mM) saturated single MPP field EPSP (fEPSP) and increased FDD in response to short trains at 50 Hz. High pressure (HP; 10.1 MPa) depressed single fEPSPs by 50%. Increasing [Ca2+]o to 4 mM at HP saturated synaptic response at a subnormal level (only 20% recovery of single fEPSPs), but generated a FDD similar to atmospheric pressure. Mathematical model analysis of the fractions of synaptic resources used by each fEPSP during trains (normalized to their maximum) and the total fraction utilized within a train indicate that HP depresses synaptic activity also by reducing synaptic resources. This data suggest that MPP synapses may be modulated, in addition to depression of single events, by reduction of synaptic resources and then may have the ability to conserve their dynamic properties under different conditions.
Collapse
Affiliation(s)
- Adolfo E Talpalar
- Department of Physiology and Neurobiology, Faculty of Health Sciences, and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | | | | |
Collapse
|
6
|
The neuromuscular junctions of the slow and the fast excitatory axon in the closer of the crab Eriphia spinifrons are endowed with different Ca2+ channel types and allow neuron-specific modulation of transmitter release by two neuropeptides. J Neurosci 2002. [PMID: 11826100 DOI: 10.1523/jneurosci.22-03-00708.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most crustacean muscle fibers receive double excitatory innervation by functionally different motor neurons termed slow and fast. By using specific omega-toxins we show that the terminals of the slow closer excitor (SCE) and the fast closer excitor (FCE) at a crab muscle are endowed with different sets of presynaptic Ca(2+) channel types. omega-Agatoxin, a blocker of vertebrate P/Q-type channels, reduced the amplitude of EPSCs by decreasing the mean quantal content of transmitter release in both neurons by 70-85%, depending on the concentration. We provide the first evidence that omega-conotoxin-sensitive channels also participate in transmission at crustacean neuromuscular terminals and are colocalized with omega-agatoxin-sensitive channels in an axon-type-specific distribution. omega-Conotoxin, a blocker of vertebrate N-type channels, inhibited release by 20-25% only at FCE, not at SCE endings. Low concentrations of Ni(2+), which block vertebrate R-type channels, inhibited release in endings of the SCE by up to 35%, but had little effects in FCE endings. We found that two neuropeptides, the FMRFamide-like DF(2) and proctolin, which occur in many crustaceans, potentiated evoked transmitter release differentially. Proctolin increased release at SCE and FCE endings, and DF(2) increased release only at FCE endings. Selective blocking of Ca(2+) channels by different omega-toxins in the presence of peptides revealed that the target of proctolin-mediated modulation is the omega-agatoxin-sensitive channel (P/Q-like), that of DF(2) the omega-conotoxin-sensitive channel (N-like). The differential effects of these two peptides allows fine tuning of transmitter release at two functionally different motor neurons innervating the same muscle.
Collapse
|
7
|
Etzion Y, Grossman Y. Pressure-induced depression of synaptic transmission in the cerebellar parallel fibre synapse involves suppression of presynaptic N-type Ca2+ channels. Eur J Neurosci 2000; 12:4007-16. [PMID: 11069597 DOI: 10.1046/j.1460-9568.2000.00303.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
High pressure induces CNS hyperexcitability while markedly depressing synaptic transmitter release. We studied the effect of pressure (up to 10.1 MPa) on the parallel fibre (PF) synaptic response in biplanar cerebellar slices of adult guinea pigs. Pressure mildly reduced the PF volley amplitude and to a greater extent depressed the excitatory field postsynaptic potential (fPSP). The depression of the PF volley was noted even at supramaximal stimulus intensities, indicating an effect of pressure on the amplitude of the action potential in each axon. Low concentrations of TTX mimicked the effects of pressure on the PF volley without affecting the fPSP. Application omega-conotoxin GVIA (omega-CgTx) reduced the synaptic efficacy by 34.3+/-2.7%. However, in the presence of omega-CgTx the synaptic depression at pressure was significantly reduced. Reduced Ca2+ entry by application of Cd2+ or low [Ca2+]o did not have a similar influence on the effects of pressure. Application of omega-AGA IVA, omega-AGA TK and Funnel-web spider toxin did not affect the synaptic response in concentrations that usually block P-type Ca2+ channels, whilst the N/P/Q-type blocker omega-conotoxin MVIIC reduced the response to 52.7+/-5.0% indicating the involvement of Q-type channels and R-type channels in the non-N-type fraction of Ca2+ entry. The results demonstrate that N-type Ca2+ channels play a crucial role in the induction of PF synaptic depression at pressure. This finding suggests a coherent mechanism for the induction of CNS hyperexcitability at pressure.
Collapse
Affiliation(s)
- Y Etzion
- Department of Physiology, Faculty of Health Sciences, and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | |
Collapse
|
8
|
Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R, Demirgoren S, Rahamimoff R. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 1999; 79:1019-88. [PMID: 10390521 DOI: 10.1152/physrev.1999.79.3.1019] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary function of the presynaptic nerve terminal is to release transmitter quanta and thus activate the postsynaptic target cell. In almost every step leading to the release of transmitter quanta, there is a substantial involvement of ion channels. In this review, the multitude of ion channels in the presynaptic terminal are surveyed. There are at least 12 different major categories of ion channels representing several tens of different ion channel types; the number of different ion channel molecules at presynaptic nerve terminals is many hundreds. We describe the different ion channel molecules at the surface membrane and inside the nerve terminal in the context of their possible role in the process of transmitter release. Frequently, a number of different ion channel molecules, with the same basic function, are present at the same nerve terminal. This is especially evident in the cases of calcium channels and potassium channels. This abundance of ion channels allows for a physiological and pharmacological fine tuning of the process of transmitter release and thus of synaptic transmission.
Collapse
Affiliation(s)
- A Meir
- Department of Physiology and the Bernard Katz Minerva Centre for Cell Biophysics, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Vyshedskiy A, Lin JW. Study of the inhibitor of the crayfish neuromuscular junction by presynaptic voltage control. J Neurophysiol 1997; 77:103-15. [PMID: 9120551 DOI: 10.1152/jn.1997.77.1.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The inhibitor of the crayfish opener muscle was investigated by a presynaptic voltage control method. Two microelectrodes were inserted into the inhibitor and the amplitude and duration of presynaptic depolarization were controlled by a voltage-clamp amplifier. The inhibitory postsynaptic potential (IPSP) was measured from a muscle fiber located near the presynaptic voltage electrode. Nonlinear summation of IPSP amplitudes was corrected after chloride equilibrium potential was measured. With the use of 5-ms presynaptic pulses, the depolarization-release coupling (D-R) curve constructed from IPSP peak amplitudes (IPSPcor) had a threshold of about -35 mV and reached its maximal level at -5 to -10 mV. Depolarization beyond the maximum led to a suppression of neurotransmitter release. When transmitter release during a presynaptic pulse was completely suppressed, IPSPs activated by tail current could be identified with an average synaptic delay of 2.5 ms. Transmitter secretion triggered by a calcium current activated during the 5-ms pulses (IPSPon) was also measured on the rising phase of an IPSP, at 2.5 ms after the end of the 5-ms pulses. D-R coupling plots measured from IPSPon exhibited a more pronounced suppression than that obtained from IPSPcor. The effect of presynaptic pulse duration on the level of transmitter release was analyzed. Transmitter release increased with increasing duration and was nearly saturated by 20-ms pulses depolarized to 0 mV. The following conditions were identified as necessary to obtain a consistent D-R curve with a clear suppression: 1) small animals, 3.8 cm head to tail, 2) 15 degrees C, 3) 40 mM tetraethylammonium and 1 mM 4-aminopyridine, 4) an extracellular calcium concentration of < or = 10 mM. In addition, a consistent correlation was found among the branching pattern of the inhibitor, the placement of the presynaptic electrode, and the characteristics of the D-R curves. An ideal presynaptic electrode configuration involved placing the voltage electrode in a secondary branch, approximately 100 microns from the main branch point, and placing the current electrode at the branch point. Postsynaptically, optimal recordings were obtained from muscle fibers innervated by a single branch of the inhibitor that originated from a point near the presynaptic voltage electrode. A cable-release model was constructed to evaluate the relationship between the shape of the D-R coupling curves and the space constants of the presynaptic terminals. A comparison between the model and the D-R coupling curves suggested that the space constant of an inhibitor branch on a muscle fiber is > or = 8 times longer than its actual length. Therefore the upper limit estimate of the space constant of a typical preparation is approximately 3 mm. Results reported here outline morphological and physiological conditions needed to achieve optimal control of the presynaptic branch of the crayfish inhibitor. The cable-release model quantitatively defines the extent of presynaptic voltage control.
Collapse
Affiliation(s)
- A Vyshedskiy
- Department of Biology, Boston University, Massachusetts 02215, USA
| | | |
Collapse
|
10
|
Golan H, Moore HJ, Grossman Y. Pressure exposure unmasks differences in release properties between high and low yield excitatory synapses of a single crustacean axon. Neuropharmacology 1996; 35:187-93. [PMID: 8734488 DOI: 10.1016/0028-3908(95)00173-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cellular mechanisms underlying the effect of high pressure on synaptic transmission at two types of synapses were studied in the opener muscle of the lobster walking leg. Excitatory postsynaptic currents (EPSCs) were recorded using a loose macropatch clamp technique at normal pressure and 3.5, 6.9 MPa helium pressure. Responses of the single excitatory axon could be grouped into two types: low yield (L) synapse exhibiting a small mean EPSC with a considerable number of failures, and high yield (H) synapse having a larger mean EPSC with very few failures. The change in several synaptic transmission parameters indicated that high pressure similarly reduced presynaptic evoked release in both L and H synapses. However, some differences in the kinetics and probability of release could be detected. A major difference was the spontaneous miniature EPSCs (mEPSCs) activity. Many of the mEPSC, observed only in L synapses, were 'giant' (size of 2-5 q). High pressure selectively increased the frequency of the giant mEPSCs in the L synapse but had little effect on their amplitude histogram. High pressure depressed evoked synaptic transmission in both synapses by modulating the presynaptic quantal release parameters, but concomitantly enhanced spontaneous quantal release in L synapses by an unknown mechanism.
Collapse
Affiliation(s)
- H Golan
- Department of Physiology, Zlotowski Neuroscience Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
11
|
Golan H, Colton JS, Moore HJ, Grossman Y. Analysis of evoked and spontaneous quantal release at high pressure in crustacean excitatory synapses. Pflugers Arch 1995; 430:617-25. [PMID: 7478912 DOI: 10.1007/bf00386155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cellular mechanisms underlying the effect of high pressure on synaptic transmission were studied in the opener muscle of the lobster walking leg. Excitatory postsynaptic currents (EPSCs) were recorded using a loose macropatch-clamp technique at normal pressure and 3.5, 6.9 MPa helium pressure. Responses of the single excitatory axon could be grouped into two types: low-yield (L) synapses exhibiting small EPSCs with a considerable number of failures, and high-yield (H) synapses having larger EPSCs with very few failures. High pressure reduced the average EPSC amplitude in all synapses and shifted their amplitude histograms to the left by decreasing the quantal content (m) without changing their quantum current (q). A binomial distribution fit of EPSC amplitudes revealed that high pressure greatly decreased n, the number of available active zones, but the effect on p, the probability of release for each zone, was not consistent. Many of the spontaneous miniature EPSCs (mEPSCs), observed only in L-type synapses, were "giant" (size = 2-5 q). High pressure increased the frequency of the giant mEPSCs but had little effect on their amplitude histogram. High pressure depressed evoked synaptic transmission by modulating the presynaptic quantal release parameters, but concomitantly enhanced spontaneous quantal release by an unknown mechanism.
Collapse
Affiliation(s)
- H Golan
- Department of Physiology, Corob Center for Medical Research, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
12
|
Golan H, Moore HJ, Grossman Y. Quantal analysis of presynaptic inhibition, low [Ca2+]0, and high pressure interactions at crustacean excitatory synapses. Synapse 1994; 18:328-36. [PMID: 7886625 DOI: 10.1002/syn.890180408] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cellular mechanisms underlying the effects of high pressure, GABAergic presynaptic inhibition, and low [Ca2+]0 on glutamatergic excitatory synaptic transmission were studied in the opener muscle of the lobster walking leg. Excitatory postsynaptic currents (EPSCs) were recorded with or without prior stimulation of the inhibitor using a loose macropatch clamp technique at atmospheric pressure and at 6.9 MPA helium pressure. High pressure reduced the mean EPSC amplitude and variance, decreased the quantal content (m), but did not affect the quantum current (q). Pressure shifted the median of the amplitude histogram to the left by 1-2 q. Under normal pressure conditions, presynaptic inhibition and low [Ca2+]0 induced similar effects. However, quantal analysis using a binomial frequency distribution model revealed that high pressure and low [Ca2+]0 diminished n (available active zones) and slightly increased p (probability of release), but presynaptic inhibition reduced p and slightly increased n. At high pressure, presynaptic inhibition was reduced, at which time the major contributor to the inhibitory process appeared to be reduction in n and not p. The similarity of the alterations in quantal parameters of release at high pressure, low [Ca2+]0, and in some conditions of presynaptic inhibition is consistent with the hypothesis that pressure reduces Ca2+ inflow into the presynaptic nerve terminals to affect the Ca(2+)-dependent quantal release parameters n and p.
Collapse
Affiliation(s)
- H Golan
- Department of Physiology, Corob Center for Medical Research, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
13
|
|
14
|
Gilman SC, Colton JS, Grossman Y. A 23187-stimulated calcium uptake and GABA release by cerebrocortical synaptosomes: effects of high pressure. J Neural Transm (Vienna) 1991; 86:1-9. [PMID: 1751025 DOI: 10.1007/bf01250371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Guinea pig cerebrocortical synaptosome preparations were used to study the effect of compression to 62 ATA on 45Ca2+ uptake and [3H]GABA release using a calcium ionophore A 23187, which bypasses the voltage-sensitive calcium channel. Pressure was found to exert a suppressive effect on the A 23187-induced release of [3H]GABA, while having no significant effect on A 23187-stimulated 45Ca2+ uptake. On the other hand, both depolarization-induced 45Ca2+ uptake and [3H]GABA release were inhibited by pressure exposure. These results suggest that pressure may suppress GABA release by affecting pre-synaptic events subsequent to calcium influx.
Collapse
Affiliation(s)
- S C Gilman
- Diving Medicine Department, Naval Medical Research Institute, Bethesda, Md
| | | | | |
Collapse
|