1
|
Li Y, Lee SH, Yu C, Hsu LM, Wang TWW, Do K, Kim HJ, Shih YYI, Grill WM. Optogenetic fMRI reveals therapeutic circuits of subthalamic nucleus deep brain stimulation. Brain Stimul 2024; 17:947-957. [PMID: 39096961 PMCID: PMC11364984 DOI: 10.1016/j.brs.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using functional magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examination of cell-type specific STN feedforward neural activity. Unilateral optogenetic STN DBS elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, this modulation effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetic DBS induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.
Collapse
Affiliation(s)
- Yuhui Li
- Department of Biomedical Engineering, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Chunxiu Yu
- Department of Biomedical Engineering, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Wen W Wang
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Khoa Do
- Department of Biomedical Engineering, USA
| | - Hyeon-Joong Kim
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| | - Warren M Grill
- Department of Biomedical Engineering, USA; Department of Electrical and Computer Engineering, USA; Department of Neurobiology, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Munoz MJ, Reilly JL, Pal GD, Verhagen Metman L, Sani SB, Rosenow JM, Rivera YM, Drane QH, Goelz LC, Corcos DM, David FJ. Benefits of subthalamic nucleus deep brain stimulation on visually-guided saccades depend on stimulation side and classic paradigm in Parkinson's disease. Clin Neurophysiol 2024; 162:41-52. [PMID: 38555666 PMCID: PMC11104565 DOI: 10.1016/j.clinph.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE We aimed to gain further insight into previously reported beneficial effects of subthalamic nucleus deep brain stimulation (STN-DBS) on visually-guided saccades by examining the effects of unilateral compared to bilateral stimulation, paradigm, and target eccentricity on saccades in individuals with Parkinson's disease (PD). METHODS Eleven participants with PD and STN-DBS completed the visually-guided saccade paradigms with OFF, RIGHT, LEFT, and BOTH stimulation. Rightward saccade performance was evaluated for three paradigms and two target eccentricities. RESULTS First, we found that BOTH and LEFT increased gain, peak velocity, and duration compared to OFF stimulation. Second, we found that BOTH and LEFT stimulation decreased latency during the gap and step paradigms but had no effect on latency during the overlap paradigm. Third, we found that RIGHT was not different compared to OFF at benefiting rightward saccade performance. CONCLUSIONS Left unilateral and bilateral stimulation both improve the motor outcomes of rightward visually-guided saccades. Additionally, both improve latency, a cognitive-motor outcome, but only in paradigms when attention does not require disengagement from a present stimulus. SIGNIFICANCE STN-DBS primarily benefits motor and cognitive-motor aspects of visually-guided saccades related to reflexive attentional shifting, with the latter only evident when the fixation-related attentional system is not engaged.
Collapse
Affiliation(s)
- Miranda J Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| | - James L Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gian D Pal
- Department of Neurology, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Neurological Sciences, Section of Parkinson Disease and Movement Disorders, Rush University Medical Center, Chicago, IL, USA
| | - Leo Verhagen Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sepehr B Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yessenia M Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Quentin H Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Lisa C Goelz
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Fabian J David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Ye H, Dima M, Hall V, Hendee J. Cellular mechanisms underlying carry-over effects after magnetic stimulation. Sci Rep 2024; 14:5167. [PMID: 38431662 PMCID: PMC10908793 DOI: 10.1038/s41598-024-55915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Magnetic fields are widely used for neuromodulation in clinical settings. The intended effect of magnetic stimulation is that neural activity resumes its pre-stimulation state right after stimulation. Many theoretical and experimental works have focused on the cellular and molecular basis of the acute neural response to magnetic field. However, effects of magnetic stimulation can still last after the termination of the magnetic stimulation (named "carry-over effects"), which could generate profound effects to the outcome of the stimulation. However, the cellular and molecular mechanisms of carry-over effects are largely unknown, which renders the neural modulation practice using magnetic stimulation unpredictable. Here, we investigated carry-over effects at the cellular level, using the combination of micro-magnetic stimulation (µMS), electrophysiology, and computation modeling. We found that high frequency magnetic stimulation could lead to immediate neural inhibition in ganglion neurons from Aplysia californica, as well as persistent, carry-over inhibition after withdrawing the magnetic stimulus. Carry-over effects were found in the neurons that fired action potentials under a variety of conditions. The carry-over effects were also observed in the neurons when the magnetic field was applied across the ganglion sheath. The state of the neuron, specifically synaptic input and membrane potential fluctuation, plays a significant role in generating the carry-over effects after magnetic stimulation. To elucidate the cellular mechanisms of such carry-over effects under magnetic stimulation, we simulated a single neuron under magnetic stimulation with multi-compartment modeling. The model successfully replicated the carry-over effects in the neuron, and revealed that the carry-over effect was due to the dysfunction of the ion channel dynamics that were responsible for the initiation and sustaining of membrane excitability. A virtual voltage-clamp experiment revealed a compromised Na conductance and enhanced K conductance post magnetic stimulation, rendering the neurons incapable of generating action potentials and, therefore, leading to the carry over effects. Finally, both simulation and experimental results demonstrated that the carry-over effects could be controlled by disturbing the membrane potential during the post-stimulus inhibition period. Delineating the cellular and ion channel mechanisms underlying carry-over effects could provide insights to the clinical outcomes in brain stimulation using TMS and other modalities. This research incentivizes the development of novel neural engineering or pharmacological approaches to better control the carry-over effects for optimized clinical outcomes.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Maria Dima
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Vincent Hall
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Jenna Hendee
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| |
Collapse
|
4
|
Li Y, Lee SH, Yu C, Hsu LM, Wang TWW, Do K, Kim HJ, Shih YYI, Grill WM. Optogenetic fMRI reveals therapeutic circuits of subthalamic nucleus deep brain stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581627. [PMID: 38464010 PMCID: PMC10925223 DOI: 10.1101/2024.02.22.581627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using function magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examinations of cell-type specific STN feed-forward neural activity. Unilateral STN optogenetic stimulation elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, these manipulations effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetically induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.
Collapse
|
5
|
Xu W, Wang J, Li XN, Liang J, Song L, Wu Y, Liu Z, Sun B, Li WG. Neuronal and synaptic adaptations underlying the benefits of deep brain stimulation for Parkinson's disease. Transl Neurodegener 2023; 12:55. [PMID: 38037124 PMCID: PMC10688037 DOI: 10.1186/s40035-023-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment. DBS-induced neuronal responses rely on a complex interplay between the distributions of presynaptic inputs, frequency-dependent synaptic depression, and the intrinsic excitability of postsynaptic neurons. This orchestration leads to conversion of firing patterns, enabling both antidromic and orthodromic modulation of neural circuits. Understanding these mechanisms is vital for decoding position- and programming-dependent effects of DBS. Furthermore, patterned stimulation is emerging as a promising strategy yielding long-lasting therapeutic benefits. Research on the neuronal and synaptic adaptations to DBS may pave the way for the development of more enduring and precise modulation patterns. Advanced technologies, such as adaptive DBS or directional electrodes, can also be integrated for circuit-specific neuromodulation. These insights hold the potential to greatly improve the effectiveness of DBS and advance PD treatment to new levels.
Collapse
Affiliation(s)
- Wenying Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jingxue Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
6
|
Friedman AD, Yin HH. Selective Activation of Subthalamic Nucleus Output Quantitatively Scales Movements. J Neurosci 2023; 43:7967-7981. [PMID: 37816600 PMCID: PMC10669786 DOI: 10.1523/jneurosci.0734-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
The subthalamic nucleus (STN) is a common target for deep brain stimulation (DBS) treatments of Parkinsonian motor symptoms. According to the dominant model, the STN output can suppress movement by enhancing inhibitory basal ganglia (BG) output via the indirect pathway, and disrupting STN output using DBS can restore movement in Parkinson's patients. But the mechanisms underlying STN DBS remain poorly understood, as previous studies usually relied on electrical stimulation, which cannot selectively target STN output neurons. Here, we selectively stimulated STN projection neurons using optogenetics and quantified behavior in male and female mice using 3D motion capture. STN stimulation resulted in movements with short latencies (10-15 ms). A single pulse of light was sufficient to generate movement, and there was a highly linear relationship between stimulation frequency and kinematic measures. Unilateral stimulation caused movement in the ipsiversive direction (toward the side of stimulation) and quantitatively determined head yaw and head roll, while stimulation of either STN raises the head (pitch). Bilateral stimulation does not cause turning but raised the head twice as high as unilateral stimulation of either STN. Optogenetic stimulation increased the firing rate of STN neurons in a frequency-dependent manner, and the increased firing is responsible for stimulation-induced movements. Finally, stimulation of the STN's projection to the brainstem mesencephalic locomotor region was sufficient to reproduce the behavioral effects of STN stimulation. These results question the common assumption that the STN suppresses movement, and instead suggest that STN output can precisely specify action parameters via direct projections to the brainstem.SIGNIFICANCE STATEMENT Our results question the common assumption that the subthalamic nucleus (STN) suppresses movement, and instead suggest that STN output can precisely specify action parameters via direct projections to the brainstem.
Collapse
Affiliation(s)
- Alexander D Friedman
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27708
| |
Collapse
|
7
|
Munoz MJ, Arora R, Rivera YM, Drane QH, Pal GD, Verhagen Metman L, Sani SB, Rosenow JM, Goelz LC, Corcos DM, David FJ. Medication only improves limb movements while deep brain stimulation improves eye and limb movements during visually-guided reaching in Parkinson's disease. Front Hum Neurosci 2023; 17:1224611. [PMID: 37850040 PMCID: PMC10577235 DOI: 10.3389/fnhum.2023.1224611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Background Antiparkinson medication and subthalamic nucleus deep brain stimulation (STN-DBS), two common treatments of Parkinson's disease (PD), effectively improve skeletomotor movements. However, evidence suggests that these treatments may have differential effects on eye and limb movements, although both movement types are controlled through the parallel basal ganglia loops. Objective Using a task that requires both eye and upper limb movements, we aimed to determine the effects of medication and STN-DBS on eye and upper limb movement performance. Methods Participants performed a visually-guided reaching task. We collected eye and upper limb movement data from participants with PD who were tested both OFF and ON medication (n = 34) or both OFF and ON bilateral STN-DBS while OFF medication (n = 11). We also collected data from older adult healthy controls (n = 14). Results We found that medication increased saccade latency, while having no effect on reach reaction time (RT). Medication significantly decreased saccade peak velocity, while increasing reach peak velocity. We also found that bilateral STN-DBS significantly decreased saccade latency while having no effect on reach RT, and increased saccade and reach peak velocity. Finally, we found that there was a positive relationship between saccade latency and reach RT, which was unaffected by either treatment. Conclusion These findings show that medication worsens saccade performance and benefits reaching performance, while STN-DBS benefits both saccade and reaching performance. We explore what the differential beneficial and detrimental effects on eye and limb movements suggest about the potential physiological changes occurring due to treatment.
Collapse
Affiliation(s)
- Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Rishabh Arora
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- USF Health Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Gian D. Pal
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Department of Neurological Sciences, Section of Parkinson Disease and Movement Disorders, Rush University Medical Center, Chicago, IL, United States
| | - Leo Verhagen Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lisa C. Goelz
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Campos ACP, Pagano RL, Lipsman N, Hamani C. What do we know about astrocytes and the antidepressant effects of DBS? Exp Neurol 2023; 368:114501. [PMID: 37558154 DOI: 10.1016/j.expneurol.2023.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition that affects millions of individuals worldwide. Deep brain stimulation (DBS) has been widely used with excellent outcomes in neurological disorders such as Parkinson's disease, tremor, and dystonia. More recently, DBS has been proposed as an adjuvant therapy for TRD. To date, the antidepressant efficacy of DBS is still controversial, and its mechanisms of action remain poorly understood. Astrocytes are the most abundant cells in the nervous system. Once believed to be a "supporting" element for neuronal function, astrocytes are now recognized to play a major role in brain homeostasis, neuroinflammation and neuroplasticity. Because of its many roles in complex multi-factorial disorders, including TRD, understanding the effect of DBS on astrocytes is pivotal to improve our knowledge about the antidepressant effects of this therapy. In depression, the number of astrocytes and the expression of astrocytic markers are decreased. One of the potential consequences of this reduced astrocytic function is the development of aberrant glutamatergic neurotransmission, which has been documented in several models of depression-like behavior. Evidence from preclinical work suggests that DBS may directly influence astrocytic activity, modulating the release of gliotransmitters, reducing neuroinflammation, and altering structural tissue organization. Compelling evidence for an involvement of astrocytes in potential mechanisms of DBS derive from studies suggesting that pharmacological lesions or the inhibition of these cells abolishes the antidepressant-like effect of DBS. In this review, we summarize preclinical data suggesting that the modulation of astrocytes may be an important mechanism for the antidepressant-like effects of DBS.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Nir Lipsman
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Ji YW, Zhang X, Fan JP, Gu WX, Shen ZL, Wu HC, Cui G, Zhou C, Xiao C. Differential remodeling of subthalamic projections to basal ganglia output nuclei and locomotor deficits in 6-OHDA-induced hemiparkinsonian mice. Cell Rep 2023; 42:112178. [PMID: 36857188 DOI: 10.1016/j.celrep.2023.112178] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 11/04/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
The subthalamic nucleus (STN) controls basal ganglia outputs via the substantia nigra pars reticulata (SNr) and the globus pallidus internus (GPi). However, the synaptic properties of these projections and their roles in motor control remain unclear. We show that the STN-SNr and STN-GPi projections differ markedly in magnitude and activity-dependent plasticity despite the existence of collateral STN neurons projecting to both the SNr and GPi. Stimulation of either STN projection reduces locomotion; in contrast, inhibition of either the STN-SNr projection or collateral STN neurons facilitates locomotion. In 6-OHDA-hemiparkinsonian mice, the STN-SNr projection is dramatically attenuated, but the STN-GPi projection is robustly enhanced; apomorphine inhibition of the STN-GPi projection through D2 receptors is significantly augmented and improves locomotion. Optogenetic inhibition of either the STN-SNr or STN-GPi projection improves parkinsonian bradykinesia. These results suggest that the STN-GPi and STN-SNr projections are differentially involved in motor control in physiological and parkinsonian conditions.
Collapse
Affiliation(s)
- Ya-Wei Ji
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xue Zhang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221006, China
| | - Jiang-Peng Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory in Brain Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wei-Xin Gu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Zi-Lin Shen
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hai-Chuan Wu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221006, China.
| | - Chunyi Zhou
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Cheng Xiao
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
10
|
Beckinghausen J, Donofrio SG, Lin T, Miterko LN, White JJ, Lackey EP, Sillitoe RV. Deep Brain Stimulation of the Interposed Cerebellar Nuclei in a Conditional Genetic Mouse Model with Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:93-117. [PMID: 37338698 DOI: 10.1007/978-3-031-26220-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Dystonia is a neurological disease that is currently ranked as the third most common motor disorder. Patients exhibit repetitive and sometimes sustained muscle contractions that cause limb and body twisting and abnormal postures that impair movement. Deep brain stimulation (DBS) of the basal ganglia and thalamus can be used to improve motor function when other treatment options fail. Recently, the cerebellum has garnered interest as a DBS target for treating dystonia and other motor disorders. Here, we describe a procedure for targeting DBS electrodes to the interposed cerebellar nuclei to correct motor dysfunction in a mouse model with dystonia. Targeting cerebellar outflow pathways with neuromodulation opens new possibilities for using the expansive connectivity of the cerebellum to treat motor and non-motor diseases.
Collapse
Affiliation(s)
- Jaclyn Beckinghausen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Sarah G Donofrio
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Tao Lin
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Lauren N Miterko
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Joshua J White
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Elizabeth P Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Alosaimi F, Boonstra JT, Tan S, Temel Y, Jahanshahi A. The role of neurotransmitter systems in mediating deep brain stimulation effects in Parkinson’s disease. Front Neurosci 2022; 16:998932. [PMID: 36278000 PMCID: PMC9579467 DOI: 10.3389/fnins.2022.998932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Deep brain stimulation (DBS) is among the most successful paradigms in both translational and reverse translational neuroscience. DBS has developed into a standard treatment for movement disorders such as Parkinson’s disease (PD) in recent decades, however, specific mechanisms behind DBS’s efficacy and side effects remain unrevealed. Several hypotheses have been proposed, including neuronal firing rate and pattern theories that emphasize the impact of DBS on local circuitry but detail distant electrophysiological readouts to a lesser extent. Furthermore, ample preclinical and clinical evidence indicates that DBS influences neurotransmitter dynamics in PD, particularly the effects of subthalamic nucleus (STN) DBS on striatal dopaminergic and glutamatergic systems; pallidum DBS on striatal dopaminergic and GABAergic systems; pedunculopontine nucleus DBS on cholinergic systems; and STN-DBS on locus coeruleus (LC) noradrenergic system. DBS has additionally been associated with mood-related side effects within brainstem serotoninergic systems in response to STN-DBS. Still, addressing the mechanisms of DBS on neurotransmitters’ dynamics is commonly overlooked due to its practical difficulties in monitoring real-time changes in remote areas. Given that electrical stimulation alters neurotransmitter release in local and remote regions, it eventually exhibits changes in specific neuronal functions. Consequently, such changes lead to further modulation, synthesis, and release of neurotransmitters. This narrative review discusses the main neurotransmitter dynamics in PD and their role in mediating DBS effects from preclinical and clinical data.
Collapse
Affiliation(s)
- Faisal Alosaimi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
- *Correspondence: Faisal Alosaimi,
| | - Jackson Tyler Boonstra
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sonny Tan
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Ali Jahanshahi,
| |
Collapse
|
12
|
Meier JM, Perdikis D, Blickensdörfer A, Stefanovski L, Liu Q, Maith O, Dinkelbach HÜ, Baladron J, Hamker FH, Ritter P. Virtual deep brain stimulation: Multiscale co-simulation of a spiking basal ganglia model and a whole-brain mean-field model with the virtual brain. Exp Neurol 2022; 354:114111. [DOI: 10.1016/j.expneurol.2022.114111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 11/04/2022]
|
13
|
Tai CH. Subthalamic burst firing: A pathophysiological target in Parkinson's disease. Neurosci Biobehav Rev 2021; 132:410-419. [PMID: 34856222 DOI: 10.1016/j.neubiorev.2021.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 11/27/2022]
Abstract
Understanding the pathophysiological mechanism of Parkinson's disease (PD) in the subthalamic nucleus (STN) has become a critical issue since deep brain stimulation (DBS) in this region has been proven as an effective treatment for this disease. The STN possesses a special ability to switch from the spike to the burst firing mode in response to dopamine deficiency in parkinsonism, and this STN burst is considered an electrophysiological signature of the cortico-basal ganglia circuit in the brains of PD patients. This review focuses on the role of STN burst firing in the pathophysiology of PD and during DBS. Here, we review existing literature on how STN bursts originate and the specific factors affecting their formation; how STN burst firing causes motor symptoms in PD and how interventions can rescue these symptoms. Finally, the similarities and differences between the two electrophysiological hallmarks of PD, STN burst firing and beta-oscillation, are discussed. STN burst firing should be considered as a pathophysiological target in PD during treatment with DBS.
Collapse
Affiliation(s)
- Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, No. 7, Jhongshan South Road, 100225, Taipei, Taiwan.
| |
Collapse
|
14
|
Magnusson JL, Leventhal DK. Revisiting the "Paradox of Stereotaxic Surgery": Insights Into Basal Ganglia-Thalamic Interactions. Front Syst Neurosci 2021; 15:725876. [PMID: 34512279 PMCID: PMC8429495 DOI: 10.3389/fnsys.2021.725876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Basal ganglia dysfunction is implicated in movement disorders including Parkinson Disease, dystonia, and choreiform disorders. Contradicting standard "rate models" of basal ganglia-thalamic interactions, internal pallidotomy improves both hypo- and hyper-kinetic movement disorders. This "paradox of stereotaxic surgery" was recognized shortly after rate models were developed, and is underscored by the outcomes of deep brain stimulation (DBS) for movement disorders. Despite strong evidence that DBS activates local axons, the clinical effects of lesions and DBS are nearly identical. These observations argue against standard models in which GABAergic basal ganglia output gates thalamic activity, and raise the question of how lesions and stimulation can have similar effects. These paradoxes may be resolved by considering thalamocortical loops as primary drivers of motor output. Rather than suppressing or releasing cortex via motor thalamus, the basal ganglia may modulate the timing of thalamic perturbations to cortical activity. Motor cortex exhibits rotational dynamics during movement, allowing the same thalamocortical perturbation to affect motor output differently depending on its timing with respect to the rotational cycle. We review classic and recent studies of basal ganglia, thalamic, and cortical physiology to propose a revised model of basal ganglia-thalamocortical function with implications for basic physiology and neuromodulation.
Collapse
Affiliation(s)
| | - Daniel K Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Parkinson Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, VA Ann Arbor Health System, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Germann J, Mameli M, Elias GJB, Loh A, Taha A, Gouveia FV, Boutet A, Lozano AM. Deep Brain Stimulation of the Habenula: Systematic Review of the Literature and Clinical Trial Registries. Front Psychiatry 2021; 12:730931. [PMID: 34484011 PMCID: PMC8415908 DOI: 10.3389/fpsyt.2021.730931] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
The habenula is a small bilateral epithalamic structure that plays a key role in the regulation of the main monoaminergic systems. It is implicated in many aspects of behavior such as reward processing, motivational behavior, behavioral adaptation, and sensory integration. A role of the habenula has been indicated in the pathophysiology of a number of neuropsychiatric disorders such as depression, addiction, obsessive-compulsive disorder, and bipolar disorder. Neuromodulation of the habenula using deep brain stimulation (DBS) as potential treatment has been proposed and a first successful case of habenula DBS was reported a decade ago. To provide an overview of the current state of habenula DBS in human subjects for the treatment of neuropsychiatric disorders we conducted a systematic review of both the published literature using PUBMED and current and past registered clinical trials using ClinicalTrials.gov as well as the International Clinical Trials Registry Platform. Using PRISMA guidelines five articles and five registered clinical trials were identified. The published articles detailed the results of habenula DBS for the treatment of schizophrenia, depression, obsessive-compulsive disorder, and bipolar disorder. Four are single case studies; one reports findings in two patients and positive clinical outcome is described in five of the six patients. Of the five registered clinical trials identified, four investigate habenula DBS for the treatment of depression and one for obsessive-compulsive disorder. One trial is listed as terminated, one is recruiting, two are not yet recruiting and the status of the fifth is unknown. The planned enrollment varies between 2 to 13 subjects and four of the five are open label trials. While the published studies suggest a potential role of habenula DBS for a number of indications, future trials and studies are necessary. The outcomes of the ongoing clinical trials will provide further valuable insights. Establishing habenula DBS, however, will depend on successful randomized clinical trials to confirm application and clinical benefit of this promising intervention.
Collapse
Affiliation(s)
- Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, Lausanne, Switzerland
- INSERM, UMR-S 839, Paris, France
| | - Gavin J. B. Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Alaa Taha
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Flavia Venetucci Gouveia
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Tripathi R, Deogaonkar M. Fundamentals of Neuromodulation and Pathophysiology of Neural Networks in Health and Disease. Neurol India 2021; 68:S163-S169. [PMID: 33318346 DOI: 10.4103/0028-3886.302463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neuromodulation involves altering neuronal circuitry and subsequent physiological changes with the aim to ameliorate neurological symptoms. Over the years several techniques have been used to obtain neuromodulatory effects for treatment of conditions including Parkinson disease, essential tremor, dystonia or seizures. We provide brief description of the various therapeutics that have been used and mechanisms involved in pathophysiology of these disorders as well as the therapeutic mechanisms of the treatment modalities.
Collapse
Affiliation(s)
- Richa Tripathi
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University, 33 Medical Center Drive, Morgantown, WV, USA
| | - Milind Deogaonkar
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, 33 Medical Center Drive, Morgantown, WV, USA
| |
Collapse
|
17
|
Vegas‐Suárez S, Aristieta A, Requejo C, Bengoetxea H, Lafuente JV, Miguelez C, Ugedo L. The effect of 5-HT 1A receptor agonists on the entopeduncular nucleus is modified in 6-hydroxydopamine-lesioned rats. Br J Pharmacol 2021; 178:2516-2532. [PMID: 33686657 PMCID: PMC8252460 DOI: 10.1111/bph.15437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE l-DOPA prolonged treatment leads to disabling motor complications as dyskinesia that could be decreased by drugs acting on 5-HT1A receptors. Since the internal segment of the globus pallidus, homologous to the entopeduncular nucleus in rodents, seems to be involved in the etiopathology of l-DOPA-induced dyskinesia, we investigated whether the entopeduncular nucleus is modulated by the 5-HT1A receptor partial and full agonists, buspirone, and 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) in control and 6-hydroxydopamine (6-OHDA)-lesioned rats with or without long-term l-DOPA treatment. EXPERIMENTAL APPROACH Extracellular single-unit electrocorticogram and local field potential recordings under anaesthesia, immunostaining assays and optogenetic manipulation coupled to electrophysiological recordings were performed. KEY RESULTS Systemic buspirone reduced the entopeduncular nucleus firing rate in the sham animals and burst activity in the 6-OHDA-lesioned rats (with or without l-DOPA treatment), while local administration reduced entopeduncular nucleus activity in all the groups, regardless of DA integrity. Systemic 8-OH-DPAT also induced inhibitory effects only in the sham animals. Effects triggered by buspirone and 8-OH-DPAT were reversed by the 5-HT1A receptor antagonist, WAY-100635. Neither buspirone nor 8-OH-DPAT modified the low-frequency oscillatory activity in the entopeduncular nucleus or its synchronization with the motor cortex. Buspirone did not alter the response induced by subthalamic nucleus opto-stimulation in the entopeduncular nucleus. CONCLUSION AND IMPLICATIONS Systemic 5-HT1A receptor activation elicits different effects on the electrophysiological properties of the entopeduncular nucleus depending on the integrity of the nigrostriatal pathway and it does not alter the relationship between subthalamic nucleus and entopeduncular nucleus neuron activity.
Collapse
Affiliation(s)
- Sergio Vegas‐Suárez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoSpain
| | - Asier Aristieta
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghPAUSA
- Center for the Neural Basis of CognitionCarnegie Mellon UniversityPittsburghPAUSA
| | - Catalina Requejo
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Harkaitz Bengoetxea
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - José Vicente Lafuente
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoSpain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoSpain
| |
Collapse
|
18
|
Pedersen M, Zalesky A. Intracranial brain stimulation modulates fMRI-based network switching. Neurobiol Dis 2021; 156:105401. [PMID: 34023395 DOI: 10.1016/j.nbd.2021.105401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/26/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022] Open
Abstract
The extent to which functional MRI (fMRI) reflects direct neuronal changes remains unknown. Using 160 simultaneous electrical stimulation (es-fMRI) and intracranial brain stimulation recordings acquired in 26 individuals with epilepsy (with varying electrode locations), we tested whether brain networks dynamically change during intracranial brain stimulation, aiming to establish whether switching between brain networks is reduced after intracranial brain stimulation. As the brain spontaneously switches between a repertoire of intrinsic functional network configurations and the rate of switching is likely increased in epilepsy, we hypothesised that intracranial stimulation would reduce the brain's switching rate, thus potentially normalising aberrant brain network dynamics. To test this hypothesis, we quantified the rate that brain regions changed networks over time in response to brain stimulation, using network switching applied to multilayer modularity analysis of time-resolved es-fMRI connectivity. Network switching and synchrony was decreased after the first brain stimulation, followed by a more consistent pattern of network switching over time. This change was commonly observed in cortical networks and adjacent to the electrode targets. Our results suggest that neuronal perturbation is likely to modulate large-scale brain networks, and multilayer network modelling may be used to inform the clinical efficacy of brain stimulation in epilepsy.
Collapse
Affiliation(s)
- Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology (AUT), Auckland, New Zealand.
| | - Andrew Zalesky
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne, VIC, Australia; Melbourne School of Engineering, The University of Melbourne, VIC, Australia
| |
Collapse
|
19
|
Brodovskaya A, Shiono S, Kapur J. Activation of the basal ganglia and indirect pathway neurons during frontal lobe seizures. Brain 2021; 144:2074-2091. [PMID: 33730155 DOI: 10.1093/brain/awab119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
There are no detailed descriptions of neuronal circuit active during frontal lobe motor seizures. Using activity reporter mice, local field potential recordings, tissue clearing, viral tracing, and super-resolution microscopy, we found neuronal activation after focal motor to bilateral tonic-clonic seizures in the striatum, globus pallidus externus, subthalamic nucleus, substantia nigra pars reticulata and neurons of the indirect pathway. Seizures preferentially activated dopamine D2 receptor-expressing neurons over D1 in the striatum, which have different projections. Furthermore, the D2 receptor agonist infused into the striatum exerted an anticonvulsant effect. Seizures activate structures via short and long latency loops, and anatomical connections of the seizure focus determine the seizure circuit. These studies, for the first time, show activation of neurons in the striatum, globus pallidus, subthalamic nucleus, and substantia nigra during frontal lobe motor seizures on the cellular level, revealing a complex neuronal activation circuit subject to modulation by the basal ganglia.
Collapse
Affiliation(s)
- Anastasia Brodovskaya
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Shinnosuke Shiono
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA.,UVA Brain Institute, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
20
|
Effects of subthalamic nucleus deep brain stimulation on neuronal spiking activity in the substantia nigra pars compacta in a rat model of Parkinson's disease. Neurosci Lett 2020; 739:135443. [PMID: 33141067 DOI: 10.1016/j.neulet.2020.135443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022]
Abstract
Parkinson's Disease (PD) patients undergoing subthalamic nucleus deep brain stimulation (STN-DBS) therapy can reduce levodopa equivalent daily dose (LEDD) by approximately 50 %, leading to less symptoms of dyskinesia. The underlying mechanisms contributing to this reduction remain unclear, but studies posit that STN-DBS may increase striatal dopamine levels by exciting remaining dopaminergic cells in the substantia nigra pars compacta (SNc). Yet, no direct evidence has shown how SNc neuronal activity responds during STN-DBS in PD. Here, we use a hemiparkinsonian rat model of PD and employ in vivo electrophysiology to examine the effects of STN-DBS on SNc neuronal spiking activity. We found that 43 % of SNc neurons in naïve rats reduced their spiking frequency to 29.8 ± 18.5 % of baseline (p = 0.010). In hemiparkinsonian rats, a higher number of SNc neurons (88 % of recorded cells) decreased spiking frequency to 61.6 ± 4.4 % of baseline (p = 0.030). We also noted that 43 % of SNc neurons in naïve rats increased spiking frequency from 0.2 ± 0.0 Hz at baseline to 1.8 ± 0.3 Hz during stimulation, but only 1 SNc neuron from 1 hemiparkinsonian rat increased its spiking frequency by 12 % during STN-DBS. Overall, STN-DBS decreased spike frequency in the majority of recorded SNc neurons in a rat model of PD. Less homogenous responsiveness in directionality in SNc neurons during STN-DBS was seen in naive rats. Plausibly, poly-synaptic network signaling from STN-DBS may underlie these changes in SNc spike frequencies.
Collapse
|
21
|
Vachez YM, Creed MC. Deep Brain Stimulation of the Subthalamic Nucleus Modulates Reward-Related Behavior: A Systematic Review. Front Hum Neurosci 2020; 14:578564. [PMID: 33328933 PMCID: PMC7714911 DOI: 10.3389/fnhum.2020.578564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective treatment for the motor symptoms of movement disorders including Parkinson's Disease (PD). Despite its therapeutic benefits, STN-DBS has been associated with adverse effects on mood and cognition. Specifically, apathy, which is defined as a loss of motivation, has been reported to emerge or to worsen following STN-DBS. However, it is often challenging to disentangle the effects of STN-DBS per se from concurrent reduction of dopamine replacement therapy, from underlying PD pathology or from disease progression. To this end, pre-clinical models allow for the dissociation of each of these factors, and to establish neural substrates underlying the emergence of motivational symptoms following STN-DBS. Here, we performed a systematic analysis of rodent studies assessing the effects of STN-DBS on reward seeking, reward motivation and reward consumption across a variety of behavioral paradigms. We find that STN-DBS decreases reward seeking in the majority of experiments, and we outline how design of the behavioral task and DBS parameters can influence experimental outcomes. While an early hypothesis posited that DBS acts as a "functional lesion," an analysis of lesions and inhibition of the STN revealed no consistent pattern on reward-related behavior. Thus, we discuss alternative mechanisms that could contribute to the amotivational effects of STN-DBS. We also argue that optogenetic-assisted circuit dissection could yield important insight into the effects of the STN on motivated behavior in health and disease. Understanding the mechanisms underlying the effects of STN-DBS on motivated behavior-will be critical for optimizing the clinical application of STN-DBS.
Collapse
Affiliation(s)
- Yvan M Vachez
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Meaghan C Creed
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States.,Departments of Psychiatry, Neuroscience and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
22
|
Stefani A, Cerroni R, Pierantozzi M, D’Angelo V, Grandi L, Spanetta M, Galati S. Deep brain stimulation in Parkinson’s disease patients and routine 6‐OHDA rodent models: Synergies and pitfalls. Eur J Neurosci 2020; 53:2322-2343. [DOI: 10.1111/ejn.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Rocco Cerroni
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Mariangela Pierantozzi
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Vincenza D’Angelo
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Laura Grandi
- Center for Movement Disorders Neurocenter of Southern Switzerland Lugano Switzerland
| | - Matteo Spanetta
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Salvatore Galati
- Center for Movement Disorders Neurocenter of Southern Switzerland Lugano Switzerland
- Faculty of Biomedical Sciences Università della Svizzera Italiana Lugano Switzerland
| |
Collapse
|
23
|
Multivariate pattern classification on BOLD activation pattern induced by deep brain stimulation in motor, associative, and limbic brain networks. Sci Rep 2020; 10:7528. [PMID: 32372021 PMCID: PMC7200672 DOI: 10.1038/s41598-020-64547-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) has been shown to be an effective treatment for movement disorders and it is now being extended to the treatment of psychiatric disorders. Functional magnetic resonance imaging (fMRI) studies indicate that DBS stimulation targets dependent brain network effects, in networks that respond to stimulation. Characterizing these patterns is crucial for linking DBS-induced therapeutic and adverse effects. Conventional DBS-fMRI, however, lacks the sensitivity needed for decoding multidimensional information such as spatially diffuse patterns. We report here on the use of a multivariate pattern analysis (MVPA) to demonstrate that stimulation of three DBS targets (STN, subthalamic nucleus; GPi, globus pallidus internus; NAc, nucleus accumbens) evoked a sufficiently distinctive blood-oxygen-level-dependent (BOLD) activation in swine brain. The findings indicate that STN and GPi evoke a similar motor network pattern, while NAc shows a districted associative and limbic pattern. The findings show that MVPA could be effectively applied to overlapping or sparse BOLD patterns which are often found in DBS. Future applications are expected employ MVPA fMRI to identify the proper stimulation target dependent brain circuitry for a DBS outcome.
Collapse
|
24
|
Frequency-Specific Optogenetic Deep Brain Stimulation of Subthalamic Nucleus Improves Parkinsonian Motor Behaviors. J Neurosci 2020; 40:4323-4334. [PMID: 32312888 DOI: 10.1523/jneurosci.3071-19.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy for the motor symptoms of Parkinson's disease (PD). However, the neural elements mediating symptom relief are unclear. A previous study concluded that direct optogenetic activation of STN neurons was neither necessary nor sufficient for relief of parkinsonian symptoms. However, the kinetics of the channelrhodopsin-2 (ChR2) used for cell-specific activation are too slow to follow the high rates required for effective DBS, and thus the contribution of activation of STN neurons to the therapeutic effects of DBS remains unclear. We quantified the behavioral and neuronal effects of optogenetic STN DBS in female rats following unilateral 6-hydroxydopamine (6-OHDA) lesion using an ultrafast opsin (Chronos). Optogenetic STN DBS at 130 pulses per second (pps) reduced pathologic circling and ameliorated deficits in forelimb stepping similarly to electrical DBS, while optogenetic STN DBS with ChR2 did not produce behavioral effects. As with electrical DBS, optogenetic STN DBS exhibited a strong dependence on stimulation rate; high rates produced symptom relief while low rates were ineffective. High-rate optogenetic DBS generated both increases and decreases in firing rates of single neurons in STN, globus pallidus externa (GPe), and substantia nigra pars reticular (SNr), and disrupted β band oscillatory activity in STN and SNr. High-rate optogenetic STN DBS can indeed ameliorate parkinsonian motor symptoms through reduction of abnormal oscillatory activity in the STN-associated neural circuit, and these results highlight that the kinetic properties of opsins have a strong influence on the effects of optogenetic stimulation.SIGNIFICANCE STATEMENT Whether STN local cells contribute to the therapeutic effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) remains unclear. We re-examined the role of STN local cells in mediating the symptom-relieving effects of STN DBS using cell type-specific optogenetic stimulation with a much faster opsin, Chronos. Direct optogenetic stimulation of STN neurons was effective in treating the symptoms of parkinsonism in the 6-hydroxydopamine (6-OHDA) lesion rat. These results highlight that the kinetic properties of opsins can have a strong influence on the effects of optogenetic activation/inhibition and must be considered when employing optogenetic to study high-rate neural stimulation.
Collapse
|
25
|
Fan D, Wang Q. Closed-Loop Control of Absence Seizures Inspired by Feedback Modulation of Basal Ganglia to the Corticothalamic Circuit. IEEE Trans Neural Syst Rehabil Eng 2020; 28:581-590. [PMID: 32011258 DOI: 10.1109/tnsre.2020.2969426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Basal ganglia (BG) has been demonstrated to play the role of modulation for absence seizure generated in the corticothalamic (CT) circuit. But it is unknown what the principle of modulation is and how to improve the modulation if BG fails to hold back the absence seizures. Although neurostimulation has been surgically employed to improve the clinical symptom of patients with epilepsy, the mechanism underlying the neurostimulation regulation is still unclear. In addition, it is not clear what sort of the spatiotemporal patterned stimulation protocols can effectively abate absence seizures with less side effect and energy consumption. Here, we address these issues on the previously proposed BG-CT model. In particular, we develop a reduced corticothalamic (RCT) moldel by viewing BG as a 2I:3O feedback modulator. By calculating the mean firing rate (MFR) and triggering mean firing rate (TMFR), we find that absence seizures can be induced or abated using the neurostimulations through driving the MFRs of the related neurons to fall into or be kicked out of the regions bounded by the TMFRs. In particular, closed-loop m:n ON-OFF anodic-cathodic-cathodic (ACC) triphase coordinated resetting stimulation (CRS) applied on the CT circuit and designed with the TMFR of subthalamic nucleus (STN) in BG could achieve the satisfying abatement effects of absence seizures with the least current consumption.
Collapse
|
26
|
Krishna V, Young NA, Sammartino F. Imaging: Patient Selection, Targeting, and Outcome Biomarkers. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Bilateral subthalamic nucleus deep brain stimulation increases fixational saccades during movement preparation: evidence for impaired preparatory set. Exp Brain Res 2019; 237:2841-2851. [PMID: 31455999 DOI: 10.1007/s00221-019-05636-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
People with Parkinson's disease (PD) exhibit an increase in fixational saccades during the preparatory period prior to target onset in the antisaccade task and this increase is related to an increase in prosaccade errors in the antisaccade task. It was previously shown that bilateral, but not unilateral, subthalamic nucleus deep brain stimulation (STN DBS) in people with PD further increases the prosaccade error rate on the antisaccade task. We investigated whether bilateral STN DBS also increases the number of fixational saccades in the preparatory period of the antisaccade task and if this increase in the number of fixational saccades is related to prosaccade errors. We found that: (1) there were a greater number of fixational saccades during the preparatory period of the antisaccade task during bilateral STN DBS compared to no STN DBS (p < 0.001), unilateral STN DBS (p < 0.001), and healthy controls (p = 0.02), and (2) the increase in the number of fixational saccades increased the probability of a prosaccade error for the antisaccade task during bilateral STN DBS (p = 0.005). This association between number of fixational saccades and probability of a prosaccade error was similar across no STN DBS, unilateral stimulation, and healthy controls. In addition, we found that the proportion of express prosaccade errors and prosaccade error latency were similar across stimulation conditions. We propose that bilateral STN DBS disrupts the integrated activity of cortico-basal ganglia-collicular processes underlying antisaccade preparation and that this disruption manifests as an increase in both fixational saccades and prosaccade error rate.
Collapse
|
28
|
Ginn C, Patel B, Walker R. Existing and emerging applications for the neuromodulation of nerve activity through targeted delivery of electric stimuli. Int J Neurosci 2019; 129:1013-1023. [PMID: 31092102 DOI: 10.1080/00207454.2019.1609473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The effective treatment of many diseases requires the use of multiple treatment strategies among which neuromodulation is playing an increasingly important role. Neuromodulation devices that act to normalize or modulate nerve activity through the targeted delivery of electrical stimuli will be the focus of this review. These devices encompass deep brain stimulators, vagus nerve stimulators, spinal cord simulators and sacral nerve stimulators. Already neuromodulation has proven successful in the treatment of a broad range of conditions from Parkinson's disease to chronic pain and urinary incontinence. Many of these approaches seek to exploit the activities of the autonomic nervous system, which influences organ function through the release of neurotransmitters and associated signalling cascades. This review will outline existing and emerging applications for each of these neuromodulation devices, proposed mechanisms of action and clinical studies evaluating both their safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Claire Ginn
- ElectronRx Ltd., Eagle Labs , Cambridge , UK
| | - Bipin Patel
- ElectronRx Ltd., Eagle Labs , Cambridge , UK
| | - Robert Walker
- School of Biological Sciences, University of Southampton , Southampton , UK
| |
Collapse
|
29
|
Calzà J, Gürsel DA, Schmitz-Koep B, Bremer B, Reinholz L, Berberich G, Koch K. Altered Cortico-Striatal Functional Connectivity During Resting State in Obsessive-Compulsive Disorder. Front Psychiatry 2019; 10:319. [PMID: 31133898 PMCID: PMC6524661 DOI: 10.3389/fpsyt.2019.00319] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/24/2019] [Indexed: 01/30/2023] Open
Abstract
Background: Neuroimaging studies show that obsessive-compulsive disorder (OCD) is characterized by an alteration of the cortico-striato-thalamo-cortical (CSTC) system in terms of an imbalance of activity between the direct and the indirect loop of the CSTC. As resting-state functional connectivity (FC) studies investigated only specific parts of the CSTC in patients with OCD up to now, the present study aimed at exploring FC in the CSTC as a whole. Methods: We investigated potential alterations in resting-state FC within the CSTC system in 44 OCD patients and 40 healthy controls by taking into consideration all relevant nodes of the direct and indirect CSTC loop. Results: Compared to healthy controls, OCD patients showed an increased FC between the left subthalamic nucleus (STN) and the left external globus pallidus (GPe), as well as an increased FC between the left GPe and the left internal globus pallidus (GPi). Conclusion: These findings may contribute to a better understanding of the OCD pathophysiology by providing further information on the connectivity alterations within specific regions of the CSTC system. In particular, increased FC between the STN and the left GPe may play a major role in OCD pathology. This assumption is consistent with the fact that these regions are also the main target sites of therapeutic deep brain stimulation in OCD.
Collapse
Affiliation(s)
- Jessica Calzà
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.,TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| | - Deniz A Gürsel
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.,TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Benno Bremer
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Lena Reinholz
- Department of Psychology, Ludwigs-Maximilians-Universität, Munich, Germany
| | - Götz Berberich
- Windach Institute and Hospital of Neurobehavioural Research and Therapy (WINTR), Windach, Germany
| | - Kathrin Koch
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.,TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany.,Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich, Germany
| |
Collapse
|
30
|
Wang Z, Feng Z, Wei X. Axonal Stimulations With a Higher Frequency Generate More Randomness in Neuronal Firing Rather Than Increase Firing Rates in Rat Hippocampus. Front Neurosci 2018; 12:783. [PMID: 30459545 PMCID: PMC6232943 DOI: 10.3389/fnins.2018.00783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Deep brain stimulation (DBS) has been used for treating many brain disorders. Clinical applications of DBS commonly require high-frequency stimulations (HFS, ∼100 Hz) of electrical pulses to obtain therapeutic efficacy. It is not clear whether the electrical energy of HFS functions other than generating firing of action potentials in neuronal elements. To address the question, we investigated the reactions of downstream neurons to pulse sequences with a frequency in the range 50-200 Hz at afferent axon fibers in the hippocampal CA1 region of anesthetized rats. The results show that the mean rates of neuronal firing induced by axonal HFS were similar even for an up to fourfold difference (200:50) in the number and thereby in the energy of electrical pulses delivered. However, HFS with a higher pulse frequency (100 or 200 Hz) generated more randomness in the firing pattern of neurons than a lower pulse frequency (50 Hz), which were quantitatively evaluated by the significant changes of two indexes, namely, the peak coefficients and the duty ratios of excitatory phase of neuronal firing, induced by different frequencies (50-200 Hz). The findings indicate that a large portion of the HFS energy might function to generate a desynchronization effect through a possible mechanism of intermittent depolarization block of neuronal membranes. The present study addresses the demand of high frequency for generating HFS-induced desynchronization in neuronal activity, which may play important roles in DBS therapy.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhouyan Feng
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xuefeng Wei
- Department of Biomedical Engineering, The College of New Jersey, Ewing, NJ, United States
| |
Collapse
|
31
|
Stefani A, Cerroni R, Mazzone P, Liguori C, Di Giovanni G, Pierantozzi M, Galati S. Mechanisms of action underlying the efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson's disease: central role of disease severity. Eur J Neurosci 2018; 49:805-816. [DOI: 10.1111/ejn.14088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | - Rocco Cerroni
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | | | - Claudio Liguori
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry Faculty of Medicine and Surgery University of Malta La Valletta Malta
| | - Mariangela Pierantozzi
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | - Salvatore Galati
- Movement disorders service Neurocenter of Southern Switzerland Lugano Switzerland
| |
Collapse
|
32
|
Yi G, Grill WM. Frequency-dependent antidromic activation in thalamocortical relay neurons: effects of synaptic inputs. J Neural Eng 2018; 15:056001. [PMID: 29893711 DOI: 10.1088/1741-2552/aacbff] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) generates action potentials (APs) in presynaptic axons and fibers of passage. The APs may be antidromically propagated to invade the cell body and/or orthodromically transmitted to downstream structures, thereby affecting widespread targets distant from the electrode. Activation of presynaptic terminals also causes trans-synaptic effects, which in turn alter the excitability of the post-synaptic neurons. Our aim was to determine how synaptic inputs affect the antidromic invasion of the cell body. APPROACH We used a biophysically-based multi-compartment model to simulate antidromic APs in thalamocortical relay (TC) neurons. We applied distributed synaptic inputs to the model and quantified how excitatory and inhibitory inputs contributed to the fidelity of antidromic activation over a range of antidromic frequencies. MAIN RESULTS Antidromic activation exhibited strong frequency dependence, which arose from the hyperpolarizing afterpotentials in the cell body and its respective recovery cycle. Low-frequency axonal spikes faithfully invaded the soma, whereas frequent failures of antidromic activation occurred at high frequencies. The frequency-dependent pattern of the antidromic activation masked burst-driver inputs to TC neurons from the cerebellum in a frequency-dependent manner. Antidromic activation also depended on the excitability of the cell body. Excitatory synaptic inputs improved the fidelity of antidromic activation by increasing the excitability, and inhibitory inputs suppressed antidromic activation by reducing soma excitability. Stimulus-induced depolarization of neuronal segments also facilitated antidromic propagation and activation. SIGNIFICANCE The results reveal that synaptic inputs, stimulus frequency, and electrode position regulate antidromic activation of the cell body during extracellular stimulation. These findings provide a biophysical basis for interpreting the widespread inhibition/activation of target nuclei during DBS.
Collapse
Affiliation(s)
- Guosheng Yi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America. School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | | |
Collapse
|
33
|
Shehab S, D'souza C, Ljubisavljevic M, Redgrave P. Activation of the subthalamic nucleus suppressed by high frequency stimulation: A c-Fos immunohistochemical study. Brain Res 2018; 1685:42-50. [PMID: 29421187 DOI: 10.1016/j.brainres.2018.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/03/2017] [Accepted: 01/25/2018] [Indexed: 11/27/2022]
Abstract
Deep brain stimulation applied at high frequency (HFS) to the subthalamic nucleus (STN) is used to ameliorate the symptoms of Parkinson's disease. The mechanism by which this is achieved remains controversial. In particular, it is uncertain whether HFS has a suppressive or excitatory action locally within the STN. Brief exposure of rats to ether anesthesia evokes pathological burst firing and associated expression of the immediate early gene c-Fos in STN neurons. We used this ether model of STN activation to test the effect of a range of HFS parameters on c-Fos expression evoked by the anesthetic. The elevated baseline of c-Fos expression afforded the possibility of detecting further excitatory, or suppressive effects of STN HFS. Four HFS protocols were examined; 130, 200 and 260 Hz with 60 µs, and 130 Hz with 90 µs pulse width (HFS intensity:150-300 µA). All HFS protocols were applied for 20 min while the animals were exposed to ether. Ether-evoked expression of c-Fos immunoreactivity was suppressed by HFS at 200 and 260 Hz with a pulse width of 60 µs, and by 130 Hz when the pulse width was increased to 90 µs. HFS at 130 Hz with the 60 µs pulse width had no significant effect and HFS alone caused negligible c-Fos expression in the STN. These findings suggest that HFS of the STN causes significant suppression of evoked neuronal activity. It remains to be determined whether this locally suppressive property of HFS is associated with the efficacy of STN deep brain stimulation to relieve the symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al-Ain, PO BOX 17666, United Arab Emirates.
| | - Crystal D'souza
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al-Ain, PO BOX 17666, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al-Ain, PO BOX 17666, United Arab Emirates
| | - Peter Redgrave
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al-Ain, PO BOX 17666, United Arab Emirates
| |
Collapse
|
34
|
|
35
|
High-Frequency Stimulation of the Subthalamic Nucleus Blocks Compulsive-Like Re-Escalation of Heroin Taking in Rats. Neuropsychopharmacology 2017; 42:1850-1859. [PMID: 27917870 PMCID: PMC5520777 DOI: 10.1038/npp.2016.270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 11/08/2022]
Abstract
Opioid addiction, including addiction to heroin, has markedly increased in the past decade. The cost and pervasiveness of heroin addiction, including resistance to recovery from addiction, provide a compelling basis for developing novel therapeutic strategies. Deep brain stimulation may represent a viable alternative strategy for the treatment of intractable heroin addiction, particularly in individuals who are resistant to traditional therapies. Here we provide preclinical evidence of the therapeutic potential of high-frequency stimulation of the subthalamic nucleus (STN HFS) for heroin addiction. STN HFS prevented the re-escalation of heroin intake after abstinence in rats with extended access to heroin, an animal model of compulsive heroin taking. STN HFS inhibited key brain regions, including the substantia nigra, entopeduncular nucleus, and nucleus accumbens shell measured using brain mapping analyses of immediate-early gene expression and produced a robust silencing of STN neurons as measured using whole-cell recording ex vivo. These results warrant further investigation to examine the therapeutic effects that STN HFS may have on relapse in humans with heroin addiction.
Collapse
|
36
|
Schippers MC, Gaastra M, Mesman T, Schetters D, van Mourik Y, Denys D, Pattij T, De Vries TJ. Deep brain stimulation of the nucleus accumbens core but not shell reduces motivational components of heroin taking and seeking in rats. Brain Neurosci Adv 2017; 1:2398212817711083. [PMID: 32166132 PMCID: PMC7058223 DOI: 10.1177/2398212817711083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/21/2017] [Indexed: 12/04/2022] Open
Abstract
Background: Deep brain stimulation is explored as a new intervention for treatment-resistant substance use dependence. A candidate brain region is the nucleus accumbens, due to its involvement in reward and motivation. This study aimed to explore effects of NAcore and NAshell deep brain stimulation on aspects of heroin taking and seeking in a self-administration model for rats. Methods: NAcore and NAshell deep brain stimulation was applied during 25 or 100 µg/kg/infusion heroin self-administration on an FR4 schedule of reinforcement and during cue- and heroin-induced reinstatement. In a separate group, effects of NAcore deep brain stimulation on heroin self-administration on a progressive ratio schedule and the first extinction session were examined. Results: NAcore and NAshell deep brain stimulation did not alter heroin self-administration on an FR4 schedule. NAcore deep brain stimulation decreased cue – but not drug-induced reinstatement of heroin seeking, whereas NAshell deep brain stimulation did not affect reinstatement responding. In the second experiment, NAcore deep brain stimulation reduced responding during a progressive ratio schedule of heroin reinforcement. Finally, deep brain stimulation facilitated extinction from day 1 throughout the course of extinction learning. Conclusion: Taken together, the differential effects of NAcore and NAshell deep brain stimulation on heroin taking and seeking are in line with the distinct functional roles of these sub-regions therein. Conditioned cues have been shown to be very powerful stimuli for the persistence of addiction and relapse to drug use. Therefore, the present findings that NAcore deep brain stimulation decreases motivation for heroin taking and cue-conditioned behaviour and facilitates extinction learning are very promising, supporting the positive findings from clinical case studies.
Collapse
Affiliation(s)
- Maria C Schippers
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Mathijs Gaastra
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Tanja Mesman
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Dustin Schetters
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvar van Mourik
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tommy Pattij
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Taco J De Vries
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Faggiani E, Benazzouz A. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: From history to the interaction with the monoaminergic systems. Prog Neurobiol 2017; 151:139-156. [DOI: 10.1016/j.pneurobio.2016.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/08/2016] [Indexed: 11/16/2022]
|
38
|
The effects of unilateral versus bilateral subthalamic nucleus deep brain stimulation on prosaccades and antisaccades in Parkinson's disease. Exp Brain Res 2016; 235:615-626. [PMID: 27844097 DOI: 10.1007/s00221-016-4830-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Abstract
Unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson's disease improves skeletomotor function assessed clinically, and bilateral STN DBS improves motor function to a significantly greater extent. It is unknown whether unilateral STN DBS improves oculomotor function and whether bilateral STN DBS improves it to a greater extent. Further, it has also been shown that bilateral, but not unilateral, STN DBS is associated with some impaired cognitive-motor functions. The current study compared the effect of unilateral and bilateral STN DBS on sensorimotor and cognitive aspects of oculomotor control. Patients performed prosaccade and antisaccade tasks during no stimulation, unilateral stimulation, and bilateral stimulation. There were three sets of findings. First, for the prosaccade task, unilateral STN DBS had no effect on prosaccade latency and it reduced prosaccade gain; bilateral STN DBS reduced prosaccade latency and increased prosaccade gain. Second, for the antisaccade task, neither unilateral nor bilateral stimulation had an effect on antisaccade latency, unilateral STN DBS increased antisaccade gain, and bilateral STN DBS increased antisaccade gain to a greater extent. Third, bilateral STN DBS induced an increase in prosaccade errors in the antisaccade task. These findings suggest that while bilateral STN DBS benefits spatiotemporal aspects of oculomotor control, it may not be as beneficial for more complex cognitive aspects of oculomotor control. Our findings are discussed considering the strategic role the STN plays in modulating information in the basal ganglia oculomotor circuit.
Collapse
|
39
|
Motto C, Tamma F, Candelise L, Pecoraro V, Banzi R, Moja L. Deep brain stimulation of subthalamic nucleus for Parkinson's disease. Hippokratia 2016. [DOI: 10.1002/14651858.cd004491.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cristina Motto
- Ospedale Niguarda Ca Granda; Neurological Science; Piazza Ospedale Maggiore 3 Milano MI Italy 20162
| | | | - Livia Candelise
- Universita degli Studi di Milano, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena; Dipartimento di Scienze Neurologiche; Milano Italy 20122
| | - Valentina Pecoraro
- IRCCS - Mario Negri Institute for Pharmacological Research; Laboratory of Regulatory Policies; via G La Masa 19 Milan Italy 20156
| | - Rita Banzi
- IRCCS - Mario Negri Institute for Pharmacological Research; Laboratory of Regulatory Policies; via G La Masa 19 Milan Italy 20156
| | - Lorenzo Moja
- University of Milan; Department of Biomedical Sciences for Health; Via Pascal 36 Milan Italy 20133
| |
Collapse
|
40
|
Gibson WS, Jo HJ, Testini P, Cho S, Felmlee JP, Welker KM, Klassen BT, Min HK, Lee KH. Functional correlates of the therapeutic and adverse effects evoked by thalamic stimulation for essential tremor. Brain 2016; 139:2198-210. [PMID: 27329768 PMCID: PMC4958905 DOI: 10.1093/brain/aww145] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/03/2016] [Indexed: 01/05/2023] Open
Abstract
Thalamic deep brain stimulation (DBS) is an effective therapy for essential tremor. Gibson et al. use functional MRI to reveal patterns of activation that correlate with stimulation-induced therapeutic and adverse effects. Their results suggest that thalamic DBS controls tremor, and induces paraesthesias, through distal modulation of tremor-related network nodes. Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identified in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain stimulation.
Collapse
Affiliation(s)
- William S Gibson
- 1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Hang Joon Jo
- 1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Paola Testini
- 1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Shinho Cho
- 1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Joel P Felmlee
- 2 Department of Radiology, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Kirk M Welker
- 2 Department of Radiology, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Bryan T Klassen
- 3 Department of Neurology, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Hoon-Ki Min
- 1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA 55905, USA 2 Department of Radiology, Mayo Clinic, Rochester, MN, USA 55905, USA 4 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kendall H Lee
- 1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA 55905, USA 4 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
41
|
Sterling NW, Cusumano JP, Shaham N, Piazza SJ, Liu G, Kong L, Du G, Lewis MM, Huang X. Dopaminergic modulation of arm swing during gait among Parkinson's disease patients. JOURNAL OF PARKINSONS DISEASE 2015; 5:141-50. [PMID: 25502948 DOI: 10.3233/jpd-140447] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Reduced arm swing amplitude, symmetry, and coordination during gait have been reported in Parkinson's disease (PD), but the relationship between dopaminergic depletion and these upper limb gait changes remains unclear. OBJECTIVE We aimed to investigate the effects of dopaminergic drugs on arm swing velocity, symmetry, and coordination in PD. METHODS Forearm angular velocity was recorded in 16 PD and 17 control subjects (Controls) during free walking trials. Angular velocity amplitude of each arm, arm swing asymmetry, and maximum cross-correlation were compared between control and PD groups, and between OFF- and ON-medication states among PD subjects. RESULTS Compared to Controls, PD subjects in the OFF-medication state exhibited lower angular velocity amplitude of the slower- (p = 0.0018), but not faster- (p = 0.2801) swinging arm. In addition, PD subjects demonstrated increased arm swing asymmetry (p = 0.0046) and lower maximum cross-correlation (p = 0.0026). Following dopaminergic treatment, angular velocity amplitude increased in the slower- (p = 0.0182), but not faster- (p = 0.2312) swinging arm among PD subjects. Furthermore, arm swing asymmetry decreased (p = 0.0386), whereas maximum cross-correlation showed no change (p = 0.7436). Pre-drug angular velocity amplitude of the slower-swinging arm was correlated inversely with the change in arm swing asymmetry (R = -0.73824, p = 0.0011). CONCLUSIONS This study provides quantitative evidence that reduced arm swing and symmetry in PD can be modulated by dopaminergic replacement. The lack of modulations of bilateral arm coordination suggests that additional neurotransmitters may also be involved in arm swing changes in PD. Further studies are warranted to investigate the longitudinal trajectory of arm swing dynamics throughout PD progression.
Collapse
Affiliation(s)
- Nicholas W Sterling
- Department of Neurology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA Department of Public Health Sciences, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Joseph P Cusumano
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, USA
| | - Noam Shaham
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, USA
| | - Stephen J Piazza
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Guodong Liu
- Department of Public Health Sciences, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Lan Kong
- Department of Public Health Sciences, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Guangwei Du
- Department of Neurology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Mechelle M Lewis
- Department of Neurology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA Department of Pharmacology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Xuemei Huang
- Department of Neurology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA Department of Pharmacology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA Department of Radiology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA Department of Neurosurgery, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
42
|
Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol 2015; 115:19-38. [PMID: 26510756 DOI: 10.1152/jn.00281.2015] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS.
Collapse
Affiliation(s)
- Todd M Herrington
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Jennifer J Cheng
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
McCairn KW, Iriki A, Isoda M. Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders. J Neurophysiol 2015; 114:2090-104. [PMID: 26180116 PMCID: PMC4595610 DOI: 10.1152/jn.00223.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Abnormalities in cortico-basal ganglia (CBG) networks can cause a variety of movement disorders ranging from hypokinetic disorders, such as Parkinson's disease (PD), to hyperkinetic conditions, such as Tourette syndrome (TS). Each condition is characterized by distinct patterns of abnormal neural discharge (dysrhythmia) at both the local single-neuron level and the global network level. Despite divergent etiologies, behavioral phenotypes, and neurophysiological profiles, high-frequency deep brain stimulation (HF-DBS) in the basal ganglia has been shown to be effective for both hypo- and hyperkinetic disorders. The aim of this review is to compare and contrast the electrophysiological hallmarks of PD and TS phenotypes in nonhuman primates and discuss why the same treatment (HF-DBS targeted to the globus pallidus internus, GPi-DBS) is capable of ameliorating both symptom profiles. Recent studies have shown that therapeutic GPi-DBS entrains the spiking of neurons located in the vicinity of the stimulating electrode, resulting in strong stimulus-locked modulations in firing probability with minimal changes in the population-scale firing rate. This stimulus effect normalizes/suppresses the pathological firing patterns and dysrhythmia that underlie specific phenotypes in both the PD and TS models. We propose that the elimination of pathological states via stimulus-driven entrainment and suppression, while maintaining thalamocortical network excitability within a normal physiological range, provides a common therapeutic mechanism through which HF-DBS permits information transfer for purposive motor behavior through the CBG while ameliorating conditions with widely different symptom profiles.
Collapse
Affiliation(s)
- Kevin W McCairn
- Systems Neuroscience and Movement Disorders Laboratory, Korea Brain Research Institute, Daegu, Republic of Korea;
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan; and
| | - Masaki Isoda
- Department of Physiology, Kansai Medical University School of Medicine, Hirakata, Osaka, Japan
| |
Collapse
|
44
|
Martinez-Ramirez D, Hu W, Bona AR, Okun MS, Wagle Shukla A. Update on deep brain stimulation in Parkinson's disease. Transl Neurodegener 2015; 4:12. [PMID: 26257895 PMCID: PMC4529685 DOI: 10.1186/s40035-015-0034-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/22/2015] [Indexed: 01/21/2023] Open
Abstract
Deep brain stimulation (DBS) is considered a safe and well tolerated surgical procedure to alleviate Parkinson’s disease (PD) and other movement disorders symptoms along with some psychiatric conditions. Over the last few decades DBS has been shown to provide remarkable therapeutic effect on carefully selected patients. Although its precise mechanism of action is still unknown, DBS improves motor functions and therefore quality of life. To date, two main targets have emerged in PD patients: the globus pallidus pars interna and the subthalamic nucleus. Two other targets, the ventralis intermedius and zona incerta have also been selectively used, especially in tremor-dominant PD patients. The main indications for PD DBS have traditionally been motor fluctuations, debilitating medication induced dyskinesias, unpredictable “off time” state, and medication refractory tremor. Medication refractory tremor and intolerable dyskinesia are potential palliative indications. Besides aforementioned targets, the brainstem pedunculopontine nucleus (PPN) is under investigation for the treatment of ON-state freezing of gait and postural instability. In this article, we will review the most recent literature on DBS therapy for PD, including cutting-edge advances and data supporting the role of DBS in advanced neural-network modulation.
Collapse
Affiliation(s)
- Daniel Martinez-Ramirez
- Department of Neurology, University of Florida, College of Medicine, Center for Movement Disorders and Neurorestoration, 3450 Hull Road, Gainesville, FL 32607 USA
| | - Wei Hu
- Department of Neurology, University of Florida, College of Medicine, Center for Movement Disorders and Neurorestoration, 3450 Hull Road, Gainesville, FL 32607 USA
| | - Alberto R Bona
- Department of Neurosurgery, Psychiatry, and History, University of Florida, College of Medicine, Center for Movement Disorders and Neurorestoration, Gainesville, FL 32610 USA
| | - Michael S Okun
- Department of Neurology, University of Florida, College of Medicine, Center for Movement Disorders and Neurorestoration, 3450 Hull Road, Gainesville, FL 32607 USA ; Department of Neurosurgery, Psychiatry, and History, University of Florida, College of Medicine, Center for Movement Disorders and Neurorestoration, Gainesville, FL 32610 USA
| | - Aparna Wagle Shukla
- Department of Neurology, University of Florida, College of Medicine, Center for Movement Disorders and Neurorestoration, 3450 Hull Road, Gainesville, FL 32607 USA
| |
Collapse
|
45
|
Furlanetti LL, Cordeiro JG, Cordeiro KK, García JA, Winkler C, Lepski GA, Coenen VA, Nikkhah G, Döbrössy MD. Continuous High-Frequency Stimulation of the Subthalamic Nucleus Improves Cell Survival and Functional Recovery Following Dopaminergic Cell Transplantation in Rodents. Neurorehabil Neural Repair 2015; 29:1001-12. [PMID: 25857428 DOI: 10.1177/1545968315581419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Subthalamic nucleus (STN) high-frequency stimulation (HFS) is a routine treatment in Parkinson's disease (PD), with confirmed long-term benefits. An alternative, but still experimental, treatment is cell replacement and restorative therapy based on transplanted dopaminergic neurons. The current experiment evaluated the potential synergy between neuromodulation and grafting by studying the effect of continuous STN-HFS on the survival, integration, and functional efficacy of ventral mesencephalic dopaminergic precursors transplanted into a unilateral 6-hydroxydopamine medial forebrain bundle lesioned rodent PD model. One group received continuous HFS of the ipsilateral STN starting a week prior to intrastriatal dopaminergic neuron transplantation, whereas the sham-stimulated group did not receive STN-HFS but only dopaminergic grafts. A control group was neither lesioned nor transplanted. Over the following 7 weeks, the animals were probed on a series of behavioral tasks to evaluate possible graft and/or stimulation-induced functional effects. Behavioral and histological data suggest that STN-HFS significantly increased graft cell survival, graft-host integration, and functional recovery. These findings might open an unexplored road toward combining neuromodulative and neuroregenerative strategies to treat severe neurologic conditions.
Collapse
Affiliation(s)
| | | | | | - Joanna A García
- University Freiburg Medical Center, Freiburg im Breisgau, Germany Columbia University, New York, NY, USA
| | - Christian Winkler
- University Freiburg Medical Center, Freiburg im Breisgau, Germany Lindenbrunn Hospital, Coppenbrügge, Germany
| | - Guilherme A Lepski
- University of São Paulo, São Paulo, Brazil University of Tübingen, Tübingen, Germany
| | - Volker A Coenen
- University Freiburg Medical Center, Freiburg im Breisgau, Germany
| | | | - Máté D Döbrössy
- University Freiburg Medical Center, Freiburg im Breisgau, Germany
| |
Collapse
|
46
|
Deep brain stimulation in tinnitus: current and future perspectives. Brain Res 2015; 1608:51-65. [PMID: 25758066 DOI: 10.1016/j.brainres.2015.02.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 11/22/2022]
Abstract
Chronic tinnitus, also known as ringing in the ears, affects up to 15% of the adults and causes a serious socio-economic burden. At present, there is no treatment available which substantially reduces the perception of this phantom sound. In the past few years, preclinical and clinical studies have unraveled central mechanisms involved in the pathophysiology of tinnitus, replacing the classical periphery-based hypothesis. In subcortical auditory and non-auditory regions, increased spontaneous activity, neuronal bursting and synchrony were found. When reaching the auditory cortex, these neuronal alterations become perceptually relevant and consequently are perceived as phantom sound. A therapy with a potential to counteract deeply located pathological activity is deep brain stimulation, which has already been demonstrated to be effective in neurological diseases such as Parkinson's disease. In this review, several brain targets are discussed as possible targets for deep brain stimulation in tinnitus. The potential applicability of this treatment in tinnitus is discussed with examples from the preclinical field and clinical case studies.
Collapse
|
47
|
McCairn KW, Turner RS. Pallidal stimulation suppresses pathological dysrhythmia in the parkinsonian motor cortex. J Neurophysiol 2015; 113:2537-48. [PMID: 25652922 DOI: 10.1152/jn.00701.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/03/2015] [Indexed: 02/06/2023] Open
Abstract
Although there is general consensus that deep brain stimulation (DBS) yields substantial clinical benefit in patients with Parkinson's disease (PD), the therapeutic mechanism of DBS remains a matter of debate. Recent studies demonstrate that DBS targeting the globus pallidus internus (GPi-DBS) suppresses pathological oscillations in firing rate and between-cell spike synchrony in the vicinity of the electrode but has negligible effects on population-level firing rate or the prevalence of burst firing. The present investigation examines the downstream consequences of GPi-DBS at the level of the primary motor cortex (M1). Multielectrode, single cell recordings were conducted in the M1 of two parkinsonian nonhuman primates (Macaca fasicularis). GPi-DBS that induced significant reductions in muscular rigidity also reduced the prevalence of both beta (12-30 Hz) oscillations in single unit firing rates and of coherent spiking between pairs of M1 neurons. In individual neurons, GPi-DBS-induced increases in mean firing rate were three times more common than decreases; however, averaged across the population of M1 neurons, GPi-DBS induced no net change in mean firing rate. The population-level prevalence of burst firing was also not affected by GPi-DBS. The results are consistent with the hypothesis that suppression of both pathological, beta oscillations and synchronous activity throughout the cortico-basal ganglia network is a major therapeutic mechanism of GPi-DBS.
Collapse
Affiliation(s)
- Kevin W McCairn
- Department of Neurological Surgery, University of California, San Francisco, California; Department of Biological Sciences, Milton Keynes, The Open University, Buckinghamshire, United Kingdom; and
| | - Robert S Turner
- Department of Neurological Surgery, University of California, San Francisco, California; Department of Neurobiology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Fraix V, Castrioto A, Moro E, Krack P. Trattamento chirurgico della malattia di Parkinson. Neurologia 2015. [DOI: 10.1016/s1634-7072(14)69825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
49
|
Pienaar IS, Dexter DT, Gradinaru V. Neurophysiological and Optogenetic Assessment of Brain Networks Involved in Motor Control. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
50
|
Kisely S, Hall K, Siskind D, Frater J, Olson S, Crompton D. Deep brain stimulation for obsessive-compulsive disorder: a systematic review and meta-analysis. Psychol Med 2014; 44:3533-3542. [PMID: 25066053 DOI: 10.1017/s0033291714000981] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is increasingly being applied to psychiatric conditions such as obsessive-compulsive disorder (OCD), major depression and anorexia nervosa. Double-blind, randomized controlled trials (RCTs) of active versus sham treatment have been limited to small numbers. We therefore undertook a systematic review and meta-analysis of the effectiveness of DBS in psychiatric conditions to maximize study power. METHOD We conducted a systematic literature search for double-blind, RCTs of active versus sham treatment using Pubmed/Medline and EMBASE up to April 2013. Where possible, we combined results from studies in a meta-analysis. We assessed differences in final values between the active and sham treatments for parallel-group studies and compared changes from baseline score for cross-over designs. RESULTS Inclusion criteria were met by five studies, all of which were of OCD. Forty-four subjects provided data for the meta-analysis. The main outcome was a reduction in obsessive symptoms as measured by the Yale-Brown Obsessive Compulsive Scale (YBOCS). Patients on active, as opposed to sham, treatment had a significantly lower mean score [mean difference (MD) -8.93, 95% confidence interval (CI) -13.35 to -5.76, p < 0.001], representing partial remission. However, one-third of patients experienced significant adverse effects (n = 16). There were no differences between the two groups in terms of other outcomes. CONCLUSIONS DBS may show promise for treatment-resistant OCD but there are insufficient randomized controlled data for other psychiatric conditions. DBS remains an experimental treatment in adults for severe, medically refractory conditions until further data are available.
Collapse
Affiliation(s)
- S Kisely
- The University of Queensland Rural Clinical School,QLD,Australia
| | - K Hall
- The University of Queensland Rural Clinical School,QLD,Australia
| | - D Siskind
- Metro South Health Service, Woolloongabba, QLD,Australia
| | - J Frater
- Metro South Health Service, Woolloongabba, QLD,Australia
| | - S Olson
- Metro South Health Service, Woolloongabba, QLD,Australia
| | - D Crompton
- Metro South Health Service, Woolloongabba, QLD,Australia
| |
Collapse
|